Coset Codes. II. Binary Lattices and Related Codes

Total Page:16

File Type:pdf, Size:1020Kb

Coset Codes. II. Binary Lattices and Related Codes 1152 IEEE TRANSACTIONSON INFORMATIONTHEORY, VOL. 34, NO. 5, SEPTEMBER 1988 Coset Codes-Part 11: Binary Lattices and Related Codes G. DAVID FORNEY, JR., FELLOW, IEEE Invited Paper Abstract -The family of Barnes-Wall lattices (including D4 and E,) of increases by a factor of 21/2 (1.5 dB) for each doubling of lengths N = 2“ and their principal sublattices, which are useful in con- dimension. structing coset codes, are generated by iteration of a simple construction What may be obscured by the length of this paper is called the “squaring construction.” The closely related Reed-Muller codes are generated by the same construction. The principal properties of these that the construction of these lattices is extremely simple. codes and lattices, including distances, dimensions, partitions, generator The only building blocks needed are the set Z of ordinary matrices, and duality properties, are consequences of the general proper- integers, with its infinite chain of two-way partitions ties of iterated squaring constructions, which also exhibit the interrelation- 2/22/4Z/. , and an elementary construction that we ships between codes and lattices of different lengths. An extension called call the “squaring construction,” which produces chains of the “cubing construction” generates good codes and lattices of lengths 2N-tuples with certain guaranteed distance properties from N = 3.2”, including the Golay code and Leech lattice, with the use of special bases for 8-space. Another related construction generates the chains of N-tuples. Iteration of this construction produces Nordstrom-Robinson code and an analogous 16-dimensional nonlattice the entire family of lattices, determines their minimum packing. These constructions are represented by trellis diagrams that squared distances, shows their partition (sublattice) struc- display their structure and interrelationships and that lead to efficient ture, and gives general interrelationships between the lat- maximum likelihood decoding algorithms. General algebraic methods for determining minimal trellis diagrams of codes, lattices, and partitions are tices of different dimension. The construction also natu- given in an Appendix. rally points to structural decompositions that we illustrate by trellis diagrams and that lead to efficient maximum I. INTRODUCTION likelihood decoding algorithms. Other attributes of these lattices, such as their generator matrices, “code formulas” COMPANION PAPER [l] characterizes a large [l],and duality properties, may be easily derived from A number of the coded modulation techniques that general properties of this simple construction. have been proposed for band-limited channels as coset Actually, the development makes it clear that the most codes, i.e., as sequences of cosets of a sublattice A’ in a natural starting point for the construction is the two-di- partition A/A‘ of a binary lattice A, where the cosets are mensional lattice Z2of pairs of ordinary integers, with its selected by the outputs of a binary encoder. infinite chain of two-way partitions Z 2/RZ 2/2Z ’/ . The principal purpose of this paper is to give a unified or, equivalently, the complex lattice G of Gaussian inte- development of the family of lattices that have proved to gers [l],with its partition chain C/$JG/+~G/. , where be most useful in constructing coset codes and of the +=1+i. properties of such lattices that are most important for such These lattices are closely related to the family of applications, e.g., their minimum squared distances, their Reed-Muller codes. Indeed, the Reed-Muller codes can partitions, and aspects of their structure that are useful in be generated by the same construction, except that the decoding. starting point is the binary field GF(2), with the exhaustive This family of lattices is the sequence of 2“-dimensional two-way partition into its two elements. The two-by-two lattices called the Barnes-Wall lattices, and what we call integer matrix G(2,2)= {[10],[11]}turns out to be a key tool their “principal sublattices.” This family includes such in describing the application of the squaring construction important lattices as the Schlafli lattice D4,the Gosset to group partitions, and the rn-fold Kronecker product of lattice E,, and the infinite sequence A,,, A,,, . of this matrix with itself, Le., the N X N integer matrix Barnes-Wall lattices, whose fundamental coding gain [l] G(N,N)that contains all the generators of all the Reed-Muller codes of length N = 2”, turns out to be very helpful in characterizing the results of rn-fold iterated Manuscript received September 2, 1986; revised September 18, 1987. squaring constructions (Lemma 2). This paper was partially presented at the 1986 IEEE International Sym- posium on Information Theory, Ann Arbor, MI, October 8, and at the A construction that we call the “cubing construction,” 1986 IEEE Communications Theory Workshop, Palm Springs, CA, April whch is closely related to the twofold iteration of the 28. squaring construction, produces groups of 3N-tuples from The author is with the Codex Corporation, 7 Blue fill River Road, Canton, MA 02021. groups of N-tuples. The principal use that we make of this IEEE Log Number 8824502. construction is to construct the (24,12) Golay code and the 0018-9448/88/0900-1152$01 .OO 01988 IEEE FORNEY: COSET CODES-PART I1 1153 24-dimensional Leech lattice. In addition to the cubing and the Leech lattice. Finally, in the Appendix we show construction, we need to introduce special bases of 8-space how to determine the state spaces and trellis diagrams of to obtain the requisite distance properties. codes, lattices, and partitions algebraically, using trellis- Using these bases, we go on to construct the length-16 oriented generator matrices. nonlinear Nordstrom-Robinson code, which is better than any comparable linear code, and an analogous 16-dimen- sional nonlattice packing, which falls just short of the 11. PRELIMINARIES density of the 16-dimensional Barnes-Wall lattice A16. These constructions are closely related to each other and This paper is about discrete sets on which a distance to those already described. Furthermore, they show that metric is defined, partitions of such sets, and set construc- while coset code constructions may almost always be based tions based on such partitions. In this section we gather on partitions that result from coset decompositions of the elementary facts that we will need about such sets and groups (codes, lattices), the resulting constructions need partitions. These sets will almost always be algebraic not themselves be linear to have good distance properties groups, i.e., closed under some addition operation; how- (indeed, many of the best trellis codes are nonlinear [l]). ever, the constructions do not essentially depend on group These constructions lead directly to unexpectedly simple properties, and to emphasize this point, we defer the and highly structured trellis diagrams for these codes and discussion of group properties for as long as possible. lattices. The trellis diagrams suggest maximum likelihood decoding algorithms for both codes and lattices that gener- A. Partitions ally turn out to be improvements over the best previously known algorithms. For completeness, we give methods for Let S be any discrete set with elements s E S. An systematic algebraic determination of minimal trellis dia- M-way partition of S is specified by a set of M disjoint grams for linear codes and lattices in an Appendix. subsets T(a)whose union is S, where a is a label for the Relatively little in this paper is new. All of the codes and subset T(a).We denote such a partition by S/T, and we lattices are well-known (except for the 16-dimensional say that the order of the partition is IS/TI = M. Ordinar- nonlattice packing, which was noticed earlier by Conway ily, in this paper, the order of a partition will be finite, and Sloane but has not previously been published). Their even when the sets involved are infinite. constructions and properties have generally been derived A subset labeling is any one-to-one map between the earlier in various forms, some essentially equivalent to our subsets and a set of M labels. Examples of labels which we constructions, which we have attempted to acknowledge shall use include: a subset index i, where, for example, appropriately. While we know of no readily accessible text 0 I i IM-1; binary K-tuples a, when M = 2K; or a on lattices, the recent book by Conway and Sloane [2] is an system of subset representatives c E S, one from each sub- encyclopedic reference for practically everythmg here and set. When S contains a zero element 0, we call the subset far more. What we hope to have contributed is a unified that contains 0 the zero subset T(O),or simply T, and use 0 treatment of the lattices that are most useful in applica- as its representative. tions, with a derivation of their principal properties, at a For example, there is a two-way partition of the set of reasonably elementary mathematical level. We do believe ordinary integers 2 into the even integers, 22, and the that the structural properties exhibited in our trellis dia- odd integers, 22+ 1. We say that 2/22 is a partition of grams are generally new, as well as the decoding methods order 2. The natural labels for the subsets are {O,l}, where that they suggest. 22 is the zero subset. The paper is organized as follows. In Section I1 we An m-level partition chain S,/S,/ ’ . /Sm is obtained introduce the language and elementary results that we use by repeated partitioning of subsets; i.e., the set So is first for sets, set partitions, distance measures, and additive partitioned into IS,/S,l subsets SI(a,), then each subset groups,-particularly groups with orders equal to a power of S,(a,) of So is partitioned, and so forth.
Recommended publications
  • Decoding Algorithms of Reed-Solomon Code
    Master’s Thesis Computer Science Thesis no: MCS-2011-26 October 2011 Decoding algorithms of Reed-Solomon code Szymon Czynszak School of Computing Blekinge Institute of Technology SE – 371 79 Karlskrona Sweden This thesis is submitted to the School of Computing at Blekinge Institute o f Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Szymon Czynszak E-mail: [email protected] University advisor(s): Mr Janusz Biernat, prof. PWR, dr hab. in ż. Politechnika Wrocławska E-mail: [email protected] Mr Martin Boldt, dr Blekinge Institute of Technology E-mail: [email protected] Internet : www.bth.se/com School of Computing Phone : +46 455 38 50 00 Blekinge Institute of Technology Fax : +46 455 38 50 57 SE – 371 79 Karlskrona Sweden ii Abstract Reed-Solomon code is nowadays broadly used in many fields of data trans- mission. Using of error correction codes is divided into two main operations: information coding before sending information into communication channel and decoding received information at the other side. There are vast of decod- ing algorithms of Reed-Solomon codes, which have specific features. There is needed knowledge of features of algorithms to choose correct algorithm which satisfies requirements of system. There are evaluated cyclic decoding algo- rithm, Peterson-Gorenstein-Zierler algorithm, Berlekamp-Massey algorithm, Sugiyama algorithm with erasures and without erasures and Guruswami- Sudan algorithm. There was done implementation of algorithms in software and in hardware.
    [Show full text]
  • Finite Fields: an Introduction. Part
    Finite fields: An introduction. Part II. Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. August 7, 2008 Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 1 / 18 Outline 1 Brief review of Part I (Jul 2, 2008) 2 Construction of finite fields Polynomials over finite fields n Explicit construction of the finite field Fq, with q = p . Examples 3 Classical coding theory Decoding methods The Coset-Leader Algorithm Examples Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 2 / 18 Examples The structure of finite fields 2 Classical codes over finite fields Linear codes: basic properties Encoding methods Hamming distance as a metric Brief review of Part I (Jul 2, 2008) Brief review of Part I 1 Finite fields Definitions Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 3 / 18 The structure of finite fields 2 Classical codes over finite fields Linear codes: basic properties Encoding methods Hamming distance as a metric Brief review of Part I (Jul 2, 2008) Brief review of Part I 1 Finite fields Definitions Examples Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 3 / 18 2 Classical codes over finite fields Linear codes: basic properties Encoding methods Hamming distance as a metric Brief review of Part I (Jul 2, 2008) Brief review of Part I 1 Finite fields Definitions Examples The structure of finite fields Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 3 / 18 Encoding methods Hamming distance as a metric Brief review of Part I (Jul 2, 2008) Brief review of Part I 1 Finite fields Definitions Examples The structure of finite fields 2 Classical codes over finite fields Linear codes: basic properties Vlad Gheorghiu (CMU) Finite fields: An introduction.
    [Show full text]
  • California State University, Northridge an Error
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE AN ERROR DETECTING AND CORRECTING SYSTEM FOR MAGNETIC STORAGE DISKS A project submitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering by David Allan Kieselbach June, 1981 The project of David Allan Kieselbach is approved: Nagi M. Committee Chairman California State University, Northridge ii ACKNOWLEDGMENTS I wish to thank Professor Nagi El Naga who helped in numerous ways by suggesting, reviewing and criticizing the entire project. I also wish to thank my employer, Hughes Aircraft Company, who sponsored my Master of Science studies under the Hughes Fellowship Program. In addition the company prov~ded the services of the Technical Typing Center to aid in the preparation of the project manuscript. Specifically I offer my sincere gratitude to Sharon Scott and Aiko Ogata who are responsible for the excellent quality of typing and art work of the figures. For assistance in proof reading and remaining a friend throughout the long ordeal my special thanks to Christine Wacker. Finally to my parents, Dulcie and Henry who have always given me their affection and encouragement I owe my utmost appreciation and debt of gratitude. iii TABLE OF CONTENTS CHAPTER I. INTRODUCTION Page 1.1 Introduction . 1 1.2 Objectives •••••.• 4 1.3 Project Outline 5 CHAPTER II. EDCC CODES 2.1 Generator Matrix 11 2.1.1 Systematic Generator Matrix •. 12 2.2 Parity Check Matrix 16 2.3 Cyclic Codes .• . 19 2.4 Analytic Methods of Code Construction . 21 2.4.1 Hamming Codes • • 21 2.4.2 Fire Codes 21 2.4.3 Burton Codes- 24 2.4.4 BCH Codes • • .
    [Show full text]
  • Efficient Representation of Binary Nonlinear Codes
    Des. Codes Cryptogr. DOI 10.1007/s10623-014-0028-4 Efficient representation of binary nonlinear codes: constructions and minimum distance computation Mercè Villanueva · Fanxuan Zeng · Jaume Pujol Received: 16 December 2013 / Revised: 22 November 2014 / Accepted: 24 November 2014 © Springer Science+Business Media New York 2014 Abstract A binary nonlinear code can be represented as a union of cosets of a binary linear subcode. In this paper, the complexity of some algorithms to obtain this representation is analyzed. Moreover, some properties and constructions of new codes from given ones in terms of this representation are described. Algorithms to compute the minimum distance of binary nonlinear codes, based on known algorithms for linear codes, are also established, along with an algorithm to decode such codes. All results are written in such a way that they can be easily transformed into algorithms, and the performance of these algorithms is evaluated. Keywords Nonlinear code · Kernel · Minimum distance · Minimum weight · Decoding · Algorithms Mathematics Subject Classification 94B60 · 94B25 · 94B35 1 Introduction Z Zn Let 2 be the ring of integers modulo 2 and let 2 be the set of all binary vectors of length n. ( ,v) ,v ∈ Zn The (Hamming) distance d u between two vectors u 2 is the number of coordinates v w ( ) ∈ Zn w ( ) = ( , ) in which u and differ. The (Hamming) weight t u of u 2 is t u d u 0 ,where ( , , ) Zn 0 is the all-zero vector of length n.An n M d binary code C is a subset of 2 with M vectors and minimum Hamming distance d.
    [Show full text]
  • Part II Linear Codes
    Part II Linear codes CHAPTER 2: Linear codes ABSTRACT Most of the important codes are special types of so-called linear codes. Linear codes are of very large importance because they have very concise description, very nice properties, very easy encoding and, in principle, easy to describe decoding. prof. Jozef Gruska IV054 2. Linear codes 2/39 Linear codes Linear codes are special sets of words of the length n over an alphabet f0; ::; q − 1g, n where q is a power of prime. Since now on sets of words Fq will be considered as vector spaces V (n; q) of vectors of length n with elements from the set f0; ::; q − 1g and arithmetical operations will be taken modulo q. Definition A subset C ⊆ V (n; q) is a linear code if 1 u + v 2 C for all u; v 2 C 2 au 2 C for all u 2 C; a 2 GF (q) Example Codes C1; C2; C3 introduced in Lecture 1 are linear codes. Lemma A subset C ⊆ V (n; q) is a linear code if one of the following conditions is satisfied 1 C is a subspace of V (n; q) 2 sum of any two codewords from C is in C (for the case q = 2) If C is a k-dimensional subspace of V (n; q), then C is called[ n; k]-code. It has qk codewords. If minimal distance of C is d, then it is called[ n; k; d] code. Linear codes are also called "group codes". prof. Jozef Gruska IV054 2.
    [Show full text]
  • Coding Theory Via Groebner Bases
    Coding Theory via Groebner Bases Vom Promotionsausschuss der Technischen Universitat¨ Hamburg-Harburg zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften genehmigte Dissertation von Mehwish Saleemi aus Islamabad 2012 1. Gutachter: Prof. Dr. Karl-Heinz Zimmermann Institute fur¨ Rechnertechnologie, Technische Universitat¨ Hamburg-Harburg 2. Gutachter: Prof. Dr. Rudolf Scharlau Fakultat¨ fur¨ Mathematik, Technische Universitat¨ Dortmund Tag der mundlichen¨ Prufung:¨ 14.02.2012 Vorsitzender des Prufungsausschusses:¨ Prof. Dr. Dieter Gollmann Institut fur¨ Sicherheit in verteilten Anwendungen, Technische Universitat¨ Hamburg- Harburg Abstract Coding theory plays an important role in efficient transmission of data over noisy communication channels. It consists of two steps; the first step is to encode the data to reduce its sensitivity to noise during transmission, and the second step is to decode the received data by detecting and correcting the noise induced errors. In this thesis an algebraic approach is used to develop efficient encoding and decod- ing algorithms for a very commonly used class of linear codes, the Reed-Muller codes and the Golay codes. To develop the approach first the algebraic structure of linear codes is explored. For this, the reduced Groebner basis for a class of ideals in commutative poly- nomial rings is constructed. The extension of these ideals to a residue class ring enabled us to find the parameters of the corresponding codes. It is found that the corresponding codes contains the primitive Reed-Muller codes. The added advan- tage of this approach is that, once these Groebner bases are constructed a standard procedure can be used to develop encoding and decoding processes. A binomial ideal, defined as a sum of toric ideal and a prime ideal over some arbitrary field, is explored.
    [Show full text]
  • New Decoding Methods for LDPC Codes on Error and Error-Erasure Channels
    New Decoding Methods for LDPC Codes on Error and Error-Erasure Channels MASTER OF SCIENCE THESIS by İlke ALTIN August 19, 2010 Committee Members Supervisor : Dr. ir. J.H. Weber Readers : Prof. dr. ir. I. Niemegeers Dr. ir. H. Wang Wireless and Mobile Communications Group Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology Delft, The Netherlands ii İlke ALTIN Master of Science Thesis Abstract New Decoding Methods for LDPC Codes on Error and Error-Erasure Channels For low-end devices with limited battery or computational power, low complexity decoders are beneficial. In this research we have searched for low complexity decoder alternatives for error and error-erasure channels. We have especially focused on low complexity error erasure decoders, which is a topic that has not been studied by many researchers. The separation of erasures from errors idea [1] seemed profitable to design a new error erasure decoder, so we have also worked on this idea. However, the methods that are described in that paper are not realizable for practical values of code length and number of erasures. Thus, a new separation method; the rank completer is proposed, which is realizable. In the part of the research that is related to error decoding, we have proposed a modification to reliability ratio based bit flipping algorithm [2], which improves the BER performance with very small additional complexity. In the part that is related to error erasure decoding, we have given a new guessing algorithm that performs better than some known guessing algorithms, and a new error erasure decoder that uses the rank completer idea.
    [Show full text]
  • Viterbi Decoding of Convolutional Codes
    MIT 6.02 DRAFT Lecture Notes Last update: February 29, 2012 Comments, questions or bug reports? Please contact hari at mit.edu CHAPTER 8 Viterbi Decoding of Convolutional Codes This chapter describes an elegant and efficient method to decode convolutional codes, whose construction and encoding we described in the previous chapter. This decoding method avoids explicitly enumerating the 2N possible combinations of N-bit parity bit sequences. This method was invented by Andrew Viterbi ’57 and bears his name. 8.1 The Problem At the receiver, we have a sequence of voltage samples corresponding to the parity bits that the transmitter has sent. For simplicity, and without loss of generality, we will assume that the receiver picks a suitable sample for the bit, or averages the set of samples corre- sponding to a bit, digitizes that value to a “0” or “1” by comparing to the threshold voltage (the demapping step), and propagates that bit decision to the decoder. Thus, we have a received bit sequence, which for a convolutionally-coded stream cor- responds to the stream of parity bits. If we decode this received bit sequence with no other information from the receiver’s sampling and demapper, then the decoding pro- cess is termed hard-decision decoding (“hard decoding”). If, instead (or in addition), the decoder is given the stream of voltage samples and uses that “analog” information (in digitized form, using an analog-to-digital conversion) in decoding the data, we term the process soft-decision decoding (“soft decoding”). The Viterbi decoder can be used in either case.
    [Show full text]
  • High Throughput Error Correction in Information Reconciliation For
    www.nature.com/scientificreports OPEN High throughput error correction in information reconciliation for semiconductor superlattice secure key distribution Jianguo Xie1,3, Han Wu2,3, Chao Xia1, Peng Ding2, Helun Song2, Liwei Xu1 & Xiaoming Chen1* Semiconductor superlattice secure key distribution (SSL-SKD) has been experimentally demonstrated to be a novel scheme to generate and agree on the identical key in unconditional security just by public channel. The error correction in the information reconciliation procedure is introduced to eliminate the inevitable diferences of analog systems in SSL-SKD. Nevertheless, the error correction has been proved to be the performance bottleneck of information reconciliation for high computational complexity. Hence, it determines the fnal secure key throughput of SSL-SKD. In this paper, diferent frequently-used error correction codes, including BCH codes, LDPC codes, and Polar codes, are optimized separately to raise the performance, making them usable in practice. Firstly, we perform multi-threading to support multi-codeword decoding for BCH codes and Polar codes and updated value calculation for LDPC codes. Additionally, we construct lookup tables to reduce redundant calculations, such as logarithmic table and antilogarithmic table for fnite feld computation. Our experimental results reveal that our proposed optimization methods can signifcantly promote the efciency of SSL-SKD, and three error correction codes can reach the throughput of Mbps and provide a minimum secure key rate of 99%. Semiconductor superlattice secure key distribution (SSL-SKD) is a new secure key distribution technique based on chaos synchronization in superlattice PUF pairs 1 driven by a synchronizing digital signal. SSL-SKD only uses the public channel with all electronic structures to create and provide secure key data for cryptography in unconditional security2.
    [Show full text]
  • On the Optimality of the Hamming Metric for Decoding Block Codes Over Binary Additive Noise Channels
    On the Optimality of the Hamming Metric for Decoding Block Codes over Binary Additive Noise Channels by Ghady Azar A thesis submitted to the Department of Mathematics and Statistics in conformity with the requirements for the degree of Master of Applied Science Queen’s University Kingston, Ontario, Canada July 2013 Copyright c Ghady Azar, 2013 Abstract Most of the basic concepts of algebraic coding theory are derived for the mem- oryless binary symmetric channel. These concepts do not necessarily hold for time-varying channels or for channels with memory. However, errors in real-life channels seem to occur in bursts rather than independently, suggesting that these channels exhibit some statistical dependence or memory. Nonetheless, the same algebraic codes are still commonly used in current communication systems that employ interleaving to spread channel error bursts over the set of received code- words to make the channel appear memoryless to the block decoder. This method suffers from immediate shortcomings as it fails to exploit the channel’s memory while adding delay to the system. We study optimal maximum likelihood block decoding of binary codes sent over several binary additive channels with infinite and finite memory. We derive con- ditions on general binary codes and channels parameters under which maximum likelihood and minimum distance decoding are equivalent. The channels consid- ered in this work are the infinite and finite memory Polya contagion channels [1], the queue-based channel [29], and the Gilbert-Elliott channel [9, 12]. We also present results on the optimality of classical perfect and quasi-perfect codes when used over the aforementioned channels under maximum likelihood decoding.
    [Show full text]
  • Capacity-Achieving Guessing Random Additive Noise Decoding
    Capacity-Achieving Guessing Random Additive Noise Decoding The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Duffy, Ken R. et al. “Capacity-Achieving Guessing Random Additive Noise Decoding.” IEEE Transactions on Information Theory, 65, 7 (July 2019): 4023 - 4040 © 2019 The Author(s) As Published 10.1109/TIT.2019.2896110 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/129702 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ 1 Capacity-achieving Guessing Random Additive Noise Decoding (GRAND) Ken R. Duffy∗, Jiange Li† and Muriel Medard´ † ∗Hamilton Institute, Maynooth University, Ireland. E-mail: [email protected]. †Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, U. S. A. E-mail: [email protected], [email protected]. Abstract We introduce a new algorithm for realizing Maximum Likelihood (ML) decoding in discrete channels with or without memory. In it, the receiver rank orders noise sequences from most likely to least likely. Subtracting noise from the received signal in that order, the first instance that results in a member of the code-book is the ML decoding. We name this algorithm GRAND for Guessing Random Additive Noise Decoding. We establish that GRAND is capacity-achieving when used with random code-books. For rates below capacity we identify error exponents, and for rates beyond capacity we identify success exponents. We determine the scheme’s complexity in terms of the number of computations the receiver performs.
    [Show full text]
  • AI Coding: Learning to Construct Error Correction Codes
    IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. X, OCTOBER 2019 1 AI Coding: Learning to Construct Error Correction Codes Lingchen Huang, Member, IEEE, Huazi Zhang, Member, IEEE, Rong Li, Member, IEEE, Yiqun Ge, Member, IEEE, Jun Wang, Member, IEEE, Abstract—In this paper, we investigate an artificial- intelligence (AI) driven approach to design error correction Code codes (ECC). Classic error-correction code design based upon Performance coding-theoretic principles typically strives to optimize some performance-related code property such as minimum Hamming distance, decoding threshold, or subchannel reliability ordering. In contrast, AI-driven approaches, such as reinforcement learn- Coding AI ing (RL) and genetic algorithms, rely primarily on optimization methods to learn the parameters of an optimal code within a cer- Theory Techniques tain code family. We employ a constructor-evaluator framework, in which the code constructor can be realized by various AI algorithms and the code evaluator provides code performance Code metric measurements. The code constructor keeps improving the code construction to maximize code performance that is Construction evaluated by the code evaluator. As examples, we focus on RL and genetic algorithms to construct linear block codes and polar codes. The results show that comparable code performance can Fig. 1: Error correction code design logic be achieved with respect to the existing codes. It is noteworthy that our method can provide superior performances to classic constructions in certain cases (e.g., list decoding for polar codes). improve its code performance. Equivalently, given a target er- ror rate, we optimize code design to maximize the achievable Index Terms—Machine learning, Code construction, Artificial code rate, i.e.
    [Show full text]