AI Coding: Learning to Construct Error Correction Codes

Total Page:16

File Type:pdf, Size:1020Kb

AI Coding: Learning to Construct Error Correction Codes IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. X, OCTOBER 2019 1 AI Coding: Learning to Construct Error Correction Codes Lingchen Huang, Member, IEEE, Huazi Zhang, Member, IEEE, Rong Li, Member, IEEE, Yiqun Ge, Member, IEEE, Jun Wang, Member, IEEE, Abstract—In this paper, we investigate an artificial- intelligence (AI) driven approach to design error correction Code codes (ECC). Classic error-correction code design based upon Performance coding-theoretic principles typically strives to optimize some performance-related code property such as minimum Hamming distance, decoding threshold, or subchannel reliability ordering. In contrast, AI-driven approaches, such as reinforcement learn- Coding AI ing (RL) and genetic algorithms, rely primarily on optimization methods to learn the parameters of an optimal code within a cer- Theory Techniques tain code family. We employ a constructor-evaluator framework, in which the code constructor can be realized by various AI algorithms and the code evaluator provides code performance Code metric measurements. The code constructor keeps improving the code construction to maximize code performance that is Construction evaluated by the code evaluator. As examples, we focus on RL and genetic algorithms to construct linear block codes and polar codes. The results show that comparable code performance can Fig. 1: Error correction code design logic be achieved with respect to the existing codes. It is noteworthy that our method can provide superior performances to classic constructions in certain cases (e.g., list decoding for polar codes). improve its code performance. Equivalently, given a target er- ror rate, we optimize code design to maximize the achievable Index Terms—Machine learning, Code construction, Artificial code rate, i.e. to approach the channel capacity. intelligence, Linear block codes, Polar codes. A. Code design based on coding theory I. INTRODUCTION Classical code construction design is built upon coding theory, in which code performance is analytically derived Error correction codes (ECC) have been widely used in terms of various types of code properties. To tune these in communication systems for the data transmission over properties is to control the code performance so that code de- unreliable or noisy channels. In [1], Shannon provided the sign problems are translated into code property optimization definition of channel capacity and proved the channel coding problems. theorem, Hamming distance is an important code property for linear “All rates below capacity C are achievable, that block codes of all lengths. For short codes, it is the domi- arXiv:1901.05719v2 [cs.IT] 30 Oct 2019 is, for arbitrary small ǫ> 0 and rate R < C, there nant factor in performance, when maximum-likelihood (ML) exists a coding system with maximum probability of decoding is feasible. For long codes, it is also important for error performance in the high signal-to-noise ratio (SNR) regime. λ ≤ ǫ (1) A linear block code can be defined by a generator matrix G or the corresponding parity check matrix H over finite fields. for sufficiently large code length n. Conversely, if Directed by the knowledge of finite field algebra, the distance λ → 0, then R ≤ C.” profile of linear block codes can be optimized, and in par- Following Shannon’s work, great effort has been continu- ticular, the minimum distance. Examples include Hamming ously devoted to designing ECC and their decoding algo- codes, Golay codes, Reed-Muller (RM) codes, quadratic rithms to achieve or approach the channel capacity. residue (QR) codes, Bose-Chaudhuri-Hocquenghem (BCH) Specifically, with a code rate smaller than channel capacity, codes, Reed-Solomon (RS) codes, etc. code construction and decoding algorithms are designed to Similar to the Hamming distance profile, free distance, another code property, is targeted for convolutional codes. L. Huang, H. Zhang, R. Li and J. Wang are with the Hangzhou Convolutional codes [2] are characterized by code rate and Research Center, Huawei Technologies, Hangzhou, China. Y. Ge the memory order of the encoder. By increasing the memory is with the Ottawa Research Center, Huawei Technologies, Ottawa, Canada. (Email: {huanglingchen, zhanghuazi, lirongone.li, yiqun.ge, order and selecting proper polynomials, larger free distance justin.wangjun}@huawei.com). can be obtained at the expense of encoding and decoding 2 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. X, OCTOBER 2019 complexity. Turbo codes [3], by concatenating convolutional In communication systems, AI-driven transceivers have codes in parallel, are the first capacity-approaching codes been studied. By treating an end-to-end communication sys- under iterative decoding. tem as an autoencoder, people proposed to optimize an entire In addition to the distance profile, code properties of transceiver jointly given a channel model without any expert decoding threshold and girth are adopted for the design knowledge about channel coding and modulation [20]. In of low density parity check (LDPC) codes. First investi- addition, for AWGN channel with feedback, recurrent neural gated in 1962 [4], they are defined by low density parity network (RNN) was used to jointly optimize the encoding check matrices, or equivalently, Tanner graphs. Three decades and decoding [21]. By regarding a channel decoder as a later, LDPC codes were re-discovered [5] and shown to classifier, it was reported that a one-shot NN-based decoding approach the capacity with belief propagation (BP) decoding could approach maximum a posteriori (MAP) performance on sparse Tanner graphs. Code structures, such as cyclic for short codes [22]. It was also observed that for structured and quasi-cyclic (QC) [6], not only provide minimum dis- codes, the NN-based decoder can be generalized to some tance guarantee but also simplify hardware implementation. untrained codewords, even though no knowledge about the The most relevant code property, however, is the decoding code structure is explicitly taught. However, this NN-based threshold [7]. Assuming BP decoding on a cycle-free Tanner decoder is a classifier in nature, and its complexity is pro- graph, it can accurately predict the asymptotic performance. portional to the number of codewords to be classified. As The decoding threshold can be obtained by the extrinsic the code space expands exponentially with the code length, information transfer (EXIT) chart [8] technique, as well as the NN-based decoder may not satisfy the stringent latency density evolution (DE) [7], [9] and its Gaussian approxima- constraint in physical layer. tion (GA) [10], as a function of the check node and variable In contrast, our work focuses on using AI techniques to node degree distributions of the parity check matrix. Thus, help design codes rather than to directly encode and decode the degree distributions of a code ensemble can be optimized. signals. Code design can be done offline where the latency In addition, the girth, defined as the minimum cycle length constraint is significantly relaxed. Moreover, we can continue in the Tanner graph, is maximized to maximally satisfy the to use legacy encoding and decoding algorithms as they admit cycle-free assumption. efficient and flexible hardware or software implementations. The code property of synthesized subchannel reliabilities As shown in Fig. 1 (right branch), we explore the alterna- can be targeted for the design of polar codes [11], the first tive AI techniques for code construction, in addition to the class of capacity-achieving codes with successive cancel- expert knowledge from coding theory. There are numerous lation (SC) decoding. For polar codes, physical channels AI algorithms out there, which could not be all covered in are synthesized to N polarized subchannels, with the K this paper. We will focus on reinforcement learning (RL) and most reliable ones selected to carry information bits. As N genetic algorithm as representatives. Nevertheless, we work increases, subchannels polarize to either purely noiseless or within a general framework that may accommodate various completely noisy, where the fraction of noiseless subchannels AI algorithms. approaches the channel capacity [11]. For binary erasure Specifically, we hope to answer the following two ques- channel (BEC), subchannel reliabilities can be efficiently tions: calculated by Bhattacharyya parameters. For general binary- • Q1: Can AI algorithms independently learn a code input memoryless channels, DE was applied to calculate construction (or part of it) within a given general en- subchannel reliabilities [12], [13], and then improved in [14] coding/decoding framework? and analyzed in [15] in terms of complexity. For AWGN • Q2: Can the learned codes achieve comparable or bet- channels, GA was proposed [16] to further reduce complexity ter error correction performance with respect to those with negligible performance loss. Recently, a polarization derived in classic coding theory? weight (PW) method [17], [18] was proposed to generate For the first question, we try to utilize AI techniques a universal reliability order for all code rates, lengths and to learn linear code constructions. By code construction channel conditions. Such a channel-independent design prin- we mean the degree of freedom we have in determining ciple is adopted by 5G in the form of a length-1024 reliability a set of codes beyond the minimum constraints required sequence [19]. to specify a general scope of codes. The input to AI is As concluded in Fig. 1 (left branch), the classical code restricted
Recommended publications
  • Recommendation Itu-R Bt.2016*
    Recommendation ITU-R BT.2016 (04/2012) Error-correction, data framing, modulation and emission methods for terrestrial multimedia broadcasting for mobile reception using handheld receivers in VHF/UHF bands BT Series Broadcasting service (television) ii Rec. ITU-R BT.2016 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • ACRONYMS and ABBREVIATIONS BLUETOOTH SPECIFICATION Version 1.1 Page 914 of 1084
    Appendix III ACRONYMS AND ABBREVIATIONS BLUETOOTH SPECIFICATION Version 1.1 page 914 of 1084 Appendix III - Acronyms 914 22 February 2001 BLUETOOTH SPECIFICATION Version 1.1 page 915 of 1084 Appendix III - Acronyms List of Acronyms and Abbreviations Acronym or Writing out in full Which means abbreviation ACK Acknowledge ACL link Asynchronous Connection-Less Provides a packet-switched con- link nection.(Master to any slave) ACO Authenticated Ciphering Offset AM_ADDR Active Member Address AR_ADDR Access Request Address ARQ Automatic Repeat reQuest B BB BaseBand BCH Bose, Chaudhuri & Hocquenghem Type of code The persons who discovered these codes in 1959 (H) and 1960 (B&C) BD_ADDR Bluetooth Device Address BER Bit Error Rate BT Bandwidth Time BT Bluetooth C CAC Channel Access Code CC Call Control CL Connectionless CODEC COder DECoder COF Ciphering Offset CRC Cyclic Redundancy Check CVSD Continuous Variable Slope Delta Modulation D DAC Device Access Code DCE Data Communication Equipment 22 February 2001 915 BLUETOOTH SPECIFICATION Version 1.1 page 916 of 1084 Appendix III - Acronyms Acronym or Writing out in full Which means abbreviation DCE Data Circuit-Terminating Equip- In serial communications, DCE ment refers to a device between the communication endpoints whose sole task is to facilitate the commu- nications process; typically a modem DCI Default Check Initialization DH Data-High Rate Data packet type for high rate data DIAC Dedicated Inquiry Access Code DM Data - Medium Rate Data packet type for medium rate data DTE Data Terminal Equipment In serial communications, DTE refers to a device at the endpoint of the communications path; typi- cally a computer or terminal.
    [Show full text]
  • Implementation and Evaluation of Polar Codes in 5G
    Implementation and evaluation of Polar Codes in 5G Implementation och evaluering av Polar Codes för 5G Tobias Rosenqvist Joël Sloof Faculty of Health, Science and Technology Computer Science 15 hp Supervisor: Stefan Alfredsson Examiner: Kerstin Andersson Date: 2019-06-12 Serial number: N/A Implementation and evaluation of Polar Codes in 5G Tobias Rosenqvist, Joël Sloof © 2019 The author(s) and Karlstad University This report is submitted in partial fulfillment of the requirements for the Bachelor’s degree in Computer Science. All material in this report which is not our own work has been identified and no material is included for which a degree has previously been conferred. Tobias Rosenqvist Joël Sloof Approved, Date of defense Advisor: Stefan Alfredsson Examiner: Kerstin Andersson iii Abstract In today’s society the ability to communicate with one another has grown, were a lot of focus is aimed towards speed in the telecommunication industry. For transmissions to become even faster, there are many ways to enhance transmission speeds of which error correction is one. Padding messages such that they are protected from noise, while using as few bits as possible and ensuring safe transmit is handled by error correction codes. Short codes with low complexity is a solution to faster transmission speeds. An error correction code which has gained a lot of attention since its first appearance in 2009 is Polar Codes. Polar Codes was chosen as the 3GPP standard for 5G control channel. The goal of the thesis is to develop and implement Polar Codes and rate matching according to the 3GPP standard 38.212.
    [Show full text]
  • Applicability of the Julia Programming Language to Forward Error-Correction Coding in Digital Communications Systems
    Applicability of the Julia Programming Language to Forward Error-Correction Coding in Digital Communications Systems A project presented to Department of Computer and Information Sciences State University of New York Polytechnic Institute At Utica/Rome Utica, New York In partial fulfillment Of the requirements of the Master of Science Degree by Ryan Quinn May 2018 Declaration I declare that this project is my own work and has not been submitted in any form for another degree of diploma at any university of other institute of tertiary education. Information derived from published and unpublished work of others has been acknowledged in the text and a list of references given. _ Ryan Quinn 2 | P a g e SUNY POLYTECHNIC INSTITUTE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES Approved and recommended for acceptance as a project in partial fulfillment of the requirements for the degree of Master of Science in computer and information science _ DATE _ Dr. Bruno R. Andriamanalimanana Advisor _ Dr. Saumendra Sengupta _ Dr. Scott Spetka 3 | P a g e 1 ABSTRACT Traditionally SDR has been implemented in C and C++ for execution speed and processor efficiency. Interpreted and high-level languages were considered too slow to handle the challenges of digital signal processing (DSP). The Julia programming language is a new language developed for scientific and mathematical purposes that is supposed to write like Python or MATLAB and execute like C or FORTRAN. Given the touted strengths of the Julia language, it bore investigating as to whether it was suitable for DSP. This project specifically addresses the applicability of Julia to forward error correction (FEC), a highly mathematical topic to which Julia should be well suited.
    [Show full text]
  • 16.548 Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing Outline
    16.548 Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing Outline ! Introduction " Pushing the Bounds on Channel Capacity " Theory of Iterative Decoding " Recursive Convolutional Coding " Theory of Concatenated codes ! Turbo codes " Encoding " Decoding " Performance analysis " Applications ! Other applications of iterative processing " Joint equalization/FEC " Joint multiuser detection/FEC Shannon Capacity Theorem Capacity as a function of Code rate Motivation: Performance of Turbo Codes. Theoretical Limit! ! Comparison: " Rate 1/2 Codes. " K=5 turbo code. " K=14 convolutional code. ! Plot is from: L. Perez, “Turbo Codes”, chapter 8 of Trellis Coding by C. Schlegel. IEEE Press, 1997. Gain of almost 2 dB! Power Efficiency of Existing Standards Error Correction Coding ! Channel coding adds structured redundancy to a transmission. mxChannel Encoder " The input message m is composed of K symbols. " The output code word x is composed of N symbols. " Since N > K there is redundancy in the output. " The code rate is r = K/N. ! Coding can be used to: " Detect errors: ARQ " Correct errors: FEC Traditional Coding Techniques The Turbo-Principle/Iterative Decoding ! Turbo codes get their name because the decoder uses feedback, like a turbo engine. Theory of Iterative Coding Theory of Iterative Coding(2) Theory of Iterative Coding(3) Theory of Iterative Coding (4) Log Likelihood Algebra New Operator Modulo 2 Addition Example: Product Code Iterative Product Decoding RSC vs NSC Recursive/Systematic Convolutional Coding Concatenated Coding
    [Show full text]
  • Coset Codes. II. Binary Lattices and Related Codes
    1152 IEEE TRANSACTIONSON INFORMATIONTHEORY, VOL. 34, NO. 5, SEPTEMBER 1988 Coset Codes-Part 11: Binary Lattices and Related Codes G. DAVID FORNEY, JR., FELLOW, IEEE Invited Paper Abstract -The family of Barnes-Wall lattices (including D4 and E,) of increases by a factor of 21/2 (1.5 dB) for each doubling of lengths N = 2“ and their principal sublattices, which are useful in con- dimension. structing coset codes, are generated by iteration of a simple construction What may be obscured by the length of this paper is called the “squaring construction.” The closely related Reed-Muller codes are generated by the same construction. The principal properties of these that the construction of these lattices is extremely simple. codes and lattices, including distances, dimensions, partitions, generator The only building blocks needed are the set Z of ordinary matrices, and duality properties, are consequences of the general proper- integers, with its infinite chain of two-way partitions ties of iterated squaring constructions, which also exhibit the interrelation- 2/22/4Z/. , and an elementary construction that we ships between codes and lattices of different lengths. An extension called call the “squaring construction,” which produces chains of the “cubing construction” generates good codes and lattices of lengths 2N-tuples with certain guaranteed distance properties from N = 3.2”, including the Golay code and Leech lattice, with the use of special bases for 8-space. Another related construction generates the chains of N-tuples. Iteration of this construction produces Nordstrom-Robinson code and an analogous 16-dimensional nonlattice the entire family of lattices, determines their minimum packing.
    [Show full text]
  • Improving Wireless Link Throughput Via Interleaved FEC
    Improving Wireless Link Throughput via Interleaved FEC Ling-Jyh Chen, Tony Sun, M. Y. Sanadidi, Mario Gerla UCLA Computer Science Department, Los Angeles, CA 90095, USA {cclljj, tonysun, medy, gerla}@cs.ucla.edu Abstract Traditionally, one of three techniques is used for er- ror-control: 1) Retransmission which uses acknowl- Wireless communication is inherently vulnerable to edgements, and time-outs; 2) Redundancy, and 3) Inter- errors from the dynamic wireless environment. Link leaving [6] [13]. Retransmitting lost packets is an obvi- layer packets discarded due to these errors impose a ous means by which error may be repaired, and it is serious limitation on the maximum achievable through- typically performed at either the link layer with Auto- put in the wireless channel. To enhance the overall matic Repeat reQuest (ARQ) or at the end-to-end layers throughput of wireless communication, it is necessary to with protocols like TCP. When data is exchanged have a link layer transmission scheme that is robust to through a relatively error-free communication medium, the errors intrinsic to the wireless channel. To this end, retransmission is clearly a good tactic. However, re- we present Interleaved-Forward Error Correction (I- transmission is not the best strategy in an error-prone FEC), a clever link layer coding scheme that protects communication channel, where high latency and band- link layer data against random and busty errors. We width overhead are believed to make retransmission a examine the level of data protection provided by I-FEC less than ideal error controlling technique. against other popular schemes. We also simulate I-FEC Redundancy is the means by which repair data is in Bluetooth, and compare the TCP throughput result added along with the original data, such that corrupted with Bluetooth’s integrated FEC coding feature.
    [Show full text]
  • LDPC Decoder Design Using Compensation Scheme of Group Comparison for 5G Communication Systems
    electronics Article LDPC Decoder Design Using Compensation Scheme of Group Comparison for 5G Communication Systems Chen-Hung Lin 1,2,* , Chen-Xuan Wang 2 and Cheng-Kai Lu 3 1 Biomedical Engineering Research Center, Yuan Ze University, Jungli 32003, Taiwan 2 Department of Electrical Engineering, Yuan Ze University, Jungli 32003, Taiwan; [email protected] 3 Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; [email protected] * Correspondence: [email protected] Abstract: This paper presents a dual-mode low-density parity-check (LDPC) decoding architec- ture that has excellent error-correcting capability and a high parallelism design for fifth-generation (5G) new-radio (NR) applications. We adopted a high parallelism design using a layered decoding schedule to meet the high throughput requirement of 5G NR systems. Although the increase in parallelism can efficiently enhance the throughput, the hardware implementation required to support high parallelism is a significant hardware burden. To efficiently reduce the hardware burden, we used a grouping search rather than a sorter, which was used in the minimum finder with decoding performance loss. Additionally, we proposed a compensation scheme to improve the decoding per- formance loss by revising the probabilistic second minimum of a grouping search. The post-layout implementation of the proposed dual-mode LDPC decoder is based on the Taiwan Semiconduc- Citation: Lin, C.-H.; Wang, C.-X.; Lu, tor Manufacturing Company (TSMC) 40 nm complementary metal-oxide-semiconductor (CMOS) C.-K. LDPC Decoder Design Using Compensation Scheme of Group technology, using a compensation scheme of grouping comparison for 5G communication systems Comparison for 5G Communication with a working frequency of 294.1 MHz.
    [Show full text]
  • Burst Correction Coding from Low-Density Parity-Check Codes
    BURST CORRECTION CODING FROM LOW-DENSITY PARITY-CHECK CODES by Wai Han Fong A Dissertation Submitted to the Graduate Faculty of George Mason University In Partial fulfillment of The Requirements for the Degree of Doctor of Philosophy Electrical and Computer Engineering Committee: Dr. Shih-Chun Chang, Dissertation Director Dr. Shu Lin, Dissertation Co-Director Dr. Geir Agnarsson, Committee Member Dr. Bernd-Peter Paris, Committee Member Dr. Brian Mark, Committee Member Dr. Monson Hayes, Department Chair Dr. Kenneth S. Ball, Dean, The Volgenau School of Engineering Date: Fall Semester 2015 George Mason University Fairfax, VA Burst Correction Coding from Low-Density Parity-Check Codes A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at George Mason University By Wai Han Fong Master of Science George Washington University, 1992 Bachelor of Science George Washington University, 1984 Director: Dr. Shih-Chun Chang, Associate Professor Department of Electrical and Computer Engineering George Mason University Fairfax, VA Co-Director: Dr. Shu Lin, Professor Department of Electrical and Computer Engineering University of California Davis, CA Fall Semester 2015 George Mason University Fairfax, Virginia Copyright c 2015 by Wai Han Fong All Rights Reserved ii Dedication I dedicate this dissertation to my beloved parents, Pung Han and Soo Chun; my wife, Ellen; children, Corey and Devon; and my sisters, Rose and Agnes. iii Acknowledgments I would like to express my sincere gratitude to my two Co-Directors: Shih-Chun Chang and Shu Lin without whom this would not be possible. In addition, I would especially like to thank Shu Lin for his encouragement, his creativity and his generosity, all of which are an inspiration to me.
    [Show full text]
  • Performance Analysis and Design of MIMO-OFDM System Using Concatenated Forward Error Correction Codes
    J. Cent. South Univ. (2017) 24: 1322−1343 DOI: 10.1007/s11771-017-3537-2 Performance analysis and design of MIMO-OFDM system using concatenated forward error correction codes Arun Agarwal1, Saurabh N. Mehta2 1. PhD Scholar, School of Electrical Engineering, Department of Information Technology, AMET University, Tamil Nadu, Chennai 603112, India; 2. Department of Electronics and Telecommunication Engineering, Vidyalankar Institute of Technology, Mumbai-400037, Maharashtra, India © Central South University Press and Springer-Verlag Berlin Heidelberg 2017 Abstract: This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), quadrature amplitude modulation (QAM)-16 and QAM-64 with four error correction codes (convolutional code (CC), Reed-Solomon code (RSC)+CC, low density parity check (LDPC)+CC, Turbo+CC) is studied under three channel models (additive white Guassian noise (AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate (BER) and the peak signal to noise ratio (PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance. Key words: bit error rate (BER); convolutional code (CC); forward error correction; peak signal to noise ratio (PSNR); Turbo code signal reliability as well as the multiple transmissions, 1 Introduction without extra radiation and spectrum bandwidth [6−9].
    [Show full text]
  • CRC-Assisted Error Correction in a Convolutionally Coded System Renqiu Wang, Member, IEEE, Wanlun Zhao, Member, IEEE, and Georgios B
    IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 11, NOVEMBER 2008 1807 CRC-Assisted Error Correction in a Convolutionally Coded System Renqiu Wang, Member, IEEE, Wanlun Zhao, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE Abstract—In communication systems employing a serially When the signal to noise ratio (SNR) is relatively high, only a concatenated cyclic redundancy check (CRC) code along with small number of errors are typically present in an erroneously a convolutional code (CC), erroneous packets after CC decoding decoded packet. Instead of discarding the entire packet, the are usually discarded. The list Viterbi algorithm (LVA) and the iterative Viterbi algorithm (IVA) are two existing approaches theme is this paper is to possibly recover it by utilizing jointly capable of recovering erroneously decoded packets. We here ECC and CRC. employ a soft decoding algorithm for CC decoding, and introduce We will study a system with serially concatenated CRC and several schemes to identify error patterns using the posterior CC (CRC-CC). Being a special case of conventional serially information from the CC soft decoding module. The resultant iterative decoding-detecting (IDD) algorithm improves error concatenated codes (CSCC) [1], CRC-CC has been widely performance by iteratively updating the extrinsic information applied in wireless communications, for example, in an IS-95 based on the CRC parity check matrix. Assuming errors only system. Various approaches are available to recover erroneous happen in unreliable bits characterized by small absolute values packets following the Viterbi decoding stage. One of them is of the log-likelihood ratio (LLR), we also develop a partial IDD based on the list Viterbi algorithm (LVA), which produces a (P-IDD) alternative which exhibits comparable performance to IDD by updating only a subset of unreliable bits.
    [Show full text]
  • Decoding Algorithms of Reed-Solomon Code
    Master’s Thesis Computer Science Thesis no: MCS-2011-26 October 2011 Decoding algorithms of Reed-Solomon code Szymon Czynszak School of Computing Blekinge Institute of Technology SE – 371 79 Karlskrona Sweden This thesis is submitted to the School of Computing at Blekinge Institute o f Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Szymon Czynszak E-mail: [email protected] University advisor(s): Mr Janusz Biernat, prof. PWR, dr hab. in ż. Politechnika Wrocławska E-mail: [email protected] Mr Martin Boldt, dr Blekinge Institute of Technology E-mail: [email protected] Internet : www.bth.se/com School of Computing Phone : +46 455 38 50 00 Blekinge Institute of Technology Fax : +46 455 38 50 57 SE – 371 79 Karlskrona Sweden ii Abstract Reed-Solomon code is nowadays broadly used in many fields of data trans- mission. Using of error correction codes is divided into two main operations: information coding before sending information into communication channel and decoding received information at the other side. There are vast of decod- ing algorithms of Reed-Solomon codes, which have specific features. There is needed knowledge of features of algorithms to choose correct algorithm which satisfies requirements of system. There are evaluated cyclic decoding algo- rithm, Peterson-Gorenstein-Zierler algorithm, Berlekamp-Massey algorithm, Sugiyama algorithm with erasures and without erasures and Guruswami- Sudan algorithm. There was done implementation of algorithms in software and in hardware.
    [Show full text]