Network Coding for Error Correction Thesis by Svitlana S. Vyetrenko
[email protected] In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2011 (Defended May 26, 2011) 1 To my parents 2 Acknowledgements I would like to thank my advisor Tracey Ho for all her help and encouragement; Michelle Effros for her valuable suggestions; my thesis committee members Joel Tropp and Houman Owhadi for their helpful feedback on my work; Sidharth Jaggi for being a great host and sharing his enthusiasm about research; Theodoros Dikaliotis for being my best friend throughout Caltech; Derek Leong for interesting discussions and technical assistance; my family and Stanimir Kondov for their unconditional love and support. 3 Abstract In this thesis, network error correction is considered from both theoretical and practical viewpoints. Theoretical parameters such as network structure and type of connection (mul- ticast vs. nonmulticast) have a profound effect on network error correction capability. This work is also dictated by the practical network issues that arise in wireless ad-hoc net- works, networks with limited computational power (e.g., sensor networks) and real-time data streaming systems (e.g., video/audio conferencing or media streaming). Firstly, multicast network scenarios with probabilistic error and erasure occurrence are considered. In particular, it is shown that in networks with both random packet era- sures and errors, increasing the relative occurrence of erasures compared to errors favors network coding over forwarding at network nodes, and vice versa. Also, fountain-like error- correcting codes, for which redundancy is incrementally added until decoding succeeds, are constructed.