Coding Theory Via Groebner Bases

Total Page:16

File Type:pdf, Size:1020Kb

Coding Theory Via Groebner Bases Coding Theory via Groebner Bases Vom Promotionsausschuss der Technischen Universitat¨ Hamburg-Harburg zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften genehmigte Dissertation von Mehwish Saleemi aus Islamabad 2012 1. Gutachter: Prof. Dr. Karl-Heinz Zimmermann Institute fur¨ Rechnertechnologie, Technische Universitat¨ Hamburg-Harburg 2. Gutachter: Prof. Dr. Rudolf Scharlau Fakultat¨ fur¨ Mathematik, Technische Universitat¨ Dortmund Tag der mundlichen¨ Prufung:¨ 14.02.2012 Vorsitzender des Prufungsausschusses:¨ Prof. Dr. Dieter Gollmann Institut fur¨ Sicherheit in verteilten Anwendungen, Technische Universitat¨ Hamburg- Harburg Abstract Coding theory plays an important role in efficient transmission of data over noisy communication channels. It consists of two steps; the first step is to encode the data to reduce its sensitivity to noise during transmission, and the second step is to decode the received data by detecting and correcting the noise induced errors. In this thesis an algebraic approach is used to develop efficient encoding and decod- ing algorithms for a very commonly used class of linear codes, the Reed-Muller codes and the Golay codes. To develop the approach first the algebraic structure of linear codes is explored. For this, the reduced Groebner basis for a class of ideals in commutative poly- nomial rings is constructed. The extension of these ideals to a residue class ring enabled us to find the parameters of the corresponding codes. It is found that the corresponding codes contains the primitive Reed-Muller codes. The added advan- tage of this approach is that, once these Groebner bases are constructed a standard procedure can be used to develop encoding and decoding processes. A binomial ideal, defined as a sum of toric ideal and a prime ideal over some arbitrary field, is explored. It is shown that this ideal is equal to a binomial ideal over a prime field. Purpose of proving this equivalence is to study binary codes associated to this ideal. Minimal generators and Groebner basis found for this ideal showed that the situation is quite closely related to the toric case. The investigation of uni- versal Groebner basis, Graver basis and circuits for this ideal revealed that they have the same relationship among them which is true in general for toric ideals. Each linear code can be described as a binomial ideal defined above. Since the reduced Groebner basis for any ideal plays a vital role in describing encoding and decoding processes for the corresponding codes, a natural reduced Groebner basis for this ideal is proposed for any general term order. In fact, if a generator ma- trix is given for any code, by constructing the corresponding particular binomial ideal, one can immediately describe the reduced Groebner basis. Information po- sitions and parity check positions are then given by standard and non-standard monomials for the ideal. A systematic encoding algorithm for such codes is ex- plained in terms of remainders of the information word computed with respect to the reduced Groebner basis. Furthermore, the binary and ternary Golay codes are studied algebraically in terms of the binomial ideal. Finally, a presentation of the binomial ideal of a linear code in terms of its syzygy modules is provided and the corresponding finite free resolution has been described. Acknowledgements My deepest gratitude is to my supervisor Professor Karl-Heinz Zimmermann. His generous advice, inspiring guidence, encouragement and benevolence helped me tremendously through out my work. I am extremely grateful to him for his help and support, without which it would have been impossible for me to complete this thesis. I feel very priviledged indeed to have been one of his students. My warm thanks are due to my colleague, Dr. Svetlana Torgasin, not only for generously giving her time to help me with latex but also for being there whenever I needed her. I am gratefull to all my colleagues and staff for their support and providing friendly atmosphere. Special thanks go to Mr. Stefan Just for providing technical help. Finally, I wish to express my love and gratitude to all my family, in-laws and friends for their encouragement and emotional support. I want to express my deep appreciation and love for my parents for their prayers, unconditional love and endless support in all my pursuits. I must express my gratitude to Saulat, my husband, for his continued support, encouragement and great sense of humor. The forbearance shown by my children has been my greatest asset in concluding this study. To them, I am eternally grateful. Contents 1 Introduction 3 1.1 The Problem ............................. 3 1.2 Previous Work ............................ 4 1.3 Contribution of the Thesis ..................... 5 1.4 Organization ............................. 6 2 Polynomial Algebra 7 2.1 Monomials ............................. 7 2.2 Groebner Bases ........................... 11 2.3 Classification of Groebner bases .................. 12 2.3.1 The Reduction Process ................... 12 2.4 Computing Groebner Bases ..................... 12 2.5 Binomial Ideal ........................... 14 2.6 Groebner Bases for Modules .................... 15 2.7 Syzygies and Finite Free Resolution ................ 19 3 Algebraic Coding Theory 23 3.1 Basic Coding Theory ........................ 23 3.2 Finite Fields ............................. 26 2 CONTENTS 3.3 Linear Codes ............................ 28 3.4 Syndrome Decoding ........................ 29 3.4.1 Decoding Linear Codes ................... 30 3.5 Cyclic Code ............................. 31 3.6 Ideals as Linear Codes ....................... 32 3.7 Families of Codes .......................... 34 3.7.1 Hamming Codes ...................... 34 3.7.2 Reed Muller Codes ..................... 35 3.7.3 Golay Codes ........................ 37 4 Variants of Reed Muller Codes 39 4.1 Introduction ............................. 39 4.2 Groebner Basis Construction .................... 39 4.3 Encoding Linear Codes using Groebner Bases ........... 44 4.4 Variants of Primitive Reed-Muller Codes .............. 46 4.5 Variants of Primitive Reed-Muller Codes with Designated Distance 48 5 Linear Codes as Binomial Ideals 51 5.1 Introduction ............................. 51 5.2 Groebner Basis of the Ideal IA;P ................... 51 5.3 Ideal Bases ............................. 57 5.4 Reduced Groebner Basis of IC ................... 62 5.4.1 Application to Golay Codes ................ 63 5.5 Decomposition of the Ideal IC ................... 65 5.6 Affine Varieties ........................... 67 5.7 Encoding .............................. 69 CONTENTS 3 6 Syzygies 71 6.1 Introduction ............................. 71 6.2 Syzygies and Free Resolutions of Linear Codes .......... 71 7 Conclusions and Future Directions 77 Bibliography 79 Notation d(x; y) Hamming distance between x and y d Minimum distance of a code s Syndrome of a received vector [n; k; d] A linear code with lenght n, dimension k and minimum distance d K Field K[x] Polynomial ring in n variables over K ≻ Term ordering lt( f ) Leading term of a polynomial f lt(I) Leading ideal of an ideal I S( f; g) S-polynomial of f and g G Groebner basis of an ideal V(I) Variety of an ideal p I Radical of an ideal I Chapter 1 Introduction 1.1 The Problem The problem of robust information transmission is one of the problems that is encountered in modern data transmission due to the presence of hostile enviroment during transmission, which thus results into the distorted information. In order to combat this situation error-correcting codes are introduced [42]. A fundamental problem is to send a message across a noisy channel with a maximum possible reliability. Error correcting codes are used to correct messages when they are transmitted through noisy channels(Figure 1.1). Message Source Receiver Source Encoder Channel Source Decoder Figure 1.1: A basic communication model The main features of coding theory are: • efficient encoding of messages, • easy transmission of encoded messages, 4 1. Introduction • fast and reliable decoding of recieved messages, • transmission of large number of messages per unit of time. 1.2 Previous Work The last several years have witnessed major theoretical advances in coding the- ory resulting in a new coding concepts such as algebraic codes, codes on graphs etc. With the publication of C. Shannon’s [54] seminal paper the whole new sub- ject of coding theory was inaugurated. Later, R.W. Hamming [30] proposed a first method of encoding data so that errors can not only be detected but can be corrected too. With this coding theory started to develop along two main direc- tions: probabailistic coding theory and algebraic coding theory. The basic idea is to protect a message by adding some redundant information, thus in case even if the message is corrupted, enough redundancy can help in recovering the message completely. The main objects of study in algebraic coding are codes that are lin- ear subspaces of finite-dimensional vector spaces over a finite field. In particular, research was mainly devoted to cyclic codes that form a class of linear codes al- lowing easier determination. The most important cyclic codes, BCH codes and Reed Solomon codes [8, 45, 32] were discovered between 1958 and 1960. The theory of algebraic codes indicates the fact that by adding more algebraic struc- ture to the system, better descriptions can be obtained. A perfect illustration of this fact is the work of S. D. Berman [5], who discovered that the Reed-Muller F codes
Recommended publications
  • Modern Coding Theory: the Statistical Mechanics and Computer Science Point of View
    Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View Andrea Montanari1 and R¨udiger Urbanke2 ∗ 1Stanford University, [email protected], 2EPFL, ruediger.urbanke@epfl.ch February 12, 2007 Abstract These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on ‘Complex Systems’ in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as ‘large graphical models’. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field. 1 Introduction and Outline The last few years have witnessed an impressive convergence of interests between disciplines which are a priori well separated: coding and information theory, statistical inference, statistical mechanics (in particular, mean field disordered systems), as well as theoretical computer science. The underlying reason for this convergence is the importance of probabilistic models and/or probabilistic techniques in each of these domains. This has long been obvious in information theory [53], statistical mechanics [10], and statistical inference [45]. In the last few years it has also become apparent in coding theory and theoretical computer science. In the first case, the invention of Turbo codes [7] and the re-invention arXiv:0704.2857v1 [cs.IT] 22 Apr 2007 of Low-Density Parity-Check (LDPC) codes [30, 28] has motivated the use of random constructions for coding information in robust/compact ways [50].
    [Show full text]
  • Coset Codes. II. Binary Lattices and Related Codes
    1152 IEEE TRANSACTIONSON INFORMATIONTHEORY, VOL. 34, NO. 5, SEPTEMBER 1988 Coset Codes-Part 11: Binary Lattices and Related Codes G. DAVID FORNEY, JR., FELLOW, IEEE Invited Paper Abstract -The family of Barnes-Wall lattices (including D4 and E,) of increases by a factor of 21/2 (1.5 dB) for each doubling of lengths N = 2“ and their principal sublattices, which are useful in con- dimension. structing coset codes, are generated by iteration of a simple construction What may be obscured by the length of this paper is called the “squaring construction.” The closely related Reed-Muller codes are generated by the same construction. The principal properties of these that the construction of these lattices is extremely simple. codes and lattices, including distances, dimensions, partitions, generator The only building blocks needed are the set Z of ordinary matrices, and duality properties, are consequences of the general proper- integers, with its infinite chain of two-way partitions ties of iterated squaring constructions, which also exhibit the interrelation- 2/22/4Z/. , and an elementary construction that we ships between codes and lattices of different lengths. An extension called call the “squaring construction,” which produces chains of the “cubing construction” generates good codes and lattices of lengths 2N-tuples with certain guaranteed distance properties from N = 3.2”, including the Golay code and Leech lattice, with the use of special bases for 8-space. Another related construction generates the chains of N-tuples. Iteration of this construction produces Nordstrom-Robinson code and an analogous 16-dimensional nonlattice the entire family of lattices, determines their minimum packing.
    [Show full text]
  • Modern Coding Theory: the Statistical Mechanics and Computer Science Point of View
    Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View Andrea Montanari1 and R¨udiger Urbanke2 ∗ 1Stanford University, [email protected], 2EPFL, ruediger.urbanke@epfl.ch February 12, 2007 Abstract These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on ‘Complex Systems’ in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as ‘large graphical models’. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field. 1 Introduction and Outline The last few years have witnessed an impressive convergence of interests between disciplines which are a priori well separated: coding and information theory, statistical inference, statistical mechanics (in particular, mean field disordered systems), as well as theoretical computer science. The underlying reason for this convergence is the importance of probabilistic models and/or probabilistic techniques in each of these domains. This has long been obvious in information theory [53], statistical mechanics [10], and statistical inference [45]. In the last few years it has also become apparent in coding theory and theoretical computer science. In the first case, the invention of Turbo codes [7] and the re-invention of Low-Density Parity-Check (LDPC) codes [30, 28] has motivated the use of random constructions for coding information in robust/compact ways [50].
    [Show full text]
  • The Packing Problem in Statistics, Coding Theory and Finite Projective Spaces: Update 2001
    The packing problem in statistics, coding theory and finite projective spaces: update 2001 J.W.P. Hirschfeld School of Mathematical Sciences University of Sussex Brighton BN1 9QH United Kingdom http://www.maths.sussex.ac.uk/Staff/JWPH [email protected] L. Storme Department of Pure Mathematics Krijgslaan 281 Ghent University B-9000 Gent Belgium http://cage.rug.ac.be/ ls ∼ [email protected] Abstract This article updates the authors’ 1998 survey [133] on the same theme that was written for the Bose Memorial Conference (Colorado, June 7-11, 1995). That article contained the principal results on the packing problem, up to 1995. Since then, considerable progress has been made on different kinds of subconfigurations. 1 Introduction 1.1 The packing problem The packing problem in statistics, coding theory and finite projective spaces regards the deter- mination of the maximal or minimal sizes of given subconfigurations of finite projective spaces. This problem is not only interesting from a geometrical point of view; it also arises when coding-theoretical problems and problems from the design of experiments are translated into equivalent geometrical problems. The geometrical interest in the packing problem and the links with problems investigated in other research fields have given this problem a central place in Galois geometries, that is, the study of finite projective spaces. In 1983, a historical survey on the packing problem was written by the first author [126] for the 9th British Combinatorial Conference. A new survey article stating the principal results up to 1995 was written by the authors for the Bose Memorial Conference [133].
    [Show full text]
  • Arxiv:1111.6055V1 [Math.CO] 25 Nov 2011 2 Definitions
    Adinkras for Mathematicians Yan X Zhang Massachusetts Institute of Technology November 28, 2011 Abstract Adinkras are graphical tools created for the study of representations in supersym- metry. Besides having inherent interest for physicists, adinkras offer many easy-to-state and accessible mathematical problems of algebraic, combinatorial, and computational nature. We use a more mathematically natural language to survey these topics, suggest new definitions, and present original results. 1 Introduction In a series of papers starting with [8], different subsets of the “DFGHILM collaboration” (Doran, Faux, Gates, Hübsch, Iga, Landweber, Miller) have built and extended the ma- chinery of adinkras. Following the spirit of Feyman diagrams, adinkras are combinatorial objects that encode information about the representation theory of supersymmetry alge- bras. Adinkras have many intricate links with other fields such as graph theory, Clifford theory, and coding theory. Each of these connections provide many problems that can be compactly communicated to a (non-specialist) mathematician. This paper is a humble attempt to bridge the language gap and generate communication. We redevelop the foundations in a self-contained manner in Sections 2 and 4, using different definitions and constructions that we consider to be more mathematically natural for our purposes. Using our new setup, we prove some original results and make new interpretations in Sections 5 and 6. We wish that these purely combinatorial discussions will equip the readers with a mental model that allows them to appreciate (or to solve!) the original representation-theoretic problems in the physics literature. We return to these problems in Section 7 and reconsider some of the foundational questions of the theory.
    [Show full text]
  • The Use of Coding Theory in Computational Complexity 1 Introduction
    The Use of Co ding Theory in Computational Complexity Joan Feigenbaum ATT Bell Lab oratories Murray Hill NJ USA jfresearchattcom Abstract The interplay of co ding theory and computational complexity theory is a rich source of results and problems This article surveys three of the ma jor themes in this area the use of co des to improve algorithmic eciency the theory of program testing and correcting which is a complexity theoretic analogue of error detection and correction the use of co des to obtain characterizations of traditional complexity classes such as NP and PSPACE these new characterizations are in turn used to show that certain combinatorial optimization problems are as hard to approximate closely as they are to solve exactly Intro duction Complexity theory is the study of ecient computation Faced with a computational problem that can b e mo delled formally a complexity theorist seeks rst to nd a solution that is provably ecient and if such a solution is not found to prove that none exists Co ding theory which provides techniques for robust representation of information is valuable b oth in designing ecient solutions and in proving that ecient solutions do not exist This article surveys the use of co des in complexity theory The improved upp er b ounds obtained with co ding techniques include b ounds on the numb er of random bits used by probabilistic algo rithms and the communication complexity of cryptographic proto cols In these constructions co des are used to design small sample spaces that approximate the b ehavior
    [Show full text]
  • Algorithmic Coding Theory ¡
    ALGORITHMIC CODING THEORY Atri Rudra State University of New York at Buffalo 1 Introduction Error-correcting codes (or just codes) are clever ways of representing data so that one can recover the original information even if parts of it are corrupted. The basic idea is to judiciously introduce redundancy so that the original information can be recovered when parts of the (redundant) data have been corrupted. Perhaps the most natural and common application of error correcting codes is for communication. For example, when packets are transmitted over the Internet, some of the packets get corrupted or dropped. To deal with this, multiple layers of the TCP/IP stack use a form of error correction called CRC Checksum [Pe- terson and Davis, 1996]. Codes are used when transmitting data over the telephone line or via cell phones. They are also used in deep space communication and in satellite broadcast. Codes also have applications in areas not directly related to communication. For example, codes are used heavily in data storage. CDs and DVDs can work even in the presence of scratches precisely because they use codes. Codes are used in Redundant Array of Inexpensive Disks (RAID) [Chen et al., 1994] and error correcting memory [Chen and Hsiao, 1984]. Codes are also deployed in other applications such as paper bar codes, for example, the bar ¡ To appear as a book chapter in the CRC Handbook on Algorithms and Complexity Theory edited by M. Atallah and M. Blanton. Please send your comments to [email protected] 1 code used by UPS called MaxiCode [Chandler et al., 1989].
    [Show full text]
  • An Introduction to Algorithmic Coding Theory
    An Introduction to Algorithmic Coding Theory M. Amin Shokrollahi Bell Laboratories 1 Part 1: Codes 1-1 A puzzle What do the following problems have in common? 2 Problem 1: Information Transmission G W D A S U N C L R V MESSAGE J K E MASSAGE ?? F T X M I H Z B Y 3 Problem 2: Football Pool Problem Bayern M¨unchen : 1. FC Kaiserslautern 0 Homburg : Hannover 96 1 1860 M¨unchen : FC Karlsruhe 2 1. FC K¨oln : Hertha BSC 0 Wolfsburg : Stuttgart 0 Bremen : Unterhaching 2 Frankfurt : Rostock 0 Bielefeld : Duisburg 1 Feiburg : Schalke 04 2 4 Problem 3: In-Memory Database Systems Database Corrupted! User memory malloc malloc malloc malloc Code memory 5 Problem 4: Bulk Data Distribution 6 What do they have in common? They all can be solved using (algorithmic) coding theory 7 Basic Idea of Coding Adding redundancy to be able to correct! MESSAGE MESSAGE MESSAGE MASSAGE Objectives: • Add as little redundancy as possible; • correct as many errors as possible. 8 Codes A code of block-length n over the alphabet GF (q) is a set of vectors in GF (q)n. If the set forms a vector space over GF (q), then the code is called linear. [n, k]q-code 9 Encoding Problem ? ? ? source ? ? ? Codewords Efficiency! 10 Linear Codes: Generator Matrix Generator matrix source codeword k n k x n O(n2) 11 Linear Codes: Parity Check Matrix 0 Parity check matrix codeword O(n2) after O(n3) preprocessing. 12 The Decoding Problem: Maximum Likelihood Decoding abcd 7→ abcd | abcd | abcd Received: a x c d | a b z d | abcd.
    [Show full text]
  • Voting Rules As Error-Correcting Codes ∗ Ariel D
    Artificial Intelligence 231 (2016) 1–16 Contents lists available at ScienceDirect Artificial Intelligence www.elsevier.com/locate/artint ✩ Voting rules as error-correcting codes ∗ Ariel D. Procaccia, Nisarg Shah , Yair Zick Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA a r t i c l e i n f o a b s t r a c t Article history: We present the first model of optimal voting under adversarial noise. From this viewpoint, Received 21 January 2015 voting rules are seen as error-correcting codes: their goal is to correct errors in the input Received in revised form 13 October 2015 rankings and recover a ranking that is close to the ground truth. We derive worst-case Accepted 20 October 2015 bounds on the relation between the average accuracy of the input votes, and the accuracy Available online 27 October 2015 of the output ranking. Empirical results from real data show that our approach produces Keywords: significantly more accurate rankings than alternative approaches. © Social choice 2015 Elsevier B.V. All rights reserved. Voting Ground truth Adversarial noise Error-correcting codes 1. Introduction Social choice theory develops and analyzes methods for aggregating the opinions of individuals into a collective decision. The prevalent approach is motivated by situations in which opinions are subjective, such as political elections, and focuses on the design of voting rules that satisfy normative properties [1]. An alternative approach, which was proposed by the marquis de Condorcet in the 18th Century, had confounded schol- ars for centuries (due to Condorcet’s ambiguous writing) until it was finally elucidated by Young [34].
    [Show full text]
  • Adinkras for Mathematicians
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 366, Number 6, June 2014, Pages 3325–3355 S 0002-9947(2014)06031-5 Article electronically published on February 6, 2014 ADINKRAS FOR MATHEMATICIANS YAN X. ZHANG Abstract. Adinkras are graphical tools created to study representations of supersymmetry algebras. Besides having inherent interest for physicists, the study of adinkras has already shown non-trivial connections with coding the- ory and Clifford algebras. Furthermore, adinkras offer many easy-to-state and accessible mathematical problems of algebraic, combinatorial, and computa- tional nature. We survey these topics for a mathematical audience, make new connections to other areas (homological algebra and poset theory), and solve some of these said problems, including the enumeration of all hyper- cube adinkras up through dimension 5 and the enumeration of odd dashings of adinkras for any dimension. 1. Introduction In a series of papers starting with [11], different subsets of the “DFGHILM collaboration” (Doran, Faux, Gates, H¨ubsch, Iga, Landweber, Miller) have built and extended the machinery of adinkras. Following the ubiquitous spirit of visual diagrams in physics, adinkras are combinatorial objects that encode information about the representation theory of supersymmetry algebras. Adinkras have many intricate links with other fields such as graph theory, Clifford theory, and coding theory. Each of these connections provide many problems that can be compactly communicated to a (non-specialist) mathematician. This paper is a humble attempt to bridge the language gap and generate communication. In short, adinkras are chromotopologies (a class of edge-colored bipartite graphs) with two additional structures, a dashing condition on the edges and a ranking condition on the vertices.
    [Show full text]
  • Group Algebra and Coding Theory
    Group algebras and Coding Theory Marinˆes Guerreiro ∗† September 7, 2015 Abstract Group algebras have been used in the context of Coding Theory since the beginning of the latter, but not in its full power. The work of Ferraz and Polcino Milies entitled Idempotents in group algebras and minimal abelian codes (Finite Fields and their Applications, 13, (2007) 382-393) gave origin to many thesis and papers linking these two subjects. In these works, the techniques of group algebras are mainly brought into play for the computing of the idempotents that generate the minimal codes and the minimum weight of such codes. In this paper I summarize the main results of the work done by doctorate students and research partners of Polcino Milies and Ferraz. Keywords: idempotents, group algebra, coding theory. Dedicated to Prof. C´esar Polcino Milies on the occasion of his seventieth birthday. arXiv:1412.8042v2 [math.RA] 4 Sep 2015 1 Introduction The origins of Information Theory and Error Correcting Codes Theory are in the papers by Shannon [64] and Hamming [35], where they settled the theoretical foundations for such theories. ∗M. Guerreiro is with Departamento de Matem´atica, Universidade Federal de Vi¸cosa, CEP 36570-000 - Vi¸cosa-MG (Brasil), supported by CAPES, PROCAD 915/2010 and FAPEMIG, APQ CEX 00438-08 and PCE-00151-12(Brazil). E-mail: [email protected]. †This work was presented at Groups, Rings and Group Rings 2014 on the occasion of the 70th Birthday of C´esar Polcino Milies, Ubatuba-SP (Brasil) 21-26 July, 2014. 1 For a non empty finite set A, called alphabet, a code C of length n is n simply a proper subset of A and an n-tuple (a0, a1,...,an−1) ∈ C is called a word of the code C.
    [Show full text]
  • Topology Types of Adinkras and the Corresponding Representations of N-Extended Supersymmetry Arxiv:0806.0050V1 [Hep-Th] 31
    nvriyo ahntnMteaisDprmn|eprieUiest aua cecsDvso|adCleeMteaisDepartment Mathematics College Division|Bard Sciences Natural University Department|Pepperdine Mathematics Washington of University x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x o pt 2supercharges. 32 to up for x x x x x x hre,a ela h aia oe,crepnigt iia supermultiplets, minimal to corresponding codes, maximal the as well as charges, x x x x x x xii h nmrto fteeeuvlnecassfralcssu o2 super- 26 to up cases all for classes equivalence these of enumeration the exhibit x x x x x x fAika n hrfr uemlilt.Uigrslsfo oigter we theory coding from results Using supermultiplets. therefore and Adinkras of x x x x x x h lsicto fsc oe rvdsamasfrdsrbn qiaec classes equivalence describing for means a provides codes such of classification the x x x x orsodpeieyt obyee iaylna ro-orcigcds othat so codes, error-correcting linear binary even doubly to precisely correspond x x x x x x Z 2 eepanhwteeqoin groups quotient these how explain . We ) utetgop r ugop f( of subgroups are groups quotient arXiv:0806.0050v1 [hep-th]31May2008 x x N x x x x dmninlcbs hr the where cubes, -dimensional N of quotients and diagrams Adinkra between x x x x x x hoei oooia nains npriua,w eosrt relationship a demonstrate we particular, In invariants. topological theoretic x x x x x x etne olln uesmer,wihrle ngraph- on relies which supersymmetry, worldline -extended N of supermultiplets x x x x epeetfrhrpors oadacmlt lsicto ceefrdescribing for scheme classification complete a toward progress further present
    [Show full text]