The Use of Coding Theory in Computational Complexity 1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Coding Theory in Computational Complexity 1 Introduction The Use of Co ding Theory in Computational Complexity Joan Feigenbaum ATT Bell Lab oratories Murray Hill NJ USA jfresearchattcom Abstract The interplay of co ding theory and computational complexity theory is a rich source of results and problems This article surveys three of the ma jor themes in this area the use of co des to improve algorithmic eciency the theory of program testing and correcting which is a complexity theoretic analogue of error detection and correction the use of co des to obtain characterizations of traditional complexity classes such as NP and PSPACE these new characterizations are in turn used to show that certain combinatorial optimization problems are as hard to approximate closely as they are to solve exactly Intro duction Complexity theory is the study of ecient computation Faced with a computational problem that can b e mo delled formally a complexity theorist seeks rst to nd a solution that is provably ecient and if such a solution is not found to prove that none exists Co ding theory which provides techniques for robust representation of information is valuable b oth in designing ecient solutions and in proving that ecient solutions do not exist This article surveys the use of co des in complexity theory The improved upp er b ounds obtained with co ding techniques include b ounds on the numb er of random bits used by probabilistic algo rithms and the communication complexity of cryptographic proto cols In these constructions co des are used to design small sample spaces that approximate the b ehavior of large sample spaces Co des are also used to prove lower b ounds on the complexity of approximating numerous combinatorial optimization functions Finally co ding theory plays an imp ortant role in new characterizations of traditional complexity classes such as NP and PSPACE and in an emerging theory of program testing Section reviews the concepts from b oth complexity theory and co ding theory that we will need in the following sections Section demonstrates how co des are used to prove complexity theoretic upp er b ounds The theory of program testing and correcting is presented in Section Lower b ound applications and new characterizations of standard complexity classes are presented in Section Preliminaries This section briey reviews the basic elements of the two discplines under consideration ie com plexity theory and co ding theory If more than a brief review is needed refer to one of the standard textb o oks Complexity Theory We assume that the reader is familiar with the Turing machine TM mo del of computation A formal denition of this mo del can b e found in any intro ductory b o ok on computational complexity eg Garey and Johnson or Papadimitriou However most of the denitions presented in this section require only an intuitive understanding of the notions of time complexity or space complexity of a computational problem readers unfamiliar with the denition of a TM can understand our main p oints in terms of the numb er of op erations p erformed or the numb er of memory lo cations used by a standard computer program In general a function we are interested in computing is dened on some innite domain I There is a sequence of sub domains I I such that I I and a constant c such that for n n c c all x I n jxj n where jxj is the numb er of bits in some suitable binary enco ding of x n n For example we may have I f g and I f g in which case we can take c If p is n n an nbit prime then I may consist of ntuples of elements in GFp in which case we can take n n c We refer to elements of I as inputs of size n So size is a generalization of binary length n A polynomialtime Turing machine is a TM for which there is a sp ecic p olynomial say pn that b ounds the running time that is on inputs of size n the machine always halts after at most pn steps We denote by FP the class of functions computable by p olynomialtime TMs Note that a TM that computes a b o olean function can also b e interpreted as recognizing a language For example computing f where f x if x enco des a planar graph and f x otherwise is the same as recognizing the language of planar graphs In general the deterministic Turing machine M is said to recognize the language fx j f x g which is denoted LM Thus FP is a generalization of the complexity class P of p olynomialtime recognizable languages Polynomial space Turing machines and the complexity classes FPSPACE and PSPACE are dened in exactly the same manner as p olynomialtime TMs FP and P except that the computational resource that is b ounded by the p olynomial pn is space instead of time Exponentialtime Turing machines and the complexity classes FEXP and EXP are dened analogously to p olynomialtime TMs FP and P except that all o ccurrences of p olynomial and pn are replaced by exp onential and pn A nondeterministic polynomialtime Turing machine is a p olynomialtime TM that at each step in the computation has several choices for its next move The set of all p ossible computations of such a machine M on input x I can b e viewed as a tree Because the total running time of n M is b ounded by pn the paths from the ro ot to the leaves of the computation tree may all b e taken to have length exactly pn short computation paths may b e padded with dummy steps if necessary Each leaf in the computation tree is lab elled with the output that M pro duces on input x if during the computation it makes the sequence of choices represented by the path to this leaf If all of the lab els are s and s then we can dene the language LM accepted by M The input x is in LM if there is at least one leaf in the computation tree that is lab elled The path to such a leaf is called an accepting computation of M on input x or a witness that x LM The set of all languages accepted by nondeterministic p olynomialtime TMs constitutes the complexity class NP NP plays a prominent role in computational complexity Indeed the central unsolved problem in complexity theory is the P NP question The main reason for the centrality of the complexity class NP is the large numb er of natural computational problems that can b e formalized as NP languages Examples include Satisability of prop ositional formulae The NP language SAT consists of strings that enco de satisable prop ositional formulae in conjunctive normal form CNF For example x x x x is an element of the language SAT b ecause the assignment x T x T satises x x is not in SAT b ecause none of the b oth clauses On the other hand x x x four truth assignments to the variables x and x satises all three clauses simultaneously In most settings it suces to consider the language SAT in which the formulae are conjuncts of clauses that are themselves disjuncts of three literals Colorability of graphs The NP language COLOR consists of pairs G k such that the graph G is k colorable That is G k is in COLOR if and only if there is a mapping from V G to f k g such that if fv w g E G then v w Clique numb er of graphs The NP language CLIQUE consists of pairs G k such that the graph G has a k clique That is G k is in CLIQUE if and only if there is a subset fv v g k of V G such that fv v g E G for i j k i j These three NP languages along with thousands of others that arise naturally in applications 0 are NPcomplete A language L is NPcomplete if it is in NP and for any other language L in 0 NP there is a function R in FP called a polynomialtime reduction such that x L if and only if Rx L This means for example that if there were a p olynomialtime decision algorithm for SAT there would b e a p olynomialtime algorithm for every L in NP To decide whether x is in L compute Rx and test whether it is in SAT Thus the NPcomplete languages are as hard as any language in NP and barring an unexp ected resolution of the P NP question in the armative they cannot b e decided by deterministic p olynomialtime algorithms See Garey and Johnson for a comprehensive formal treatment of the theory of NPcompleteness The concept of NPcompleteness and the pro of that SAT is NPcomplete were put forth in the seminal pap er of Co ok Similar ideas were develop ed indep endently by Levin Shortly thereafter Karp established the fundamental imp ortance of the concept by proving the NP completeness of many languages that arise naturally in applications including SAT CLIQUE and COLOR In the ensuing years thousands of NPcompleteness results were proven A standard question along with a b o dy of technique for answering it was established in the computer sci ence rep etoire When confronted with a combinatorial problem for which you cannot nd a go o d algorithm formulate it as a languagerecognition problem and try to prove that the language is NPcomplete Such problems are now divided into those for which p olynomialtime algorithms are known eg maximum matching and network ow those that are NPcomplete and a few eg graph isomorphism whose status is unknown Before Co ok and Karp established the concept 1 Although there is no proof that graph isomorphism is not NPcomplete nor is one exp ected any time so on b ecause such a pro of would imply that P 6 NP there is some evidence that it is not see Boppana Hstad and Zachos or Schoning of NPcompleteness there was no coherent explanation for the fact that certain problems like matching had ecient algorithms while others that did not seem very dierent at rst glance like CLIQUE did not With the theory of NPcompleteness in hand such an explanation is easy A p olynomialtime
Recommended publications
  • Modern Coding Theory: the Statistical Mechanics and Computer Science Point of View
    Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View Andrea Montanari1 and R¨udiger Urbanke2 ∗ 1Stanford University, [email protected], 2EPFL, ruediger.urbanke@epfl.ch February 12, 2007 Abstract These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on ‘Complex Systems’ in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as ‘large graphical models’. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field. 1 Introduction and Outline The last few years have witnessed an impressive convergence of interests between disciplines which are a priori well separated: coding and information theory, statistical inference, statistical mechanics (in particular, mean field disordered systems), as well as theoretical computer science. The underlying reason for this convergence is the importance of probabilistic models and/or probabilistic techniques in each of these domains. This has long been obvious in information theory [53], statistical mechanics [10], and statistical inference [45]. In the last few years it has also become apparent in coding theory and theoretical computer science. In the first case, the invention of Turbo codes [7] and the re-invention arXiv:0704.2857v1 [cs.IT] 22 Apr 2007 of Low-Density Parity-Check (LDPC) codes [30, 28] has motivated the use of random constructions for coding information in robust/compact ways [50].
    [Show full text]
  • Modern Coding Theory: the Statistical Mechanics and Computer Science Point of View
    Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View Andrea Montanari1 and R¨udiger Urbanke2 ∗ 1Stanford University, [email protected], 2EPFL, ruediger.urbanke@epfl.ch February 12, 2007 Abstract These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on ‘Complex Systems’ in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as ‘large graphical models’. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field. 1 Introduction and Outline The last few years have witnessed an impressive convergence of interests between disciplines which are a priori well separated: coding and information theory, statistical inference, statistical mechanics (in particular, mean field disordered systems), as well as theoretical computer science. The underlying reason for this convergence is the importance of probabilistic models and/or probabilistic techniques in each of these domains. This has long been obvious in information theory [53], statistical mechanics [10], and statistical inference [45]. In the last few years it has also become apparent in coding theory and theoretical computer science. In the first case, the invention of Turbo codes [7] and the re-invention of Low-Density Parity-Check (LDPC) codes [30, 28] has motivated the use of random constructions for coding information in robust/compact ways [50].
    [Show full text]
  • The Packing Problem in Statistics, Coding Theory and Finite Projective Spaces: Update 2001
    The packing problem in statistics, coding theory and finite projective spaces: update 2001 J.W.P. Hirschfeld School of Mathematical Sciences University of Sussex Brighton BN1 9QH United Kingdom http://www.maths.sussex.ac.uk/Staff/JWPH [email protected] L. Storme Department of Pure Mathematics Krijgslaan 281 Ghent University B-9000 Gent Belgium http://cage.rug.ac.be/ ls ∼ [email protected] Abstract This article updates the authors’ 1998 survey [133] on the same theme that was written for the Bose Memorial Conference (Colorado, June 7-11, 1995). That article contained the principal results on the packing problem, up to 1995. Since then, considerable progress has been made on different kinds of subconfigurations. 1 Introduction 1.1 The packing problem The packing problem in statistics, coding theory and finite projective spaces regards the deter- mination of the maximal or minimal sizes of given subconfigurations of finite projective spaces. This problem is not only interesting from a geometrical point of view; it also arises when coding-theoretical problems and problems from the design of experiments are translated into equivalent geometrical problems. The geometrical interest in the packing problem and the links with problems investigated in other research fields have given this problem a central place in Galois geometries, that is, the study of finite projective spaces. In 1983, a historical survey on the packing problem was written by the first author [126] for the 9th British Combinatorial Conference. A new survey article stating the principal results up to 1995 was written by the authors for the Bose Memorial Conference [133].
    [Show full text]
  • Arxiv:1111.6055V1 [Math.CO] 25 Nov 2011 2 Definitions
    Adinkras for Mathematicians Yan X Zhang Massachusetts Institute of Technology November 28, 2011 Abstract Adinkras are graphical tools created for the study of representations in supersym- metry. Besides having inherent interest for physicists, adinkras offer many easy-to-state and accessible mathematical problems of algebraic, combinatorial, and computational nature. We use a more mathematically natural language to survey these topics, suggest new definitions, and present original results. 1 Introduction In a series of papers starting with [8], different subsets of the “DFGHILM collaboration” (Doran, Faux, Gates, Hübsch, Iga, Landweber, Miller) have built and extended the ma- chinery of adinkras. Following the spirit of Feyman diagrams, adinkras are combinatorial objects that encode information about the representation theory of supersymmetry alge- bras. Adinkras have many intricate links with other fields such as graph theory, Clifford theory, and coding theory. Each of these connections provide many problems that can be compactly communicated to a (non-specialist) mathematician. This paper is a humble attempt to bridge the language gap and generate communication. We redevelop the foundations in a self-contained manner in Sections 2 and 4, using different definitions and constructions that we consider to be more mathematically natural for our purposes. Using our new setup, we prove some original results and make new interpretations in Sections 5 and 6. We wish that these purely combinatorial discussions will equip the readers with a mental model that allows them to appreciate (or to solve!) the original representation-theoretic problems in the physics literature. We return to these problems in Section 7 and reconsider some of the foundational questions of the theory.
    [Show full text]
  • Algorithmic Coding Theory ¡
    ALGORITHMIC CODING THEORY Atri Rudra State University of New York at Buffalo 1 Introduction Error-correcting codes (or just codes) are clever ways of representing data so that one can recover the original information even if parts of it are corrupted. The basic idea is to judiciously introduce redundancy so that the original information can be recovered when parts of the (redundant) data have been corrupted. Perhaps the most natural and common application of error correcting codes is for communication. For example, when packets are transmitted over the Internet, some of the packets get corrupted or dropped. To deal with this, multiple layers of the TCP/IP stack use a form of error correction called CRC Checksum [Pe- terson and Davis, 1996]. Codes are used when transmitting data over the telephone line or via cell phones. They are also used in deep space communication and in satellite broadcast. Codes also have applications in areas not directly related to communication. For example, codes are used heavily in data storage. CDs and DVDs can work even in the presence of scratches precisely because they use codes. Codes are used in Redundant Array of Inexpensive Disks (RAID) [Chen et al., 1994] and error correcting memory [Chen and Hsiao, 1984]. Codes are also deployed in other applications such as paper bar codes, for example, the bar ¡ To appear as a book chapter in the CRC Handbook on Algorithms and Complexity Theory edited by M. Atallah and M. Blanton. Please send your comments to [email protected] 1 code used by UPS called MaxiCode [Chandler et al., 1989].
    [Show full text]
  • An Introduction to Algorithmic Coding Theory
    An Introduction to Algorithmic Coding Theory M. Amin Shokrollahi Bell Laboratories 1 Part 1: Codes 1-1 A puzzle What do the following problems have in common? 2 Problem 1: Information Transmission G W D A S U N C L R V MESSAGE J K E MASSAGE ?? F T X M I H Z B Y 3 Problem 2: Football Pool Problem Bayern M¨unchen : 1. FC Kaiserslautern 0 Homburg : Hannover 96 1 1860 M¨unchen : FC Karlsruhe 2 1. FC K¨oln : Hertha BSC 0 Wolfsburg : Stuttgart 0 Bremen : Unterhaching 2 Frankfurt : Rostock 0 Bielefeld : Duisburg 1 Feiburg : Schalke 04 2 4 Problem 3: In-Memory Database Systems Database Corrupted! User memory malloc malloc malloc malloc Code memory 5 Problem 4: Bulk Data Distribution 6 What do they have in common? They all can be solved using (algorithmic) coding theory 7 Basic Idea of Coding Adding redundancy to be able to correct! MESSAGE MESSAGE MESSAGE MASSAGE Objectives: • Add as little redundancy as possible; • correct as many errors as possible. 8 Codes A code of block-length n over the alphabet GF (q) is a set of vectors in GF (q)n. If the set forms a vector space over GF (q), then the code is called linear. [n, k]q-code 9 Encoding Problem ? ? ? source ? ? ? Codewords Efficiency! 10 Linear Codes: Generator Matrix Generator matrix source codeword k n k x n O(n2) 11 Linear Codes: Parity Check Matrix 0 Parity check matrix codeword O(n2) after O(n3) preprocessing. 12 The Decoding Problem: Maximum Likelihood Decoding abcd 7→ abcd | abcd | abcd Received: a x c d | a b z d | abcd.
    [Show full text]
  • Voting Rules As Error-Correcting Codes ∗ Ariel D
    Artificial Intelligence 231 (2016) 1–16 Contents lists available at ScienceDirect Artificial Intelligence www.elsevier.com/locate/artint ✩ Voting rules as error-correcting codes ∗ Ariel D. Procaccia, Nisarg Shah , Yair Zick Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA a r t i c l e i n f o a b s t r a c t Article history: We present the first model of optimal voting under adversarial noise. From this viewpoint, Received 21 January 2015 voting rules are seen as error-correcting codes: their goal is to correct errors in the input Received in revised form 13 October 2015 rankings and recover a ranking that is close to the ground truth. We derive worst-case Accepted 20 October 2015 bounds on the relation between the average accuracy of the input votes, and the accuracy Available online 27 October 2015 of the output ranking. Empirical results from real data show that our approach produces Keywords: significantly more accurate rankings than alternative approaches. © Social choice 2015 Elsevier B.V. All rights reserved. Voting Ground truth Adversarial noise Error-correcting codes 1. Introduction Social choice theory develops and analyzes methods for aggregating the opinions of individuals into a collective decision. The prevalent approach is motivated by situations in which opinions are subjective, such as political elections, and focuses on the design of voting rules that satisfy normative properties [1]. An alternative approach, which was proposed by the marquis de Condorcet in the 18th Century, had confounded schol- ars for centuries (due to Condorcet’s ambiguous writing) until it was finally elucidated by Young [34].
    [Show full text]
  • Adinkras for Mathematicians
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 366, Number 6, June 2014, Pages 3325–3355 S 0002-9947(2014)06031-5 Article electronically published on February 6, 2014 ADINKRAS FOR MATHEMATICIANS YAN X. ZHANG Abstract. Adinkras are graphical tools created to study representations of supersymmetry algebras. Besides having inherent interest for physicists, the study of adinkras has already shown non-trivial connections with coding the- ory and Clifford algebras. Furthermore, adinkras offer many easy-to-state and accessible mathematical problems of algebraic, combinatorial, and computa- tional nature. We survey these topics for a mathematical audience, make new connections to other areas (homological algebra and poset theory), and solve some of these said problems, including the enumeration of all hyper- cube adinkras up through dimension 5 and the enumeration of odd dashings of adinkras for any dimension. 1. Introduction In a series of papers starting with [11], different subsets of the “DFGHILM collaboration” (Doran, Faux, Gates, H¨ubsch, Iga, Landweber, Miller) have built and extended the machinery of adinkras. Following the ubiquitous spirit of visual diagrams in physics, adinkras are combinatorial objects that encode information about the representation theory of supersymmetry algebras. Adinkras have many intricate links with other fields such as graph theory, Clifford theory, and coding theory. Each of these connections provide many problems that can be compactly communicated to a (non-specialist) mathematician. This paper is a humble attempt to bridge the language gap and generate communication. In short, adinkras are chromotopologies (a class of edge-colored bipartite graphs) with two additional structures, a dashing condition on the edges and a ranking condition on the vertices.
    [Show full text]
  • Group Algebra and Coding Theory
    Group algebras and Coding Theory Marinˆes Guerreiro ∗† September 7, 2015 Abstract Group algebras have been used in the context of Coding Theory since the beginning of the latter, but not in its full power. The work of Ferraz and Polcino Milies entitled Idempotents in group algebras and minimal abelian codes (Finite Fields and their Applications, 13, (2007) 382-393) gave origin to many thesis and papers linking these two subjects. In these works, the techniques of group algebras are mainly brought into play for the computing of the idempotents that generate the minimal codes and the minimum weight of such codes. In this paper I summarize the main results of the work done by doctorate students and research partners of Polcino Milies and Ferraz. Keywords: idempotents, group algebra, coding theory. Dedicated to Prof. C´esar Polcino Milies on the occasion of his seventieth birthday. arXiv:1412.8042v2 [math.RA] 4 Sep 2015 1 Introduction The origins of Information Theory and Error Correcting Codes Theory are in the papers by Shannon [64] and Hamming [35], where they settled the theoretical foundations for such theories. ∗M. Guerreiro is with Departamento de Matem´atica, Universidade Federal de Vi¸cosa, CEP 36570-000 - Vi¸cosa-MG (Brasil), supported by CAPES, PROCAD 915/2010 and FAPEMIG, APQ CEX 00438-08 and PCE-00151-12(Brazil). E-mail: [email protected]. †This work was presented at Groups, Rings and Group Rings 2014 on the occasion of the 70th Birthday of C´esar Polcino Milies, Ubatuba-SP (Brasil) 21-26 July, 2014. 1 For a non empty finite set A, called alphabet, a code C of length n is n simply a proper subset of A and an n-tuple (a0, a1,...,an−1) ∈ C is called a word of the code C.
    [Show full text]
  • Topology Types of Adinkras and the Corresponding Representations of N-Extended Supersymmetry Arxiv:0806.0050V1 [Hep-Th] 31
    nvriyo ahntnMteaisDprmn|eprieUiest aua cecsDvso|adCleeMteaisDepartment Mathematics College Division|Bard Sciences Natural University Department|Pepperdine Mathematics Washington of University x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x o pt 2supercharges. 32 to up for x x x x x x hre,a ela h aia oe,crepnigt iia supermultiplets, minimal to corresponding codes, maximal the as well as charges, x x x x x x xii h nmrto fteeeuvlnecassfralcssu o2 super- 26 to up cases all for classes equivalence these of enumeration the exhibit x x x x x x fAika n hrfr uemlilt.Uigrslsfo oigter we theory coding from results Using supermultiplets. therefore and Adinkras of x x x x x x h lsicto fsc oe rvdsamasfrdsrbn qiaec classes equivalence describing for means a provides codes such of classification the x x x x orsodpeieyt obyee iaylna ro-orcigcds othat so codes, error-correcting linear binary even doubly to precisely correspond x x x x x x Z 2 eepanhwteeqoin groups quotient these how explain . We ) utetgop r ugop f( of subgroups are groups quotient arXiv:0806.0050v1 [hep-th]31May2008 x x N x x x x dmninlcbs hr the where cubes, -dimensional N of quotients and diagrams Adinkra between x x x x x x hoei oooia nains npriua,w eosrt relationship a demonstrate we particular, In invariants. topological theoretic x x x x x x etne olln uesmer,wihrle ngraph- on relies which supersymmetry, worldline -extended N of supermultiplets x x x x epeetfrhrpors oadacmlt lsicto ceefrdescribing for scheme classification complete a toward progress further present
    [Show full text]
  • Curriculum Vitae
    Crystal Hoyt March 30, 2014 Curriculum Vitae Research Interests Algebraic and combinatorial representation theory Education · University of California, Berkeley, USA Ph.D., Mathematics, May 2007. Dissertation: \Kac-Moody superalgebras of finite growth". Advisor: Vera Serganova. · Texas A & M University, College Station, USA B.S., Mathematics, May 2001, summa cum laude. Employment · Technion - Israel Institute of Technology Aly Kaufman Postdoctoral Fellow October 2011 - February 2014 Hosts: Shlomi Gelaki, Tobias Hartnick Adjunct Lecturer: Spring 2014 · Bar-Ilan University, Israel Postdoctoral Researcher October 2010 - September 2011 Host: Jonathan Beck · The Weizmann Institute of Science, Israel Postdoctoral Fellow July 2007 - August 2009, December 2009 - June 2010 Hosts: Maria Gorelik, Anthony Joseph Adjunct Lecturer: Spring 2011; Winter 2013 · Nara Women's University, Japan JSPS Postdoctoral fellow Japanese Society for the Promotion of Science September 2009 - November 2009 Host: Tomoyuki Arakawa Visiting Positions · University of Michigan, Ann Arbor, 7.7 - 20.7.2013; 20.1 - 31.1.2014 · RIMS: Research Institute for Mathematical Sciences, Kyoto University, Japan, 27.6 - 12.7.2011 · Nara Women's University, Japan, 8.11 - 22.11.2008 1 Crystal Hoyt March 30, 2014 Curriculum Vitae Refereed Journals · C. Hoyt, Good gradings of basic Lie superalgebras, Israel Journal of Math- ematics, 192 no. 1 (2012), 251-280. · C. Hoyt, Regular Kac-Moody superalgebras and integrable highest weight modules, Journal of Algebra, 324 no. 12 (2010), 3308-3354. · C. Hoyt and S. Reif, Simplicity of vacuum modules over affine Lie super- algebras, Journal of Algebra, 321 no. 10 (2009), 2861-2874. · C. Hoyt and V. Serganova, Classification of finite-growth general Kac- Moody superalgebras, Communications in Algebra, 35 no.
    [Show full text]
  • On Viewing Block Codes As Finite Automata
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows Theoretical Computer Science 290 (2003) 1775–1797 www.elsevier.com/locate/tcs On viewing block codes as ÿnite automata Priti Shankara;∗, Amitava Dasguptaa , Kaustubh Deshmukhb , B. Sundar Rajanc aDepartment of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India bDepartment of Computer Science and Engineering, Universityof Washington, Seattle, WA, USA cDepartment of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India Received 15 June 2000; received in revised form 11 September 2001; accepted 14 February 2002 Communicated by M. Nivat Abstract Block codes are viewed from a formal language theoretic perspective. It is shown that proper- ties of trellises for subclasses of block codes called rectangular codes follow naturally from the Myhill Nerode theorem. A technique termed subtrellis overlaying is introduced with the object of reducing decoder complexity. Necessary and su:cient conditions for trellis overlaying are derived from the representation of the block code as a group, partitioned into a subgroup and its cosets. The conditions turn out to be simple constraints on coset leaders. It is seen that over- layed trellises are tail-biting trellises for which decoding is generally more e:cient than that for conventional trellises. Finally, a decoding algorithm for tail-biting trellises is described, and the results of some simulations are presented. c 2002 Elsevier Science B.V. All rights reserved. Keywords: Block codes; Tail-biting trellis; Decoder complexity; Maximum likelihood decoding 1. Introduction The areas of system theory, coding theory and automata theory have much in common, but historically have developed largely independently.
    [Show full text]