A Research Overview of the Siltation Loss Controls and Capacity Recovery Processes in China’S Reservoirs

Total Page:16

File Type:pdf, Size:1020Kb

A Research Overview of the Siltation Loss Controls and Capacity Recovery Processes in China’S Reservoirs MATEC Web of Conferences 246, 01086 (2018) https://doi.org/10.1051/matecconf/201824601086 ISWSO 2018 A Research Overview of the Siltation Loss Controls and Capacity Recovery Processes in China’s Reservoirs H H Hu, A J Deng, J G Chen, H L Shi and M Ye China Institute of Water Resources and Hydropower Research, Beijing, China Abstract. There are many reservoirs in China with serious siltation issues which are affecting the function and safety of the reservoirs. Recently, research studies have been carried out regarding siltation loss control and capacity recovery technology due to the decreases in suitable dam sites for establishing reservoirs, and the increasingly serious siltation losses which have been occurring in the present reservoirs. The results of these studies have been of great significance to the partial recoveries of the siltation capacities of reservoirs, improvements in the respective efficiencies of the current reservoirs, and the prolonging of the service life the reservoirs. This study presented a simple review of the previous research findings regarding the current siltation loss situations and controls, as well as the capacity recoveries which have been achieved. Also, this study proposed the urgent need for in-depth examinations to be conducted pertaining to the national investigations of the reservoir siltation status in China, as well as a review of the current mechanisms and control measures for reservoir siltation losses. 1 Introduction At the present time, millions of different dams have been built around the world, which include 50,000 large dams, China has the largest number of reservoirs among all forming a global reservoir capacity of approximately 7 countries of the world. There are a total of 98,002 billion m3 [1]. These reservoirs have many functions, such reservoirs in China, with a total capacity of 932.3 billion as providing flood control, water supply sources and m3. This is equivalent to one fifth of the country's total power generation sources. The reservoirs also have river runoff. China’s reservoirs play important roles in irrigation and shipping functions. All of these functions providing clean energy, maintaining regional ecological have created significant benefits for social development. balance, ensuring an adequate water supply, and However, at the current time, siltation deposition in mitigating flood situations. However, China is also the reservoirs is a worldwide problem due to the siltation country with the most serious reservoir siltation issues. transport accompanied by the flow movements in rivers. The average annual siltation rate of China’s reservoirs is The average service life of a reservoir is approximately 2.3%, and the annual siltation loss capacity is equivalent 22 years, which is far less than the service life of the to a super-large reservoir of 10 billion m3. In recent body of a large dam (at least 100 years). In regard to the years, the reductions in China’s reservoir functionality, construction processes of dams in other countries, the safety and comprehensive benefits have become a annual siltation transport capacity of the Nile River bottleneck which has restricted economic and social before the Aswan Dam was built was approximately 100 development. Therefore, it is necessary to control the to 124 x 106 tons. However, now the annual siltation siltation of the country’s valuable reservoirs, as well as transport capacity has been determined to be only 10% to maintain the reservoir storage capacities and actively of the previous rate, which indicates that the siltation implement rescue measures for the siltation of China’s deposition of reservoirs is very significant. Since the reservoirs. It has become a priority to conduct partial establishment of the Ribarroja-Mequinenza reservoir hub siltation cleaning in the reservoirs and recover the on the Ebro River, 96% of the siltation from the storage capacities of the reservoirs in order to prolong upstream has been detained, which has not only led to their service life. Also, various functions which will the erosion and undercut of the downstream riverbed, but improve and promote the sustainable use of the has resulted in the ceasing of delta silting at the mouth of reservoirs should continue to be introduced. river, which effectively further extended the erosion situation. The annual siltation discharge of the Colorado River in the United States was previously L50 × 106 tons. 2 Comparison the siltation situation in However, due to water diversion from the river basins China and the current global siltation and reservoir construction processes, the siltation which issues enters into the sea has been greatly reduced. These findings have further highlighted that the siltation a Corresponding author: H H Hu, [email protected] © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). MATEC Web of Conferences 246, 01086 (2018) https://doi.org/10.1051/matecconf/201824601086 ISWSO 2018 situations in global reservoirs have become relatively even reached more than 30%. In 2012, the Ministry of obvious. In additional, similar phenomena have occurred Water Resources conducted investigations and analyses in the Danube (France) [2]; Rhone (Europe) [3]; Don of the reservoir siltation in four typical provinces: Shanxi, (Russia) [4]; Niger (Africa) [5]; and Skokomish (United Shaanxi, Guizhou and Jiangxi. The total reservoir States) [6] Rivers, as well as China's Luan, Yangtze, capacity and siltation rate of Shanxi Province were Yellow, and Huaihe Rivers. The affected reservoirs determined to be 4.765 billion m3 and 34%, respectively. throughout the world have reduced the safety of dams The total reservoir capacity and siltation rate of Shaanxi with rates of 0.5% to 1% siltation of their storage Province were determined to be 4.043 billion m3 and capacities[7]. The development of the functions and 34%, respectively. It was found that the total reservoir comprehensive efficiencies of the reservoirs have also capacity and siltation capacity of Jiangxi Province were been weakened. However, the annual siltation rate of the 2.955 billion m3 and 893 million m3, respectively. reservoirs in China has been determined to be 2.3%, However, the siltation rate was observed to be only 3%. which is far greater than the capacity loss rates observed The total reservoir capacity and siltation capacity of in the global reservoirs. Therefore, for the majority of Guizhou Province were 2.540 billion m3 and 110 million the reservoirs in China, their normal service life roles are m3, respectively. However, the siltation rate was being determined by the siltation deposition of the observed to be only 4.3%. Although the siltation rates in reservoirs, and not the service life of the dams. the provinces of Guizhou and Jiangxi were not found to Table 1. Regional distributions of the global capacities and be high, and the overall siltation rates were not large, the siltation reservoirs (dams). siltation degrees were observed to be different, and Storage Annual average silting siltation problems still existed in many of the reservoirs. Area capacity loss rate of storage 3 According to the statistical data, 6,376 reservoirs in (km ) capacity(%) Jiangxi Province displayed siltation problems, and 979 World 6,325 0.5-1 reservoirs in Guizhou Province displayed siltation problems. Some of these reservoirs were found to have Europe 1,083 0.17-0.2 serious siltation issues. For example, the siltation rates of the Tangbei Reservoir in Jiangxi Province, and the New North America 1,845 0.2 Bridge Reservoir in Guizhou Province were determined Central and to be 58.9% and 80.0%, respectively. Generally speaking, 1,039 0.1 South America the differences in the reservoir siltation rates of the North Africa 188 0.08-1.5 different river basins were obvious. The siltation of the Yellow River Basin located in the provinces of Shanxi South Africa 575 0.23 and Shaanxi was observed to be relatively serious. Meanwhile, the degree of siltation in the reservoirs of Middle East 224 1.5 Jiangxi and Guizhou Provinces were found to be much Asia (except lower. 861 0.3-1.0 China)) China 510 2.3 3.2 Reservoir siltation prevention methods and effects 3 Research progress in the functional The characteristics of reservoir, conditions of basins and other factors determine the pattern and distribution of recovery of silted reservoirs siltation. However, these factors also determine the control methods which are put in place for reservoir 3.1. Current status of reservoir siltation in China siltation. Cao Huiqun [8] compiled detailed statistics regarding siltation reduction methods and their effects in According to the statistical data, the annual silt 26 reservoirs in China and proposed some siltation transportation of the seven major rivers in China is as reduction methods for reservoirs. These included high as 2.3 billion tons. It has been observed that, even methods for reducing the amounts of silt entering into though the Yangtze River has a silt concentration of only reservoirs; discharging and flushing methods to remove 0.54 kg/m3, the annual silt volume is approximately 500 silt deposits in reservoirs; mechanical dredging methods, million tons due to the large amount of water. After a and so on. reservoir is built on a river, the water level will go up, The methods of reducing the amounts of silt entering and the flow velocity will tend to decrease. Therefore, as into reservoirs was found to be mainly suitable for the the siltation force decreases, the siltation deposits in the Yellow River, as well as other areas with serious water reservoir will increase. and soil losses. Soil erosion is the main mode of silt At the present time, the basic data and characteristic production, as well as the main cause of reservoir information of the reservoir siltation status in China has siltation in the aforementioned basins.
Recommended publications
  • Marais Des Cygnes River Basin Total Maximum Daily Load
    MARAIS DES CYGNES RIVER BASIN TOTAL MAXIMUM DAILY LOAD Waterbody: Pomona Lake Water Quality Impairment: Eutrophication & Siltation 1. INTRODUCTION AND PROBLEM IDENTIFICATION Subbasin: Upper Marais Des Cygnes County: Osage, Wabaunsee and Lyon HUC 8: 10290101 HUC 10 (12): 02 (01, 02, 03, 04, 05, 06, 07, 08) Ecoregion: Central Irregular Plains, Osage Cuestas (40b) Flint Hills (28) Drainage Area: 322 square miles Conservation Pool: Surface Area = 3,621 acres Watershed/Lake Ratio: 57:1 Maximum Depth = 38 feet Mean Depth = 16 feet Storage Volume = 55,670 acre feet Estimated Retention Time = 0.45 years Mean Annual Inflow = 149,449 acre feet Mean Annual Discharge = 136,729 acre feet Constructed: 1962 Designated Uses: Primary Contact Recreation Class A; Expected Aquatic Life Support; Domestic Water Supply; Food Procurement; Ground Water Recharge; Industrial Water Supply; Irrigation Use; Livestock Watering Use. 303(d) Listings: 2002, 2004, 2008, 2010 & 2012 Marais Des Cygnes River Basin Lakes Impaired Use: All uses in Pomona Lake are impaired to a degree by eutrophication Water Quality Criteria: General – Narrative: Taste-producing and odor-producing substances of artificial origin shall not occur in surface waters at concentrations that interfere with the production of potable water by conventional water treatment processes, that impart an unpalatable flavor to edible aquatic or semiaquatic life or terrestrial wildlife, or that result in noticeable odors in the vicinity of surface waters (KAR 28-16-28e(b)(7). 1 Nutrients - Narrative: The introduction of plant nutrients into streams, lakes, or wetlands from artificial sources shall be controlled to prevent the accelerated succession or replacement of aquatic biota or the production of undesirable quantities or kinds of aquatic life (KAR 28-16- 28e(c)(2)(A)).
    [Show full text]
  • Sediment Transport in the San Francisco Bay Coastal System: an Overview
    Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants.
    [Show full text]
  • SEDIMENTARY FRAMEWORK of Lmainland FRINGING REEF DEVELOPMENT, CAPE TRIBULATION AREA
    GREAT BARRIER REEF MARINE PARK AUTHORITY TECHNICAL MEMORANDUM GBRMPA-TM-14 SEDIMENTARY FRAMEWORK OF lMAINLAND FRINGING REEF DEVELOPMENT, CAPE TRIBULATION AREA D.P. JOHNSON and RM.CARTER Department of Geology James Cook University of North Queensland Townsville, Q 4811, Australia DATE November, 1987 SUMMARY Mainland fringing reefs with a diverse coral fauna have developed in the Cape Tribulation area primarily upon coastal sedi- ment bodies such as beach shoals and creek mouth bars. Growth on steep rocky headlands is minor. The reefs have exten- sive sandy beaches to landward, and an irregular outer margin. Typically there is a raised platform of dead nef along the outer edge of the reef, and dead coral columns lie buried under the reef flat. Live coral growth is restricted to the outer reef slope. Seaward of the reefs is a narrow wedge of muddy, terrigenous sediment, which thins offshore. Beach, reef and inner shelf sediments all contain 50% terrigenous material, indicating the reefs have always grown under conditions of heavy terrigenous influx. The relatively shallow lower limit of coral growth (ca 6m below ADD) is typical of reef growth in turbid waters, where decreased light levels inhibit coral growth. Radiocarbon dating of material from surveyed sites confirms the age of the fossil coral columns as 33304110 ybp, indicating that they grew during the late postglacial sea-level high (ca 5500-6500 ybp). The former thriving reef-flat was killed by a post-5500 ybp sea-level fall of ca 1 m. Although this study has not assessed the community structure of the fringing reefs, nor whether changes are presently occur- ring, it is clear the corals present today on the fore-reef slope have always lived under heavy terrigenous influence, and that the fossil reef-flat can be explained as due to the mid-Holocene fall in sea-level.
    [Show full text]
  • Background Document for Deep-Sea Sponge Aggregations 2010
    Background Document for Deep-sea sponge aggregations Biodiversity Series 2010 OSPAR Convention Convention OSPAR The Convention for the Protection of the La Convention pour la protection du milieu Marine Environment of the North-East Atlantic marin de l'Atlantique du Nord-Est, dite (the “OSPAR Convention”) was opened for Convention OSPAR, a été ouverte à la signature at the Ministerial Meeting of the signature à la réunion ministérielle des former Oslo and Paris Commissions in Paris anciennes Commissions d'Oslo et de Paris, on 22 September 1992. The Convention à Paris le 22 septembre 1992. La Convention entered into force on 25 March 1998. It has est entrée en vigueur le 25 mars 1998. been ratified by Belgium, Denmark, Finland, La Convention a été ratifiée par l'Allemagne, France, Germany, Iceland, Ireland, la Belgique, le Danemark, la Finlande, Luxembourg, Netherlands, Norway, Portugal, la France, l’Irlande, l’Islande, le Luxembourg, Sweden, Switzerland and the United Kingdom la Norvège, les Pays-Bas, le Portugal, and approved by the European Community le Royaume-Uni de Grande Bretagne and Spain. et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. Acknowledgement This document has been prepared by Dr Sabine Christiansen for WWF as lead party. Rob van Soest provided contact with the surprisingly large sponge specialist group, of which Joana Xavier (Univ. Amsterdam) has engaged most in commenting on the draft text and providing literature. Rob van Soest, Ole Tendal, Marc Lavaleye, Dörte Janussen, Konstantin Tabachnik, Julian Gutt contributed with comments and updates of their research.
    [Show full text]
  • Impacts of Sediment Burial on Mangroves
    Marine Pollution Bulletin Vol. 37, Nos. 8±12, pp. 420±426, 1998 Ó 1999 Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0025-326X(98)00122-2 0025-326X/99 $ - see front matter Impacts of Sediment Burial on Mangroves JOANNA C. ELLISON School of Applied Science, University of Tasmania, P.O. Box 1214, Launceston, Tasmania 7250, Australia Aerial roots are a common adaptation of mangrove trees Rates of Mangrove Tidal Swamp Accretion to their saline wetland habitat, allowing root respiration in the anaerobic substrate. While mangroves ¯ourish on First, it is necessary to establish natural rates of sedi- sedimentary shorelines, it is shown here that excess input mentation, for mangroves are known to promote sedi- of sediment to mangroves can cause death of trees owing mentation. Scon (1970) showed that the roots of to root smothering. Descriptions of 26 cases were found in Rhizophora mangle can signi®cantly reduce the velocity the literature or described here, where mangroves have of tidal water, and provide a better sediment binding been adversely aected by sediment burial of roots. The capacity compared with a variety of sea-grasses and impacts ranged from reduced vigour to death, depending algal mats. Furukawa and Wolanski (1996) and Fur- on the amount and type of sedimentation, and the species ukawa et al. (1997) demonstrated that a combination of involved. There are insucient data to establish speci®c vegetational friction on water movement and sediment tolerances. For rehabilitation, where the disturbance was a ¯occulation promotes sedimentation within mangrove past event, the elevation change must be assessed in swamps.
    [Show full text]
  • Life on the Coral Reef
    Coral Reef Teacher’s Guide Life on the Coral Reef Life on the Coral Reef THE CORAL REEF ECOSYSTEM The muddy silt drifts out to sea, covering the nearby Coral reefs provide the basis for the most productive coral reefs. Some corals can remove the silt, but many shallow water ecosystem in the world. An ecosystem cannot. If the silt is not washed off within a short pe- is a group of living things, such as coral, algae and riod of time by the current, the polyps suffocate and fishes, along with their non-living environment, such die. Not only the rainforest is destroyed, but also the as rocks, water, and sand. Each influences the other, neighboring coral reef. and both are necessary for the successful maintenance of life. If one is thrown out of balance by either natural Reef Zones or human-made causes, then the survival of the other Coral reefs are not uniform, but are shaped by the is seriously threatened. forces of the sea and the structure of the sea floor into DID YOU KNOW? All of the Earth’s ecosystems are a series of different parts or reef zones. Understand- interrelated, forming a shell of life that covers the ing these zones is useful in understanding the ecol- entire planet – the biosphere. For instance, if too many ogy of coral reefs. Keep in mind that these zones can trees are cut down in the rainforest, soil from the for- blend gradually into one another, and that sometimes est is washed by rain into rivers that run to the ocean.
    [Show full text]
  • 255 Subsistence , Settlement , Ande Nvironment
    SYMPOSIUM 9 AND GENERAL SESSION 3: SOUTHERN CALIFORNIA ARCHAEOLOGY 255 SSSUBSISTENCE, SS, ETTLEMENT, ANDANDAND ENVIRONMENTALALAL CHANGEHANGEHANGE AAATTT SANANAN DIEGOIEGOIEGO BAAAYYY ANDREW R. PIGNIOLO San Diego Bay archaeology has long been a testing ground for ideas of coastal resource use. It has been assumed to serve as a contrast to models of environmental decline built on smaller estuaries along the central San Diego County coast. A closer examination of shellfish data indicates that similar processes were occurring at San Diego Bay and northern lagoons, and that the presumed refuge from coastal change did not exist. The data from San Diego Bay provides a means to reexamine and reassess earlier models of coastal decline. ome of the earliest archaeological research in San record. This was equated with lagoon siltation and Diego County was focused on the shell middens environmental decline. Models of population Saround San Diego Bay. Early investigators like movement and environmental change as an impetus for Gifford (1916) used the data for comparisons with sites cultural change were built on this data (Warren 1964). in the San Francisco Bay area. An absence of spectacular artifacts and stratigraphy reduced further interest, and One of the important untested assumptions in many very limited research was conducted in the area before of these models was that San Diego and Mission bays the advent of cultural resource management. were large enough to never have experienced the same environmental decline and closure to the ocean due to Claude Warren and other students from UCLA siltation (Warren 1964). This is a very logical excavated and surveyed sites and areas near some of assumption given the size of both these bodies of water the smaller estuaries and lagoons along the central San and the strength of their tides.
    [Show full text]
  • Deep-Sea Life Issue 14, January 2020 Cruise News E/V Nautilus Telepresence Exploration of the U.S
    Deep-Sea Life Issue 14, January 2020 Welcome to the 14th edition of Deep-Sea Life (a little later than anticipated… such is life). As always there is bound to be something in here for everyone. Illustrated by stunning photography throughout, learn about the deep-water canyons of Lebanon, remote Pacific Island seamounts, deep coral habitats of the Caribbean Sea, Gulf of Mexico, Southeast USA and the North Atlantic (with good, bad and ugly news), first trials of BioCam 3D imaging technology (very clever stuff), new deep pelagic and benthic discoveries from the Bahamas, high-risk explorations under ice in the Arctic (with a spot of astrobiology thrown in), deep-sea fauna sensitivity assessments happening in the UK and a new photo ID guide for mesopelagic fish. Read about new projects to study unexplored areas of the Mid-Atlantic Ridge and Azores Plateau, plans to develop a water-column exploration programme, and assessment of effects of ice shelf collapse on faunal assemblages in the Antarctic. You may also be interested in ongoing projects to address and respond to governance issues and marine conservation. It’s all here folks! There are also reports from past meetings and workshops related to deep seabed mining, deep-water corals, deep-water sharks and rays and information about upcoming events in 2020. Glance over the many interesting new papers for 2019 you may have missed, the scientist profiles, job and publishing opportunities and the wanted section – please help your colleagues if you can. There are brief updates from the Deep- Ocean Stewardship Initiative and for the deep-sea ecologists amongst you, do browse the Deep-Sea Biology Society president’s letter.
    [Show full text]
  • Siltation Mitigation Proposals
    Proposed Kaimai Windfarm Roading and Turbine Site Earthworks Siltation Mitigation Proposals Introduction In preparing this report, I have considered and incorporated the following: 1. Memorandum – Kaimai Turbine Dimensions – Rev 4; 21 May 2018: Kaimai Windfarm Ltd 2. Civil Engineering Drawings – Resource Consent Issue; Rev A; Tektus Consultants; June 2018 3. Civil Engineering Peer review; May 2018; Tiaki Consultants Background Information The wind farm proposal involves siting 24 wind turbines as detailed on the topographical plans 200, 200-1 to 200-7 as prepared by Tektus Consultants. A lidar survey has provided ground contours shown at 2.0m intervals. From the above described plans a proposed roading network (comprising of approximately 18.5 km of roading), provides access to and links the proposed wind turbine sites. The proposed roading network naturally utilises existing roads and farm tracks which comprise of approximately 13 km length of road. The remaining 5 - 6 km of new roading traverses grassed steep to rolling farmland along ridges to the proposed wind turbine sites. Each of the turbine sites are essentially cut into the natural ground to ensure the structures are founded appropriately. Each of the sites has an area of flat ground adjoining the actual turbine foundation that will serve as an assembly/construction platform. A geotechnical report prepared by KGA Geotechnical provides some recommendations regarding road and turbine foundation construction and is consistent with accepted practice. Site Preparation for Earthworks The purpose of this report is to outline the design concepts for Siltation Mitigation methods to be carried out within the property(s) concerned and ensure the earthworks construction phase of the proposed Kaimai Windfarm can proceed in a sensible and practical way while addressing the necessary environmental and regulatory requirements.
    [Show full text]
  • Impacts to Marine Fisheries Habitat from Nonfishing Activities in the Northeastern United States
    NOAA Technical Memorandum NMFS-NE-209 Impacts to Marine Fisheries Habitat from Nonfishing Activities in the Northeastern United States US DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Regional Office Gloucester, Massachusetts February 2008 Recent Issues in This Series: 191. Essential Fish Habitat Source Document: Northern Shortfin Squid, Illex illecebrosus, Life History and Habitat Characteristics. 2nd ed. By Lisa C. Hendrickson and Elizabeth M. Holmes. November 2004. v + 36 p., 13 figs., 1 table. NTIS Access. No. PB2005- 101437. [Online publication only.] 192. Essential Fish Habitat Source Document: Atlantic Herring, Clupea harengus, Life History and Habitat Characteristics. 2nd ed. By David K. Stevenson and Marcy L. Scott. July 2005. vi + 84 p., 40 figs., 7 tables. NTIS Access. No. PB2005-107567. [Online publication only.] 193. Essential Fish Habitat Source Document: Longfin Inshore Squid, Loligo pealeii, Life History and Habitat Characteristics. 2nd ed. By Larry D. Jacobson. August 2005. v + 42 p., 20 figs., 1 table. NTIS Access. No. PB2005-110684. [Online publication only.] 194. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2005. By Gordon T. Waring, Elizabeth Josephson, Carol P. Fairfield, and Katherine Maze-Foley, eds. Dana Belden, Timothy V.N. Cole, Lance P. Garrison, Keith D. Mullin, Christopher Orphanides, Richard M. Pace III, Debra L. Palka, Marjorie C. Rossman, and Fredrick W. Wenzel, contribs. March 2006. v + 392 p., 45 figs, 79 tables, 5 app., index. NTIS Access No. PB 2007-104395. 195. A Large Marine Ecosystem Voluntary Environmental Management System Approach to Fisheries Practices. By Frank J. Gable. December 2005.
    [Show full text]
  • Mechanism of Back Siltation in Navigation Channel in Dinh an Estuary, Vietnam
    Water Science and Engineering, 2013, 6(2): 178-188 doi:10.3882/j.issn.1674-2370.2013.02.006 http://www.waterjournal.cn e-mail: [email protected] Mechanism of back siltation in navigation channel in Dinh An Estuary, Vietnam Viet-Thanh NGUYEN1, 2, 3, Jin-hai ZHENG*1, 2, Ji-sheng ZHANG1, 2 1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, P. R. China 2. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, P. R. China 3. Faculty of Civil Engineering, University of Transport and Communications, Hanoi, Vietnam Abstract: The Dinh An Estuary is one of the Nine Dragon estuaries of the Mekong River. An international navigation channel was built in the estuary for vessels traveling from the South China Sea to the southwestern area of Vietnam and then to Phnom Penh, Cambodia. The morphological evolution of the navigation channel is complicated and unstable. The back siltation intensity in the navigation channel has largely increased and been concentrated in the curvature segments of the channel since 1980. In this study, based on simulation results and measured data, five key factors that influence the back siltation in the navigation channel were systematically analyzed. These factors included the increasing elevation gap between the channel and the nearby seabed, the disadvantageous hydrodynamic conditions, sediment transport, mixing of saltwater and freshwater, and wave effects in the navigation channel. It is shown that the back siltation to a large extent results from the low current velocity of the secondary ocean circulation, which often occurs in the curvature segments of the channel.
    [Show full text]
  • 2005 Artificial Reef Management Plan
    ARTIFICIAL REEF MANAGEMENT PLAN FOR NEW JERSEY December, 2005 Richard J. Codey, Acting Governor State of New Jersey Bradley M. Campbell, Commissioner Department of Environmental Protection John S. Watson Jr., Assistant Commissioner Natural and Historic Resources Martin J. McHugh, Director Division of Fish and Wildlife Marine Fisheries Council: Gilbert Ewing Jr., Chairman Dr. Robert B. Abel Richard Herb Erling Berg Nancy Sittineri Joseph Rizzo Dr. Patrick Donnelly Edward Goldman John Maxwell Francis Puskas Prepared By: Bill Figley Principal Fisheries Biologist New Jersey’s Reef Program is partially funded by the Federal Sport Fish Restoration Program. TABLE OF CONTENTS TABLE OF CONTENTS………………………………….…………………i LIST OF FIGURES…………………………………………………………vi LIST OF TABLES…….………………………………………………...…vii ACKNOWLEDGMENTS….………..……………………………………viii A MESSAGE FROM THE COMMISSIONER……………………………ix EXECUTIVE SUMMARY……….………………………………....….…..xi ARTIFICIAL REEF MANAGEMENT PLAN FOR NEW JERSEY...…..xiii 1.0 OBJECTIVES OF NEW JERSEY’S ARTIFICIAL REEF PROGRAM …………………………………………………………..1 1.1 Definitions of Natural and Artificial Reefs……………………2 1.2 Department Policy……………………………………………..2 1.3 Reef Plan Authority……………………………………………8 1.4 Reef Program Goal…………………………………………….8 2.0 FACTORS PROMPTING THE NEW JERSEY ARTIFICIAL REEF PROGRAM…………………………………………………....9 2.1 Loss or Lack of Hard-Substrate Fish Habitat……...…...…..….9 2.2 Recreational Fishing Effort…………...………....…………....10 2.3 Commercial Fishing Effort………………………...……..…..11 3.0 EFFECTS OF ARTIFICIAL REEFS………………………………..12 3.1 Attributes
    [Show full text]