Enhancing Secure Grid Operation with Power Flow Controlling Devices and WAMS
Total Page:16
File Type:pdf, Size:1020Kb
Dipl.-Ing. Stefan Christian Polster Enhancing Secure Grid Operation with Power Flow Controlling Devices and WAMS DOCTORAL THESIS to achieve the university degree of Doktor der technischen Wissenschaften submitted to Graz University of Technology Supervisor Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Herwig Renner Institute of electrical Power Systems Graz University of Technology External Reviewer Prof. Olof Samuelsson, PhD Industrial Electrical Engineering and Automation Lund University Graz, April 2021 Enhancing Secure Grid Operation with Power Flow Controlling Devices and WAMS AFFIDAVIT I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present doctoral thesis. Date, Signature III Enhancing Secure Grid Operation with Power Flow Controlling Devices and WAMS Acknowledgements The creation of a PhD-Thesis from a crude research idea to the final document is a long and sometimes frustrating process. I would not have successfully finished it without the aid and support from colleagues, friends and family over the last five years. I want to thank my supervisor Herwig Renner first, since he not only recruited and guided me through my PhD after already supervising my master’s thesis but also gave me the necessary support acquiring projects and funding for my position. Thank you also for contributing the majority of my education in electrical power systems and being a reliable supervisor. Further, I would like to thank Olof Samuelsson for accepting to review my thesis as well as hosting me during a research exchange at his department at Lund University. Thanks also to Kjetil Uhlen to enable a research exchange at the NTNU Trondheim. The academic discussions with Robert Schürhuber on topics of my thesis and other aspects of electrical power engineering have improved my thesis and publications. Thanks for your time and input. I also thank my former and current colleagues at the Institute of Electrical Power Engineering in general for the good working atmosphere. Special thanks to Mike Lagler for helping me to find my motivation during frustrating episodes of my PhD and becoming a good friend. Further, I want to highlight him, Alexander Rainer, Philipp Schachinger and Manuel Galler for being – sometimes against their will – sparring partners discussing parts of my thesis and occurring obstacles. I also want to thank Dennis Albert, Markus Resch and Thomas Halbedl for being great office mates. Kudos to my best men Hannes and Stephan for not getting tired of telling me, that I am still a student and should find a real work. I thank my family for supporting me over the complete duration of my education. Finally, special thanks to my beloved wife Karin and my son Jonathan for making my world a happier place and always reminding me, what is most important in life. V Enhancing Secure Grid Operation with Power Flow Controlling Devices and WAMS Abstract The increasing energy consumption and the rise of renewable energy sources in combination with the unbundling of formerly vertically integrated energy suppliers into independent energy production and transmission companies create additional challenges in power system operation and stability. Despite the effort spent and the results gained in research of smart distribution grids and micro grids, transmission systems will inevitably be a part of the electrical power system in the future. On transmission system level, grid expansion in the sense of new construction or reinforcement of AC transmission lines cannot keep pace with the amount of installed generation capacity of renewables leading to a branch loading near the capacity limit. To maintain a stable network operation under these conditions, optimal use of the flexibilities given by power flow controlling devices, e. g. embedded HVDC links and phase shifting transformers, and real time measurements provided by wide area measurement systems is imperative. In this thesis, three different aspects of the network operation with power flow controlling devices and available wide area measurement systems are addressed. The first is the evaluation of the influence of different degrees of coordination of power flow controlling devices on the redispatch costs and volume in a flow-based market setting. It is shown thereby, that the redispatch costs only decrease, if power flow controlling devices are coordinated. However, if the power flow controlling devices are used to reduce the loading of the branches controllable by them without coordination, the redispatch costs might even increase depending on the load situation. The second aspect is the need for accurate state awareness under strained network conditions. Therefore, an algorithm to detect multi branch outages based on a linear model and optimization techniques is developed. The algorithm is able to correctly detect multi branch outages solely using pre- fault topology information and node voltage angle measurements from synchronous wide area measurement systems as input. The algorithm’s performance is evaluated with simulations of the Nordic-32-Bus test system. The last part of this thesis is dedicated to emergency control strategies of embedded HVDC links. In the first step, existing control strategies for HVDC links are evaluated in a small radial network and compared to a novel control strategy. The simulation results show that the novel control strategy is superior in relieving overloaded branches and equal in terms of maximum load ability and voltage stability. In the second step, an emergency control strategy combining efficient branch relief and voltage support in a meshed network is proposed. This strategy is based on linearized sensitivities to active and reactive power setpoint changes of the HVDC link converters and synchronous node voltage measurements obtained from wide are measurement systems. VII Enhancing Secure Grid Operation with Power Flow Controlling Devices and WAMS Kurzfassung Der steigende Energieverbrauch und der Ausbau von Erneuerbaren in Kombination mit der Entflechtung ehemals vertikal integrierter Energieversorger zu unabhängigen Energieerzeugungsunternehmen und Netzbetreiber stellen den Betrieb und die Stabilität des Stromnetzes vor zusätzliche Herausforderungen. Trotz der Fortschritte bei der Erforschung intelligenter Verteil- und Mikronetze werden Übertragungsnetze auch in Zukunft ein unvermeidlicher und systemkritischer Bestandteil des Stromnetzes sein. Auf der Übertragungsnetzebene kann der Netzausbau im Sinne eines Neubaus oder einer Verstärkung von Hochspannungsleitungen nicht mit der installierten Erzeugungskapazität von Erneuerbaren Schritt halten, was Leitungsbelastungen nahe den thermischen Grenzen zur Folge hat. Um unter diesen Bedingungen dennoch einen stabilen Netzbetrieb aufrechtzuerhalten, muss die durch lastflusssteuernde Elemente, z. B. netzparallele HGÜ-Leitungen und Phasenschiebertransformatoren, zusätzlich verfügbare Flexibilität unter Einsatz von Echtzeitmessungen mit Wide Area Measurement Systems optimal ausgenutzt werden. In dieser Arbeit werden drei Fragestellungen des Netzbetriebs mit lastflusssteuernden Elementen und Wide Area Measurement Systems näher untersucht. Die erste behandelt die Evaluierung des Einflusses der Koordination und Koordinationsstrategie von lastflusssteuernden Elementen auf die Redispatchkosten und -volumen in einem auf Flow Based Market Coupling basierenden Strommarkt. Es wird dabei gezeigt, dass die Redispatchkosten nur dann sinken, wenn lastflusssteuernde Elemente ausreichend koordiniert werden. Wird jedoch mit den lastflusssteuernden Elementen unkoordiniert die Belastung von elektrisch nahen Leitungen verringert, erhöhen sich abhängig von der Lastsituation die Redispatchkosten. Die zweite angesprochene Fragestellung harkt bei der Notwendigkeit einer genauen Abbildung des Netzwerkzustandes in Leitsystemen bei angespannten Lastflusssituationen ein. Diese Arbeit fokussiert sich dabei auf die Entwicklung eines Algorithmus zur Erkennung von Mehrfachausfällen von Übertragungselementen basierend auf einem linearisierten Netzmodell und Optimierungstechniken. Der entwickelte Algorithmus ist in der Lage, Mehrfachausfälle ausschließlich anhand von Informationen zur Vorfehlertopologie und den mit Wide Area Measurement Systems gemessenen Winkeländerungen der Knotenspannungen korrekt zu erkennen. Die Anwendbarkeit des Algorithmus wird anhand von Simulationen des Nordic-32-Bus-Testsystems bewertet. Der letzte Teil dieser Arbeit befasst sich mit Notfallregelkonzepten für netzparallele HGÜ-Leitungen. Es werden dafür bekannte Regelstrategien für netzparallele HGÜ-Leitungen in einem radialen Netzwerk evaluiert und mit einer in dieser Arbeit entwickelten Regelstrategie verglichen. Die Simulationsergebnisse zeigen, dass bei Anwendung der neu entwickelten Regelstrategie überlastete Zweige besser entlastet werden können und hinsichtlich der maximal möglichen Leistungsübertragung und Spannungsstabilität annähernd gleiche Grenzwerte erreicht werden. Weiters wird ein auf den linearisierten Sensivitäten von Leitungsbelastungen und Knotenspannungen gegenüber den Wirk- und Blindleistungssollwerten der HGÜ-Leitung basierendes Notfallregelkonzept erarbeitet, das eine effiziente Leitungsentlastung und Spannungsunterstützung in einem vermaschten Netzwerk ermöglicht. IX Enhancing Secure Grid Operation