Ece 476 Power System Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Ece 476 Power System Analysis ECE 476 POWER SYSTEM ANALYSIS Lecture 9 Transformers, Per Unit Professor Tom Overbye Department of Electrical and Computer Engineering Announcements Be reading Chapter 3 HW 3 is 4.32, 4.41, 5.1, 5.14. Due September 22 in class. 1 Transformer Equivalent Circuit Using the previous relationships, we can derive an equivalent circuit model for the real transformer This model is further simplified by referring all impedances to the primary side '2 ' r22ar re r 12 r '2 ' xaxxxx22e 12 2 Simplified Equivalent Circuit 3 Calculation of Model Parameters The parameters of the model are determined based upon – nameplate data: gives the rated voltages and power – open circuit test: rated voltage is applied to primary with secondary open; measure the primary current and losses (the test may also be done applying the voltage to the secondary, calculating the values, then referring the values back to the primary side). – short circuit test: with secondary shorted, apply voltage to primary to get rated current to flow; measure voltage and losses. 4 Transformer Example Example: A single phase, 100 MVA, 200/80 kV transformer has the following test data: open circuit: 20 amps, with 10 kW losses short circuit: 30 kV, with 500 kW losses Determine the model parameters. 5 Transformer Example, cont’d From the short circuit test 100MVA 30 kV I 500AjX , R 60 sc 200kV e e 500 A 2 Psc RIesc 500 kW Re 2 , 22 Hence Xe 60 2 60 From the open circuit test 200 kV 2 RM4 c 10 kW 200 kV R jX jX 10,000 X 10,000 e em20 A m 6 Residential Distribution Transformers Single phase transformers are commonly used in residential distribution systems. Most distribution systems are 4 wire, with a multi-grounded, common neutral. 7 Per Unit Calculations A key problem in analyzing power systems is the large number of transformers. – It would be very difficult to continually have to refer impedances to the different sides of the transformers This problem is avoided by a normalization of all variables. This normalization is known as per unit analysis. actual quantity quantity in per unit base value of quantity 8 Per Unit Conversion Procedure, 1 1. Pick a 1 VA base for the entire system, SB 2. Pick a voltage base for each different voltage level, VB. Voltage bases are related by transformer turns ratios. Voltages are line to neutral. 2 3. Calculate the impedance base, ZB= (VB) /SB 4. Calculate the current base, IB = VB/ZB 5. Convert actual values to per unit Note, per unit conversion on affects magnitudes, not the angles. Also, per unit quantities no longer have units (i.e., a voltage is 1.0 p.u., not 1 p.u. volts) 9 Per Unit Solution Procedure 1. Convert to per unit (p.u.) (many problems are already in per unit) 2. Solve 3. Convert back to actual as necessary 10 Per Unit Example Solve for the current, load voltage and load power in the circuit shown below using per unit analysis with an SB of 100 MVA, and voltage bases of 8 kV, 80 kV and 16 kV. Original Circuit 11 Per Unit Example, cont’d 8kV 2 Z Left 0.64 B 100MVA 80kV 2 Z Middle 64 B 100MVA 16kV 2 Z Right 2.56 B 100MVA Same circuit, with values expressed in per unit. 12 Per Unit Example, cont’d 1.0 0 I 0.22 30.8 p.u. (not amps) 3.91 j 2.327 VL 1.0 0 0.22 30.8 p.u. V 2 SVI* L 0.189 p.u. LLLZ SG 1.0 0 0.22 30.8 30.8 p.u. 13 Per Unit Example, cont’d To convert back to actual values just multiply the per unit values by their per unit base V Actual 0.859 30.8 16 kV 13.7 30.8 kV L Actual SL 0.189 0 100 MVA 18.9 0 MVA Actual SG 0.22 30.8 100 MVA 22.0 30.8 MVA 100 MVA IMiddle 1250 Amps B 80 kV Actual I0.2230.8Middle Amps27530.8 14 Three Phase Per Unit Procedure is very similar to 1 except we use a 3 VA base, and use line to line voltage bases 3 1. Pick a 3 VA base for the entire system, SB 2. Pick a voltage base for each different voltage level, VB. Voltages are line to line. 3. Calculate the impedance base 2 22 VVVBLL,,,(3 BLN ) BLN ZB 311 SSSBBB3 Exactly the same impedance bases as with single phase! 15 Three Phase Per Unit, cont'd 4. Calculate the current base, IB 311 31SSSBBB3 IIBB 3VBLL, 33VVBLN,, BLN Exactly the same current bases as with single phase! 5. Convert actual values to per unit 16 Three Phase Per Unit Example Solve for the current, load voltage and load power in the previous circuit, assuming a 3 power base of 300 MVA, and line to line voltage bases of 13.8 kV, 138 kV and 27.6 kV (square root of 3 larger than the 1 example voltages). Also assume the generator is Y-connected so its line to line voltage is 13.8 kV. Convert to per unit as before. Note the system is exactly the same! 17 3 Per Unit Example, cont'd 1.0 0 I 0.22 30.8 p.u. (not amps) 3.91 j 2.327 VL 1.0 0 0.22 30.8 p.u. V 2 SVI* L 0.189 p.u. LLLZ SG 1.0 0 0.22 30.8 30.8 p.u. Again, analysis is exactly the same! 18 3 Per Unit Example, cont'd Differences appear when we convert back to actual values V Actual 0.859 30.8 27.6 kV 23.8 30.8 kV L Actual SL 0.189 0 300 MVA 56.7 0 MVA Actual SG 0.22 30.8 300 MVA 66.0 30.8 MVA 300 MVA IMiddle 1250 Amps (same current!) B 3138 kV Actual I0.2230.Middle 8 Amps 275 30.8 19 3 Per Unit Example 2 Assume a 3 load of 100+j50 MVA with VLL of 69 kV is connected to a source through the below network: What is the supply current and complex power? Answer: I=467 amps, S = 103.3 + j76.0 MVA 20 Per Unit Change of MVA Base Parameters for equipment are often given using power rating of equipment as the MVA base To analyze a system all per unit data must be on a common power base OriginalBase NewBase ZZZpu actual pu VV22 OriginalBase base base NewBase Hence Z pu OriginalBase/ NewBase Z pu SBase SBase NewBase OriginalBase SBase NewBase Z pu OriginalBase Z pu SBase 21 Per Unit Change of Base Example A 54 MVA transformer has a leakage reactance or 3.69%. What is the reactance on a 100 MVA base? 100 X 0.0369 0.0683 p.u. e 54 22 Transformer Reactance Transformer reactance is often specified as a percentage, say 10%. This is a per unit value (divide by 100) on the power base of the transformer. Example: A 350 MVA, 230/20 kV transformer has leakage reactance of 10%. What is p.u. value on 100 MVA base? What is value in ohms (230 kV)? 100 X 0.10 0.0286 p.u. e 350 2302 0.0286 15.1 100 23 Three Phase Transformers There are 4 different ways to connect 3 transformers Y-Y - Usually 3 transformers are constructed so all windings share a common core 24 3 Transformer Interconnections -Y Y- 25 Y-Y Connection Magnetic coupling with An/an, Bn/bn & Cn/cn VVI1 Anaa,, AB A VVIaan ab a 26 Y-Y Connection: 3 Detailed Model 27 Y-Y Connection: Per Phase Model Per phase analysis of Y-Y connections is exactly the same as analysis of a single phase transformer. Y-Y connections are common in transmission systems. Key advantages are the ability to ground each side and there is no phase shift is introduced. 28 - Connection Magnetic coupling with AB/ab, BC/bb & CA/ca VI11 I ABa,, AB A VIaIaab ab a 29 - Connection: 3 Detailed Model To use the per phase equivalent we need to use the delta-wye load transformation 30 - Connection: Per Phase Model Per phase analysis similar to Y-Y except impedances are decreased by a factor of 3. Key disadvantage is - connections can not be grounded; not commonly used. 31 -Y Connection Magnetic coupling with AB/an, BC/bn & CA/cn 32 -Y Connection V/I Relationships VVAB AB aVVV,an ab3 an 30 Vaan VV30 30 Hence VV 3AB and 3 An ab aaan For current we get I AB 1 IaIaAB Iaab 1 II3 30 I I30 AAB AB3 A 1 aI 30 aA3 33 -Y Connection: Per Phase Model Note: Connection introduces a 30 degree phase shift! Common for transmission/distribution step-down since there is a neutral on the low voltage side. Even if a = 1 there is a sqrt(3) step-up ratio 34 Y- Connection: Per Phase Model Exact opposite of the -Y connection, now with a phase shift of -30 degrees. 35 Load Tap Changing Transformers LTC transformers have tap ratios that can be varied to regulate bus voltages The typical range of variation is 10% from the nominal values, usually in 33 discrete steps (0.0625% per step). Because tap changing is a mechanical process, LTC transformers usually have a 30 second deadband to avoid repeated changes. Unbalanced tap positions can cause "circulating vars" 36 LTCs and Circulating Vars 64 MW slack 14 Mvar 1 1.00 pu 24.1 MW 40.2 MW 12.8 Mvar 1.7 Mvar A A 1.056 tap 1.000 tap 80% MVA MVA 40.0 MW 24.0 MW -0.0 Mvar -12.0 Mvar 2 0.98 pu 3 1.05 pu 0.0 Mvar 24 MW 40 MW 12 Mvar 0 Mvar 37 Phase Shifting Transformers Phase shifting transformers are used to control the phase angle across the transformer Since power flow through the transformer depends upon phase angle, this allows the transformer to regulate the power flow through the transformer Phase shifters can be used to prevent inadvertent "loop flow" and to prevent line overloads.
Recommended publications
  • Quadrature Booster on UK Power Networks’ 33Kv Distribution Network
    The Design and Deployment of a Quadrature Booster on UK Power Networks’ 33kV Distribution Network Gilbert MANHANGWE; Paul DYER; Sotiris GEORGIOPOULOS; and Azzam AL-RIYAMI UK Power Networks, UK [email protected] Abstract Although Quadrature Boosters are a mature technology on electricity transmission networks having developed in the 1960s, available information and references show that, prior to UK Power Networks’ innovative Quadrature Booster trial that commenced in January 2012 none had been deployed on the distribution network. This paper presents the UK Power Networks experience in the design and deployment of a Quadrature Booster at 33kV distribution network through the ‘Flexible Plug and Play’ project. The paper particularly focuses on the Quadrature Booster design characteristics, the network single line diagram and the layout adopted, and the control and operational strategy considerations to effectively manage an identified network constraint using this device. The challenges in modelling studies and testing on such a device are also presented. The paper also discusses (1) the identified network constraint, (2) available options to address the problem, (3) how the network constraint is being addressed or managed, (4) the design, installation, testing and commissioning of this innovative asset to explain the process which UK Power Networks, the involved project partners and contractors undertook, and (5) the benefits and learning accrued from delivering the Quadrature Booster solution. Introduction It is widely recognised that ‘smarter’ ways of managing distribution network assets include improved utilisation of existing assets. The intended effect is to defer the immediate need for traditional reinforcement where possible. UK Power Networks was awarded funding in 2011 under Ofgem’s (GB Energy Regulator) Low Carbon Network Fund mechanism, for the ‘Flexible Plug and Play’ project.
    [Show full text]
  • Power Transformers and Reactors
    GE Grid Solutions Power Transformers and Reactors Imagination at work Today’s Environment The Right Transformer Growth in the world's population and economy, will result in a for the Right Application substantial increase in energy demand over the coming years. GE offers utilities advanced solutions to improve grid stability and The International Energy Agency (IEA)1 estimates that $20 trillion increase efficiency of transmission infrastructure. will need to be invested in power and grid technologies, over the next 25 years, to keep up with demand. According to a 2015 IEA From low to ultra-high voltage; small to extra-large power report2, renewable energy will represent the largest single source ratings; standard to the most complex designs; GE has the of electricity growth over the next five years - rising to a 26 % right share of global generation. solution for every application. Integrating renewable energy sources into the grid can conflict Conventional Power Transformers with Utilities’ existing modernization and optimization plans. From 5 MVA up to 1500 MVA & 765 kV Utilities face increasing challenges of reliability, safety, power ' Small & medium power transformers quality and economics when planning substations and choosing ' Large power transformers switchgear. ' Generator step-up transformers Additionally, power systems are interconnected and highly ' Autotransformers complex networks which are susceptible to instabilities. Managing and maintaining today‘s complex grid pose many Oil-Immersed Reactors challenges, including: Up to 250 Mvar & 765 kV / 2640 Mvar ' Increasing grid efficiency and resilience without adequate ' Shunt reactors funding to invest in new capital equipment. ' Series reactors ' Expertise to manage the grid is rapidly diminishing due to the ' Earthing reactors lack of skilled, technical resources in the workplace.
    [Show full text]
  • Flexible Distribution Systems Through the Application of Multi Back-To-Back Converters : Concept, Implementation and Experimental Verification
    Flexible distribution systems through the application of multi back-to-back converters : concept, implementation and experimental verification Citation for published version (APA): Graaff, de, R. A. A. (2010). Flexible distribution systems through the application of multi back-to-back converters : concept, implementation and experimental verification. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR673052 DOI: 10.6100/IR673052 Document status and date: Published: 01/01/2010 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Aspects on Dynamic Power Flow Controllers and Related Devices for Increased Flexibility in Electric Power Systems
    Aspects on Dynamic Power Flow Controllers and Related Devices for Increased Flexibility in Electric Power Systems Nicklas Johansson Royal Institute of Technology School of Electrical Engineering Division of Electrical Machines and Power Electronics Stockholm 2011 Submitted to the School of Electrical Engineering in partial fulfillment of therequirementsforthedegreeofDoctorofPhilosophy. Stockholm 2011 ISBN 978-91-7501-058-8 ISSN 1653-5146 TRITA-EE 2011:050 A This document was prepared using LTEX. Abstract This thesis studies different aspects of Flexible AC Transmission System (FACTS) devices which are used to improve the power transfer capability and increase the controllability in electric power systems. In the thesis, different aspects on the usage and control of Dynamic Power Flow Controllers (DPFC) and related FACTS devices are studied. The DPFC is a combination of a Phase Shifting Transformer (PST) and a Thyristor Switched Series Capacitor (TSSC)/Thyristor Switched Series Reactor (TSSR). The thesis proposes and studies a new method, the Ideal Phase-Shifter (IPS) method, for selection and rating of Power Flow Controllers (PFC) in a power grid. The IPS method, which is based on steady-state calculations, is proposed as a first step in the design process for a PFC. The method uses the Power controller plane, introduced by Brochu et al in 1999. The IPS method extends the usage of decoupling methods in the Power controller plane to a power system of arbitrary size. The IPS method was in the thesis used to compare the ratings of different PFC:s required to improve the power transfer capability in two test systems. The studied devices were here the PST, the TSSC/TSSR and the DPFC.
    [Show full text]
  • A Study of Life Time Management of Power Transformers at E. ON's
    A study of life time management of Power Transformers at E. ON’s Öresundsverket, Malmö Chaitanya Upadhyay June 2011 Supervisors: Jonas Stenlund, E.ON Värmekraft Olof Samuelsson, LTH Examiner: Gunnar Lindstedt, LTH Preface This Master’s Thesis was carried out at E.ON Värmekraft, Öresundsverket in Malmö in cooperation with Division of Industrial Engineering and Automation at Faculty of Engineering at Lund University. This work is the final part of my master’s degree in electrical engineering. During this project, I have got quite a lot support and help and first of all would like to thank E.ON Värmekraft for giving the opportunity to carry out this project. I would also like to thank my supervisors, Jonas Stenlund at E.ON Värmekraft and Olof Samuelsson at the Division of Industrial Electrical Engineering and Automation, LTH for their help and support. I would like to further thanks to Mårten Svensson at Vattenfall, Mark Wilkensson at SMIT transformer, ABB power transformers team and many more who took their precious time to help and guide in this project. Chaitanya Upadhyay Malmö, June 2011. Abstract The objective of this master thesis is to review the present and future condition of generator step up power transformers at the combined heat and power plant Öresundsverket, in Malmö. The objective of this work was to prolong the lifetime of power transformers at Öresundsverket. The thermal properties of power transformer are been taking into consideration for their life time assessment. The most suitable thermal model was chosen which can prolong life to these transformers in the future.
    [Show full text]
  • Appendix E Technology
    Appendix E E Appendix Electricity Statement Year Ten 2015 Technology E Appendix Electricity Ten Year Statement 2015 1 Contents The transmission network is made of many different equipment types. Descriptions of the different equipment, its capabilities, usage, limitations and expectations for development are presented here. Appendix E E1 – Overhead lines . 2 E2 – Underground cables for power transmission . 5 E3 – Onshore cable installation and landfall . 7 E4 – Switchgear . 12 E5 – Transformers . 15 E6 – Shunt reactors . 19 E7 – Shunt capacitor banks . 21 E8 – Static VAR compensators (SVC) . 23 E9 – Static compensator (STATCOM) . 26 E10 – Series compensation . 28 E11 – Quadrature boosters & series reactors . 31 E12 – Submarine three core cables . 33 E13 – Submarine single core cables . 37 E14 – Subsea cable installation AC & DC . 41 E15 – Offshore substation platforms . 45 E16 – HVDC: current source converters . 49 E17 – HVDC: voltage source converters . 52 E18 – HVDC: extruded cables . 55 E19 – HVDC: submarine mass impregnated cables . 59 E20 – HVDC: overhead lines . 62 E21 – HVDC: switchgear . 64 E22 – Technology availability for offshore strategic optioneering . 66 E23 – Unit costs . 80 Appendix E Electricity Ten Year Statement 2015 2 Appendix E1 – Overhead lines Overhead lines (OHLs) are used by electricity transmission companies as the default preferred solution for connections between power stations, distribution companies and bulk electricity power users. With air as the main insulating medium, overhead lines are designed using a balance between energy to be transported, security, costs and electrical mechanical, civil performance and environmental trade-offs. Figure E1.1 OHL maintenance E Appendix Electricity Ten Year Statement 2015 3 An OHL route consists of one or more Dependencies and impacts conductors suspended by towers .
    [Show full text]
  • Control of Dynamically Assisted Phase-Shifting Transformers
    Control of Dynamically Assisted Phase-shifting Transformers Nicklas Johansson Royal Institute of Technology School of Electrical Engineering Division of Electrical Machines and Power Electronics Stockholm 2008 Submitted to the School of Electrical Engineering in partial ful¯llment of the requirements for the degree of Licentiate. Stockholm 2008 ISBN 978-91-7178-879-5 ISSN 1653-5146 TRITA{EE 2008:008 This document was prepared using LATEX. Preface The work presented in this thesis was carried out at the Division of Electrical Machines and Power Electronics, School of Electrical Engineering, Royal Institute of Technology (KTH). This project is ¯nanced from the Elforsk ELEKTRA foundation. The main contributions of this work can be summarized as follows: A simple generic system model comprising only two rotating machines has been proposed to serve as a basis for control design for Con- trolled Series Compensators (CSC) and Dynamic Power Flow Con- trollers (DPFC) for power oscillation damping and power flow control in power grids susceptible to oscillations of one dominating frequency mode. Estimation routines for estimation of the system model parameters using the step response in the locally measured line power when a series reactance change is executed at the FACTS device have been derived. For a power system which can be accurately described by the proposed system model it has been shown that: Damping of inter-area oscillations of the above type can be achieved by insertion of a series reactance in one discrete step at a suitable location in the power system at a carefully selected time instant determined from the locally measured line power.
    [Show full text]
  • Brunel University
    BRUNEL UNIVERSITY MODELLING AND CONTROL OF UNIFIED POWER FLOW CONTROLLER FOR REINFORCEMENT OF TRANSMISSION SYSTEMS Submitted for Doctor of Philosophy of Brunel University 1997 Jun Yong Liu, MPhil Department of Electronics and Electrical Engineering Brunel University ABSTRACT The work involved in the thesis is concentrated on modelling and control of UPFC. The overall objective is to provide effective methods and tools for assessing the impact of UPFC in the reinforcement of transmission systems. The thesis clarifies modelling and control of UPFC into several subproblems, in which the associated models, algorithms and control strategies of UPFC have been systematically reviewed. An electromagnetic transient prototype model of the UPFC has been set up by using its detailed power electronic device as well as its internal closed-loop controller. The problems encountered in the process of building such a model and the way of handling them by EMTP have been discussed. This EMTP-based simulator of SPWM UPFC implemented has provided a useful tool to assist the development and validation of more detailed and practical model of the UPFC for further studies. The steady-state modelling and control for the UPFC has been developed, including: (i) The power injection model of the UPFC suitable for its implementation in an optimal multiplier power flow computation method has been derived in rectangular form. The effectiveness of the proposed algorithm has been compared with the user defined model method. (ii) A systematic method for deriving the control capabilities of the UPFC has been proposed based on predicting the feasibility limit of the system. Using an index derived from optimal multiplier, three dimensional diagrams describing the ranges have been obtained.
    [Show full text]
  • Phase-Shifting Transformers Applications & Technology
    Thomas Schmidt, ABB AG Transformers, Sept. 2016 Phase-shifting transformers Applications & Technology © ABB Group October 3, 2016 | Slide 1 Welcome to the ABB Phase-shifting transformers © ABB Group October 3, 2016 | Slide 2 Phase shifting transformers (PST) Content . Introduction . Why phase-shifting transformers? . Benefits to you . Quick pay-back period . Reliability . Applications . Protect transmission lines . Increase transmission capacity . Load sharing . Power flow control . Theory of electrical power flow control . Technology . Phase angle regulation, transformer designs, tap changers,… . How to prepare a specification . Examples/ references . Two-core, single-core designs, sound enclosures,… © ABB Group October 3, 2016 | Slide 3 ABB AG Transformers – Bad Honnef, Germany Phase-shifting transformers Short Introduction of Bad Honnef © ABB Group October 3, 2016 | Slide 4 Introduction ABB AG, Transformers, Bad Honnef, Germany Bad Honnef Factory: Location: Bad Honnef, Germany Founded: 1906 Employees: 360 Revenues: 130 MUSD Deliveries: world-wide © ABB Group October 3, 2016 | Slide 5 Introduction ABB AG, Transformers, Bad Honnef, Germany Phase-shifting transformers • Up to 1630MVA • Up to 500kV • Up to +/- 80 degrees Power transformers • Up to 1100MVA • Up to 500kV Industrial transformers • Arc Furnace, Rectifier, Converter • Wide LV regulating range • LV current to hundreds of kA • Rated power up to 200 MVA • Rated voltage up to 400 kV © ABB Group October 3, 2016 | Slide 6 ABB AG Transformers – Bad Honnef, Germany Phase-shifting transformers Benefits © ABB Group October 3, 2016 | Slide 8 Why phase-shifting transformers? Benefits to you - higher revenues PST helps you . Improve your operating performance . Increase total power flow in a given corridor w/o violation of N-1 criterion .
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE UPFC For
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE UPFC for Enhancing Power System Reliability A graduate project submitted in partial fulfillment of the requirements For the degree of Master of Science in Electrical Engineering By Bradley Bilow December 2015 The graduate project of Bradley Bilow is approved: Signature Page Dr. Xiyi Hang Date Kiran Gururaj Date Prof. Bruno Osorno, Chair Date California State University, Northridge ii Table of Contents Signature Page .................................................................................................................... ii List of Figures ................................................................................................................... vii Abstract............................................................................................................................ viii Chapter 1: Introduction ....................................................................................................... 1 Chapter 2 – Flexible AC Transmission Systems (FACTS) ................................................ 4 Chapter 3: Inverters............................................................................................................ 9 3.1: Overview................................................................................................................. 9 3.2: 2-Level Inverters..................................................................................................... 9 3.3: Multilevel Inverters..............................................................................................
    [Show full text]
  • CIRED • International Conference on Electricity Distribution
    C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013 Special Report - Session 1 NETWORK COMPONENTS Pierre MALLET Chairman - France [email protected] Yves PARASIE Special Rapporteur - France [email protected] Philippe PICOT Special Rapporteur - France [email protected] Grids (29 papers): Introduction - Various experiences in Smart Grids with smart sensors - Data treatment and communication concern associated Session 1 deals with all aspects related to the components to smart grids experiences used in the electricity distribution networks: cables, - Components for power control in smart grids overhead lines, primary and secondary substations, transformers, switchgear and their control, protection and Block 4 Innovation in network components (32 papers): monitoring systems, new active power electronics devices. - Modelling and simulation It covers topics related to the life cycle optimisation of - Environmental considerations and eco-design assets from design through installation, operation and - New designs maintenance to the end of life management, as well as new 6 papers per block have been selected for oral presentation solutions for diagnosis and monitoring. The session also in the Main Session (MS), but all the papers can be covers environmental aspects including eco-design and life presented in the Poster Session (PS). Like in the previous cycle analysis, standardisation, ergonomics and the safety of conferences, guided tours of the PS will be organised in both the operating staff and the public. It aims at providing order to facilitate the exchanges between the authors and an overview of the state-of-the-art in component design and participants. proposals for future components, including the ones needed for smart grids and e-mobility.
    [Show full text]
  • A Novel Approach to Comprehensive Tests on Phase Shifting Transformers
    Topic A novel approach to comprehensive tests on phase shifting transformers Table of contents summary Phase shifting transformers are used to improve the transmission capacity, reliability and operational safety in complex transmission networks. In this article a novel approach to verify the operating parameters during factory acceptance and on-site field tests is discussed. Abstract The phase shifting transformer is used to control the flow of active power in a complex transmission network, including the improvement of transmission capacity, reliability and operational safety of this network. It is an efficient and economical tool that allows you to increase the reliability and efficiency of power flow control in an overloaded transmission line in which it was installed. Therefore, information about its technical condition is also important in order to ensure a reliable operation. The article focuses on a novel approach to perform diagnostic tests on phase shifting transformers and presents several measurement cases which emphasize the importance of the characteristic operating states of the phase shifting transformer. Keywords: power system, power flow regulation, transformer, phase shifter, quadrature booster testing. 1. Introduction Today’s power systems are usually not limited to one country or region, often comprising of multiple interconnected networks from different countries. These “cross-border” connections can either enable synchronous operation of multiple networks or establish a non-synchronous link between independently operated networks. The benefit of interconnected power systems is the mutual reservation of electric power which has become more important over the decades due to the increase of distributed energy resources (DER). Concurrently, there are also disadvantages of interconnected power systems, such as unplanned circular flows, which can occur if the active power flow between subsystems cannot be controlled.
    [Show full text]