Guide for the Selection of Explosives Detection and Blast Mitigation Equipment for Emergency First Responders

Total Page:16

File Type:pdf, Size:1020Kb

Guide for the Selection of Explosives Detection and Blast Mitigation Equipment for Emergency First Responders Guide for the Selection of Explosives Detection and Blast Mitigation Equipment for Emergency First Responders Preparedness Directorate Office of Grants and Training Guide 105–07 February 2008 Homeland Security Guide for the Selection of Explosives Detection and Blast Mitigation Equipment for Emergency First Responders Guide 105–07 Dr. Alim A. Fatah1 Richard D. Arcilesi, Jr.2 Dr. Joseph A. McClintock2 Charlotte H. Lattin2 Michael Helinski2 Martin Hutchings3 Coordination by: Office of Law Enforcement Standards National Institute of Standards and Technology Gaithersburg, MD 20899–8102 Prepared for: U.S. Department of Homeland Security Preparedness Directorate Office of Grants and Training Systems Support Division 810 7th Street, NW Washington, DC 20531 February 2008 1 National Institute of Standards and Technology (NIST), Office of Law Enforcement Standards (OLES). 2 Battelle. 3 National Bomb Squad Commanders Advisory Board (NBSCAB), retired. This guide was prepared for the Preparedness Directorate’s Office of Grants and Training (G&T) Systems Support Division (SDD) by the Office of Law Enforcement Standards at the National Institute of Standards and Technology (NIST) under Interagency Agreement 94–IJ–R–004, Project No. 99–060–CBW. It was also prepared under CBIAC contract No. SP0700–00–D–3180 and Interagency Agreement M92361 between NIST and the Department of Defense Technical Information Center (DTIC). The authors wish to thank Ms. Kathleen Higgins of NIST for programmatic support and for numerous valuable discussions concerning the contents of this document. We also wish to acknowledge the InterAgency Board (IAB) for Equipment Standardization and Interoperability and the Responder Knowledge Base (RKB). The IAB (made up of government and first responder representatives) was established to ensure equipment standardization and interoperability and to oversee the research and development of advanced technologies to assist first responders at the state and local levels in establishing and maintaining a robust crisis and consequence management capability. The RKB, supported under Award Number MIPT106– 113–2000–002, Project Responder, from the National Memorial Institute for the Prevention of Terrorism (MIPT) and the Office of Grants and Training, Preparedness Directorate, U.S. Department of Homeland Security (DHS), has been built specifically to serve the needs of emergency responders. The RKB contains information on currently available products, along with related information such as standards, training, and grants. We also sincerely thank all vendors who provided us with information about their products. DISTRIBUTION STATEMENT I: Approved For Public Release; Distribution Is Unlimited. DISCLAIMER: Reference in this guide to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply the endorsement, recommendation, or favoring by the U.S. Department of Homeland Security, or any agency thereof. The views and opinions contained in this guide are those of the authors and do not necessarily reflect those of the U. S. Department of Homeland Security or any agency thereof. FOREWORD: The U.S. Department of Homeland Security, Office of the Secretary, Preparedness Directorate Office of Grants and Training (G&T) Systems Support Division (SSD) develops and implements preparedness and prevention programs to enhance the capability of Federal, State, and local governments, and the private sector to prevent, deter and respond to terrorist incidents involving chemical, biological, radiological, nuclear, and explosive (CBRNE) devices. The Preparedness Directorate Office of G&T administers comprehensive programs of direct and grant support for training, exercises, equipment acquisition, technology transfer, and technical assistance to enhance the nation’s preparedness for CBRNE acts of terrorism. The Preparedness Directorate Office of G&T SSD works closely with other Office of Domestic Preparedness (ODP) divisions and Homeland Security professionals gaining an intimate understanding of the emergency responder technology needs and shortfalls. In addition, SSD conducts commercial technology assessments and demonstrations, and transfers equipment directly to the emergency responders. As part of the Congressional FY–03 funding, SSD was tasked with developing CBRNE technology guides and standards for the emergency responder community. This is one of several guides that will aid emergency responders in the selection of CBRNE technology. iii INTENTIONALLY LEFT BLANK CONTENTS FOREWORD ................................................................................................................................. iii COMMONLY USED SYMBOLS AND ABBREVIATIONS.................................................... viii ABOUT THIS GUIDE ....................................................................................................................x 1. INTRODUCTION ..................................................................................................................1–1 2. INTRODUCTION TO EXPLOSIVE MATERIALS .............................................................2–1 2.1 Nature of Explosives ........................................................................................................2–1 2.1.1 Uses of Explosives.................................................................................................2–1 2.1.2 Categories of Explosives........................................................................................2–1 2.2 Characteristics of Chemical Explosives...........................................................................2–1 2.3 Classification of Chemical Explosives.............................................................................2–2 2.3.1 Explosives Train ....................................................................................................2–2 2.3.2 Low Explosives......................................................................................................2–3 2.3.3 High Explosives.....................................................................................................2–5 2.3.4 Improvised Explosives.........................................................................................2–11 3. PURCHASE AND USE OF EXPLOSIVES DETECTION AND BLAST MITIGATION EQUIPMENT BY FIRST RESPONDERS ............................................3–1 3.1 Purchasing Considerations. ..............................................................................................3–1 3.1.1 Threat Assessment .................................................................................................3–1 3.1.2 Establishing a Use Plan..........................................................................................3–1 3.1.3 Equipment Performance.........................................................................................3–1 3.1.4 Precautions.............................................................................................................3–2 3.2 Blast/Fragmentation Mitigation Equipment.....................................................................3–2 4. OVERVIEW OF EXPLOSIVES DETECTION AND BLAST MITIGATION TECHNOLOGIES … .........................................................................................................4–1 4.1 Explosives Detection Technologies .................................................................................4–1 4.1.1 Trace Detection......................................................................................................4–2 4.1.2 Bulk Detection .......................................................................................................4–8 4.2 Blast Mitigation Technologies .......................................................................................4–17 5 MARKET SURVEY AND EQUIPMENT EVALUATION...................................................5–1 5.1 Market Surveys.................................................................................................................5–1 5.1.1 Past Market Surveys ..............................................................................................5–1 5.1.2 Identification of Explosives Detection Equipment................................................5–2 5.1.3 Vendor Contact ......................................................................................................5–2 5.2 Equipment Evaluation and Selection Factors...................................................................5–2 5.2.1 Equipment Evaluation............................................................................................5–3 5.2.2 Evaluation Results .................................................................................................5–4 5.3 Trace/Bulk Detection Equipment.....................................................................................5–4 5.3.1 Market Survey........................................................................................................5–4 5.3.2 Trace/Bulk Explosives Detectors Selection Factors..............................................5–5 5.3.3 Evaluation of Trace Explosives Detectors...........................................................5–11 5.3.4 Evaluation of Bulk Explosives Detectors ............................................................5–14 5.4 Visual Detection Equipment ..........................................................................................5–16 5.4.1 Market Survey......................................................................................................5–16
Recommended publications
  • Taggants in Explosives (Part 5 Of
    —. — Chapter Ill TAGGANT RESEARCH REVIEW —. .—— Chapter 111.–TAGGANT RESEARCH REVIEW **** **** *.*0 **** 9*** **** **** ***0 *0** **** **0 *****9 51 Taggant Development History ● **** **** **** 900* **4* *a **a********** 51 Identification Taggants. 51 Predetonation Only. 52 Radiological Tracers. 52 Chemical Assay. 53 Physical Taggants . 53 Summary. 56 Detection Taggants. 56 Vapor Taggants. 57 Summary. 58 Detection Taggant Sensor Systems. .......59 untagged Detectoin ● **** a*** **** **** e.** a*** **** *e* be********* 62 Vapor Detection. ..62 Differential Contrast Radiography . .. .....63 Excitation lnduced Emissions. .......64 Summary. .......65 Current BAFT/Aerospace Tagget ● **** 65 Program Status ... , . 65 Projected Schedule. ............ 68 Implementation Philosophy. ., . .......69 Identification Taggant Surviaval Teasting ● **0* **** **m* **09 *b** **em **0** 70 Boosters, Military Explosives . ., . .......71 Black and Smokeless Powders . .......72 Detonators and Detonating Cord . .......72 Summary. .......72 Chapter Ill TAGGANT RESEARCH REVIEW INTRODUCTION TAGGANT DEVELOPMENT HISTORY The idea of adding material to explosives to Identification Taggants enhance the predetonation detection and the postdetonation identification of explosives has Ideas for tagging materials to be used for been considered by various military and civil- identification of the source of explosives used ian agencies for at least 15 years. Some of the in criminal bombings and bombing attempts suggested material, such as radioactive iso- can be generally grouped into the following topes, would perform both functions, some four classes: could only perform one. A number of the con- 1. addition of materials that would not sur- cepts which have been proposed during that vive the detonation, but which would pro- time are briefly described in the following sub- vide information if a bomb were recov- sect ions. ered undetonated; 51 52 ● Taggants in Explosives 2.
    [Show full text]
  • From a Technical Standpoint, What Is Firework Flash Powder?
    This article originally appeared in Fireworks Business, No. 246, 2004. From a Technical Standpoint, What Is Firework Flash Powder? K. L. Kosanke and L. Weinman perature attainable in pyrotechnic reactions, only Introduction solids and liquids incandesce, gases do not. As a In a recently published article on the regulatory practical matter, metal oxides are the only pyro- definitions of firework flash powder[1] it was con- technic reaction products that are not gaseous at cluded that none of those definitions provided suf- high temperature. Thus metal fuels need to be pre- ficient information to objectively establish wheth- sent in substantial quantity in flash powders. See er or not a pyrotechnic composition is a flash Table 1, which is a list of the boiling point of powder. That is to say, those definitions are all some of the pyrotechnic reaction products. The subjective to the extent that they depend on the table has somewhat arbitrarily been divided into intended use of the composition and none provide species with boiling points above and below a quantifiable measure that can be used to deter- 2500 °C. Note that the oxides of zirconium, mag- mine whether a particular pyrotechnic composi- nesium, aluminum and titanium top the list. tion is a flash powder. The purpose of the present article is to suggest a general approach that might Table 1. Boiling Point of Some Pyrotechnic be used as the basis for producing a quantitative [2] definition of flash powder. Reaction Products. The reason such an objectively quantifiable Reaction Product Boiling Point (°C) definition is needed is that – from both a regulato- ZrO2 ≈ 5000 ry and safety standpoint – flash powders are treat- MgO 3600 ed differently than other pyrotechnic composi- Al2O3 2980 tions.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • ENCYCLOPEDIA of CHEMISTRY & EXPLOSIVES MATERIALS Abelite
    ENCYCLOPEDIA OF CHEMISTRY & EXPLOSIVES MATERIALS A Abelite An explosive, composed mainly of ammonium nitrate and trinitrotoluene. Absolute Zero The least possible temperature for all substances. Generally accepted as -273.15ÝC AC Alternating current. Acceptance Quality Level (AQL) A nominal value expressed in terms of percentage defective per hundred units, by which a group of sampling plans is identified. The sampling plans so identified have a high probability of accepting lots containing material with a process average not greater than the designed value of the AQL. Acetin [CH3COOC3H5(OH)2] also known as glyceryl monoacetate, a colourless hydroscopic liquid. Used as an intermediate for various explosives, and a solvent for various dyes. Acetone [CH3COCH3] colourless, flammable liquid. Acetone is widely used in industry as a solvent for many organic substances. It is used in making synthetic Resins and fillers, smokeless powders, and many other organic compounds. Boiling Point 56ÝC. Useful solvent for acetylene, also known as the simplest saturated ketone. Acetylene or ethyne, a colourless gas and the simplest alkyne Hydrocarbon. Explosive on contact with air, it is stored dissolved under pressure in Acetone. It is used to make neoprene rubber, plastics, and resins. The oxyacetylene torch mixes and burns oxygen and acetylene to produce a very hot flame-as high as 3480ÝC (6300ÝF)-that can cut steel and weld iron and other metals. Produced by the action of wateron calcium carbide and catalytically from naphtha. Acetylide A carbide formed by bubbling acetylene through a metallic salt solution, eg cuprous acetylide, Cu2C2. These are violently explosive compounds. Acid Any substance capable of giving up a proton; a substance that ionizes in solution to give the positive ion of the solvent; a solution with a pH measurement less than 7.
    [Show full text]
  • Characterizing Explosive Effects on Underground Structures.” Electronic Scientific Notebook 1160E
    NUREG/CR-7201 Characterizing Explosive Effects on Underground Structures Office of Nuclear Security and Incident Response AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS NRC Reference Material Non-NRC Reference Material As of November 1999, you may electronically access Documents available from public and special technical NUREG-series publications and other NRC records at libraries include all open literature items, such as books, NRC’s Library at www.nrc.gov/reading-rm.html. Publicly journal articles, transactions, Federal Register notices, released records include, to name a few, NUREG-series Federal and State legislation, and congressional reports. publications; Federal Register notices; applicant, Such documents as theses, dissertations, foreign reports licensee, and vendor documents and correspondence; and translations, and non-NRC conference proceedings NRC correspondence and internal memoranda; bulletins may be purchased from their sponsoring organization. and information notices; inspection and investigative reports; licensee event reports; and Commission papers Copies of industry codes and standards used in a and their attachments. substantive manner in the NRC regulatory process are maintained at— NRC publications in the NUREG series, NRC regulations, The NRC Technical Library and Title 10, “Energy,” in the Code of Federal Regulations Two White Flint North may also be purchased from one of these two sources. 11545 Rockville Pike Rockville, MD 20852-2738 1. The Superintendent of Documents U.S. Government Publishing Office These standards are available in the library for reference Mail Stop IDCC use by the public. Codes and standards are usually Washington, DC 20402-0001 copyrighted and may be purchased from the originating Internet: bookstore.gpo.gov organization or, if they are American National Standards, Telephone: (202) 512-1800 from— Fax: (202) 512-2104 American National Standards Institute 11 West 42nd Street 2.
    [Show full text]
  • Development of a Correlation Between
    DEVELOPMENT OF A CORRELATION BETWEEN ROTARY DRILL PERFORMANCE AND CONTROLLED BLASTING POWDER FACTORS by JOHN CHARLES LEIGHTON B.A.Sc, The University of British Columbia, 1978 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Mining and Mineral Process Engineering We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA August 1982 © John Charles Leighton, 1982 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. John Charles Leighton Department of MIVMVI3 The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date DE-6 (.3/81) - i i - ABSTRACT Despite the availability of established, sophisticated methods for plan• ning and designing stable slopes in rock, comparatively little attention is usually paid to the problems of carrying out the excavation. Blasting should be carefully planned to obtain optimum fragmentation as well as steep, stable pit walls for a minimum stripping ratio. The principal difficulty facing a blast designer is the lack of prior information about the many critical blasting characteristics of the rock mass.
    [Show full text]
  • Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection
    Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection DAVID D. TUSCHEL, ALEKSANDR V. MIKHONIN, BRIAN E. LEMOFF, and SANFORD A. ASHER* University of Pittsburgh, Department of Chemistry, Pittsburgh, Pennsylvania 15260 (D.D.T., A.V.M., S.A.A.); and West Virginia High Technology Consortium Foundation, 1000 Technology Drive, Fairmont, West Virginia 26554 (B.E.L.) We measured the 229 nm absolute ultraviolet (UV) Raman cross-sections detection, e.g., an object suspected of being a roadside bomb. of the explosives trinitrotoluene (TNT), pentaerythritol tetranitrate Two remote detection methods are laser-induced breakdown (PETN), cyclotrimethylene-trinitramine (RDX), the chemically related spectroscopy (LIBS)4,5 and Raman spectroscopy.6–8 Single- nitroamine explosive HMX, and ammonium nitrate in solution. The 229 shot LIBS spectra with excellent signal-to-noise ratio can nm Raman cross-sections are 1000-fold greater than those excited in the readily be obtained at distances of 30 m. However, because near-infrared and visible spectral regions. Deep UV resonance Raman LIBS is essentially an atomic emission method it is useful spectroscopy enables detection of explosives at parts-per-billion (ppb) concentrations and may prove useful for stand-off spectroscopic detection mainly for determining elemental composition; the method of explosives. lacks clear molecular specificity. In contrast, the Raman band Index Headings: Ultraviolet resonance Raman; Explosives; Energetic frequencies depend upon chemical bonding in the compounds materials; Absolute Raman cross-sections; Solution phase; Stand-off to be identified. Therefore, remote detection by Raman detection; Acetonitrile. spectroscopy offers the distinct advantage of chemical specificity and benefits from the ability to generate valid reference Raman spectra under laboratory conditions, against INTRODUCTION which spectra obtained in the field can be compared.
    [Show full text]
  • Guide for the Selection of Commercial Explosives Detection Systems for Law Enforcement Applications
    U.S. Department of Justice Office of Justice Programs National Institute of Justice National Institute of Justice ABOUT THELaw LAW Enforcement ENFORCEMENT and Corrections AND CORRECTIONS Standards and Testing Program Guide for the Selection of Commercial Explosives Detection Systems for Law Enforcement Applications NIJ Guide 100-99 U.S. Department of Justice Office of Justice Programs 810 Seventh Street N.W. Washington, DC 20531 Janet Reno Attorney General Raymond C. Fisher Associate Attorney General Laurie Robinson Assistant Attorney General Noël Brennan Deputy Assistant Attorney General Jeremy Travis Director, National Institute of Justice Office of Justice Programs National Institute of Justice World Wide Web Site World Wide Web Site http://www.ojp.usdoj.gov http://www.ojp.usdoj.gov/nij ABOUT THE LAW ENFORCEMENT AND CORRECTIONS STANDARDS AND TESTING PROGRAM The Law Enforcement and Corrections Standards and Testing Program is sponsored by the Office of Science and Technology of the National Institute of Justice (NIJ), U.S. Department of Justice. The program responds to the mandate of the Justice System Improvement Act of 1979, which created NIJ and directed it to encourage research and development to improve the criminal justice system and to disseminate the results to Federal, State, and local agencies. The Law Enforcement and Corrections Standards and Testing Program is an applied research effort that determines the technological needs of justice system agencies, sets minimum performance standards for specific devices, tests commercially available equipment against those standards, and disseminates the standards and the test results to criminal justice agencies nationally and internationally. The program operates through: The Law Enforcement and Corrections Technology Advisory Council (LECTAC) consisting of nationally recognized criminal justice practitioners from Federal, State, and local agencies, which assesses technological needs and sets priorities for research programs and items to be evaluated and tested.
    [Show full text]
  • Pdf 309.57 K
    Proceeding of the 6th ICEE Conference 29-31 May 2012 ENMC-2 1/6 6th International Conference Military Technical College on Kobry El-Kobbah, Chemical & Environmental Cairo, Egypt Engineering 29 -31 May, 2012. ENMC-2 SENSITIVITY AND DETONATION PARAMETERS OF 4, 6-DIAZIDO-N-NITRO-1, 3, 5-TRIAZIN-2-AMINE Tomáš Musil*, Robert Matyáš*, Ondřej Němec*, Martin Künze* Abstract Highly dense nitrogen-rich compounds are potential high performance energetic materials for use in industrial scene or military. 4,6-Diazido-N-nitro-1,3,5-triazin-2- amine (DANT) is relatively a new substance on which characterization and detonation parameters were tested. The sensitivity of DANT to impact, friction and electric discharge was also determined. Sensitivity to impact is between PETN and RDX, sensitivity to friction is higher as PETN. DANT´s relative strength is 108 % of TNT. We also calculated and measured detonation parameters such as pressure and detonation velocity. Theoretical detonation parameters are 8 205 m.s-1 and 30.3 GPa. Temperature of autoignition is 156 °C. Keywords: 4,6-Diazido-N-nitro-1,3,5-triazin-2-amine; DANT, detonation parameters, sensitivity * Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10 Pardubice, Czech Republic. [email protected] 1/6 Proceeding of the 6th ICEE Conference 29-31 May 2012 ENMC-2 2/6 1. Introduction 4,6-Diazido-N-nitro-1,3,5-triazin-2-amine (DANT, see scheme 1) – this relatively simple molecule was first reported only four years ago by Fronabarger et al. [1]. The more extensive study of this molecule focused on its synthesis, analysis, structure and its sensitivity to mechanical stimuli was published recently by us [2].
    [Show full text]
  • Tatp, Tnt, and Rdx)
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2010 Development Of Reductive Metal Systems For The Degradation Of Energetic Compounds (tatp, Tnt, And Rdx) Rebecca L. Albo University of Central Florida Part of the Chemistry Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Albo, Rebecca L., "Development Of Reductive Metal Systems For The Degradation Of Energetic Compounds (tatp, Tnt, And Rdx)" (2010). Electronic Theses and Dissertations, 2004-2019. 1552. https://stars.library.ucf.edu/etd/1552 DEVELOPMENT OF REDUCTIVE METAL SYSTEMS FOR THE DEGRADATION OF ENERGETIC COMPOUNDS (TATP, TNT, AND RDX) by REBECCA L. FIDLER ALBO B.S. University of Central Florida, 2005 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the College of Sciences at the University of Central Florida Orlando, Florida Summer Term 2010 Major Professor: Cherie L. Geiger © 2010 Rebecca Albo ii ABSTRACT Triacetone triperoxide (TATP), a cyclic peroxide explosive, is frequently used by terrorists and amateur chemists due to the ease of synthesis and the availability of reagents. TATP is extremely sensitive to shock, heat, and friction thus a safe and rapid method for treating TATP is needed. The major objective of this dissertation was to develop in situ methodologies that could safely degrade TATP in various field situations.
    [Show full text]
  • Explosives and Terminal Ballistics
    AND TERMINAL BALLISTICS A REPORT PREPARED FOR THE AAF SCIEN'rIFIC ADVISORY GROUP By D. P. MAC DOUGALL Naval Ordnance Laboratory, Washington, D. C. N. M. NEWMARK Department oj Civil Engineering, University oj Illinois • PMblished May, 1946 by HEADQUARTERS AIR MATERIEL COMMAND PUBLICATIONS BRANCH, INTEJtJYiE~9) '1001 WRIGHT FIELD, DAYTON, OHIO V-46579 The AAF Scientific Advisory Group was activated late in 1944 by General of the Army H. H. Arnold. He se­ cured the services of Dr. Theodore von Karman, re­ nowned scientist and consultant in aeronautics, who agreed to organize and direct the group. Dr. von Karman gathered about him a group of Ameri­ can scientists from every field of research having a bearing on air power. These men then analyzed im­ portant developments in the basic sciences, both here and abroad, and attempted to evaluate the effects of their application to air power. This volume is one of a group of reports made to the Army Air Forces by the Scientific Advisory Group. Thil document contolnl Information affecting the notional defenle of the United Statel within the meaning of the Espionage Ad, SO U. S. C., 31 and 32, 01 amended. Its tronsmiulon or the revelation of Its contents In any manner to on unauthorized person II prohibited by low. AAF SCIENTIFIC ADVISORY GROUP Dr. Th. von Karman Director Colonel F. E. Glantzberg Dr. H. L. Dryden Deputy Director, Military Deputy Director, Scientific Lt Col G. T. McHugh, Executive Capt C. H. Jackson, Jr., Secretary CONSULTANTS Dr. C. W. Bray Dr. A. J. Stosick Dr. L. A.
    [Show full text]
  • Explosive Weapon Effectsweapon Overview Effects
    CHARACTERISATION OF EXPLOSIVE WEAPONS EXPLOSIVEEXPLOSIVE WEAPON EFFECTSWEAPON OVERVIEW EFFECTS FINAL REPORT ABOUT THE GICHD AND THE PROJECT The Geneva International Centre for Humanitarian Demining (GICHD) is an expert organisation working to reduce the impact of mines, cluster munitions and other explosive hazards, in close partnership with states, the UN and other human security actors. Based at the Maison de la paix in Geneva, the GICHD employs around 55 staff from over 15 countries with unique expertise and knowledge. Our work is made possible by core contributions, project funding and in-kind support from more than 20 governments and organisations. Motivated by its strategic goal to improve human security and equipped with subject expertise in explosive hazards, the GICHD launched a research project to characterise explosive weapons. The GICHD perceives the debate on explosive weapons in populated areas (EWIPA) as an important humanitarian issue. The aim of this research into explosive weapons characteristics and their immediate, destructive effects on humans and structures, is to help inform the ongoing discussions on EWIPA, intended to reduce harm to civilians. The intention of the research is not to discuss the moral, political or legal implications of using explosive weapon systems in populated areas, but to examine their characteristics, effects and use from a technical perspective. The research project started in January 2015 and was guided and advised by a group of 18 international experts dealing with weapons-related research and practitioners who address the implications of explosive weapons in the humanitarian, policy, advocacy and legal fields. This report and its annexes integrate the research efforts of the characterisation of explosive weapons (CEW) project in 2015-2016 and make reference to key information sources in this domain.
    [Show full text]