United States Patent Office Patented Oct

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Oct 3,839,504 United States Patent Office Patented Oct. 1, 1974 2 3,839,504 REACTION OF PHOSPHORUS TRHALDES WITH U.S. Pat. 3, 192,242 discloses a class of compounds PENTAERYTHERITOL AND POLYMERIC PHOS based upon the reaction of a halogen with an inter PHITE PRODUCTS THEREOF mediate compound which is obtainable by the reaction of Keith A. Hughes and Ronald N. Redline, Waterbury, pentaerythritol with phosphorus trihalide at a molar ratio Conn., assignsors to Uniroyal, Inc., New York, N.Y. 5 of 1:2. The reference discloses a side reaction of the No Drawing. Filed Aug. 4, 1971, Ser. No. 169,053 pentaerythritol with phosphorus trichloride, but the nt. C. C67f 9/08 product depicted is clearly a reaction product of a 1:2 U.S. C. 260-921 12 Claims molar ratio. A 1:2 molar ratio is outside of the molar ratio used in the present invention. O U.S. Pats. 3,159,602; 3,364,285; 3,169,863 and ABSTRACT OF THE DISCLOSURE 3,090,799 utilize the reaction product of pentaerythritol A class of polymeric organic phosphites formed by With phosphoryl chloride or phosphorus oxychloride as the reaction of phosphorus trihalide with pentaerythritol intermediate for plasticizers, photographic emulsion at molar ratios of from 0.5 to 1.25:1 said organic phos Sensisitizers or flame resistant polymers. phite polymer being a liquid at standard conditions and The present invention differs from the four patents which polymer contains between 2% and 43% by weight mentioned above in the following respects: halogen and possesses an average hydroxyl number of 1. The reactants in the present invention are clearly 20-1000. defined to be phosphorus trihalides are not phosphorus oxychloride or phosphoryl chloride. BACKGROUND OF THE INVENTION 20 2. The products of the instant invention contain free hydroxyl groups that are available as reactive sites for 1. Field of the Invention formation of polyurethanes and polyesters. The inter The invention relates to a novel class of polymeric mediate of the above cited prior art contain no such hy phosphites which are formed by the reaction of phos droxyl groups. phorus trihalide with pentaerythritol in molar ratios of 25 from 0.5 to 1.25:1. The polymeric phosphites are useful SUMMARY OF THE INVENTION flame retardants and can be reacted with polyurethane The invention relates to a novel class of phosphite systems or blended with other polymeric matrices to polymers which are formed by the fraction of a phos provide flame resistance thereto. phorus trihalide PX (where X is chlorine, bromine or 30 iodine) with pentaerythritol C(CHOH). It is 2. Description of the Prior Art essential that the molar ratio of reactants (phosphorus U.S. Pat. 3,192,243 discloses a class of compounds trihalide to pentaerythritol) be within the range of 0.5:1 based on the reaction product of pentaerythritol and to 1.25:1. The products resulting from such reaction are phosphorous trihalides in molar ratios ranging from 1:1.5 viscous liquids containing phosphorus, halogens and free to 1:6. The resultant products are crystalline solids with 35 hydroxyl groups, possess between 2% and 43% (by melting points greater than 205 C. and a halogen content Weight) halogen and have an average hydroxyl number of less than 2%. 3. between 20 and 1,000. The present invention is distinguishable from the cite In order for a flame retardant to be effective, it gen prior art in the following respect: erally must contain one and preferably both of the 1. The molar ratios of pentaerythritol to phosphorus 40 following elements: a halogen and/or phosphorus, a trihalide are different than the stated ratios in the patent. charring agent. Previously, most commercial flame re 2. The formation of the compounds in the reference tardants were nothing more than highly halogenated is dependent upon rapid removal of hydrogen halide phosphites or phosphates which were physically blended during the reaction of the phosphorus trihalide with with a polymer or other matrix. Recently, manufacturers pentaerythritol. According to the reference the rapid re 45 have come to realize the necessity of having flame re moval of hydrogen halide is necessary to keep the halo tardants that coreact with the substrate. These reactive gen content of the compounds at a minimum. In the type flame retardants represent an integral part of the present invention, the presence of hydrogen halide in the polymeric structure and do not signicantly modify the reaction mixtures is essential in order to prepare com physical properties of said polymer. It has been found pounds having halogen contents of greater than 2% by 50 also that reactive type flame retardants exhibit very little weight, loss of activity during heat aging while additive types 3. The compounds claimed in said patent do not generally destroy the natural heat stability of the sub possess free aliphatic hydroxyl groups, whereas the com Strate leaving it very vulnerable to burning. The com pounds in the present invention possess free aliphatic hy pounds of the present invention possess the commercial droxyl groups which form an integral part of these 55 ly desirable properties noted above. compounds. In particular the compounds possess free hydroxyl U.S. Pat. 3,210,398 discloses a series of compounds groups available for reaction with isocyanates for the derived from an intermediate compound which is pre production of polyurethanes. pared by reacting pentaerythritol and phosphorus tri chloride at a molar ratio of 1:2. The examples state that 60 DESCRIPTION OF THE PREFERRED this intermediate is a crystalline solid melting at 121 EMBODIMENTS 23° C. The polymeric phosphites of the present invention are The present invention is distinguishable from this refer prepared by reacting pentaerythritol with a phosphorus ence because: trihalide at the ratios of 1.0 mole of pentaerythritol to 1. The molar ratios of the present invention are not 65 from 0.5 mole to 1.25 moles of phosphorus trihalide. within in the ratio limits of the reference patent; Suitable phosphorus trihalides are phosphorus tribro 2. The compounds of the present invention contain free mide, phosphorus trichloride and phosphorus triiodide, hydroxyl groups, whereas, the compounds in the reference preferably phosphorus tribromide. These ratios are cal do not; and culated to give products containing specific amounts of 3. The compounds of the present invention are viscous free hydroxy groups. The preferred reaction in the liquids as opposed to a crystalline solid as stated in the present invention is 1.0 mole of pentaerythritol to 1.0 prior art reference. mole of phosphorus tribromide. 3,839,504 3 4. The products of the present invention are formed by hydrogen bromide formed from the reaction of pentaeryth reacting pentaerythritol and phosphorus trihalide at the ritol and phosphorous tribromide. When phosphorus tri molar ratios indicated above to form trialkyl phosphites. chloride is used, as one of the reactants, the product may Structures A through C represent some of the possible contain from 2 to 18% chlorine, indicating up to a 100% phosphites formed, although these structures are not 5 rearrangement of trialkyl phosphite to dialkyl phosphite. inclusive and many variations are possible. Structure A Rearrangements beyond 50% are difficult to achieve with represents a monomeric phosphite, while B and C repre the chlorine-containing compound. When phosphorus tri sent polymeric phosphites: bromide is used as one of the reactants a product contain CH-O ing up to 43% bromine content may be obtained, indicat / N O ing up to 100% rearrangement. Once the dialkyl phosphite HO-CH-C-CH-O-P (A) is formed, no further reaction occurs because said dialkyl CH-O phosphite is essentially unreactive with hydrogen halides. Further evidence that the rearrangement has occurred is HO-CH CH-O the appearance of a sharp band at 4.2 microns in the in Ho–c. CH-0, Dog 5 frared spectrum of the product. This band is a character CH-O P-(B) istic band of dialkyl phosphites and is not present in the /S P-O-CH, spectrum of a trialkyl phosphite. HO-CE: CH-O Another feature of the present invention is that the final CH-O HO-C (C) Ho-c / N CH-OH reaction product may contain a mixture of said halides. C C 20 In this situation, it is preferred that the majority of halo / N / N gen substitution in the polymer of the present invention be HO-CE, C-O O-Ca CH-O--Prav bromine. f One aspect of this invention noted above is that the CH-OH compounds are viscous liquid products instead of solid o-c C 25 products as taught in the prior art. Due to the ease of / mixing, the use of a liquid product has a distinct advantage HO-CH CH-O-Pav when working with the viscous polyols for making poly During the reaction, a large amount of hydrogen halide urethanes. It is in this respect, therefore, that the molar gas is evolved (3 moles of hydrogen halide for each mole ratios of pentaerythritol to phosphorus trihalide are criti of phosphorus trihalide). Although a substantial amount 30 cal. At less than 0.5 mole of phosphorus trihalide per of this gas is lost to the atmosphere, enough of it is mole of pentaerythritol, the resultant reaction product is retained in the reaction mixture to react with the trialkyl low melting solid. At more than 1.25 moles of phosphorus phosphites. This reaction is known as the Arbuzov re trihalide per mole of pentaerythritol solid materials are arrangement, and is illustrated in the equations which formed. It is in the range of 0.5 to 1.25 moles of phos follow wherein A and B are trialkyl phosphites, and X phorus trihalide per mole of pentaerythritol that the com is a halogen selected from the group consisting of chlo pounds are viscous liquids containing the desired combi rine, bromine and iodine.
Recommended publications
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Budapest, Hungary, August 30-31, 2004
    Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Budapest, Hungary, August 30-31, 2004 Members Present: Dr Jonathan Brecher, Prof Richard Cammack, Dr Ture Damhus, Prof Richard Hartshorn, Dr Stephen Heller, Prof Herbert Kaesz, Prof Jaroslav Kahovec, Prof Dr Alexander Lawson, Dr Alan McNaught (President), Dr Gerard Moss, Prof József Nyitrai, Dr Warren Powell (Secretary), Dr Matthew Toussant, Prof Andrey Yerin Representatives from other IUPAC bodies present: Prof Bryan Henry (IUPAC Vice President) National Representatives Present: Prof Len Lindoy, (Australia), Prof Rita H. de Rossi (Argentina) Invited guests: Dr Jeffrey Wilson (CAS), Dr Kevin Thurlow (Laboratory of the Government Chemist, UK) Members Absent: Dr Michael Hess, Prof G Jeffrey Leigh, Dr Antony Williams The fourth meeting of the Division Committee of the IUPAC Division of Chemical Nomenclature and Structure Representation held at the Budapest University of Technology and Economics was convened by President McNaught at 9:00 a.m. on Monday, August 30, 2004. 1.0 President McNaught welcomed the members to this meeting and offered a special welcome to the new members elected for 2004; to Prof Richard Cammack, Chairman of JCBN, a new ex officio member; and to the National Representatives, Prof Len Lindoy (Australia, University of Sidney) and Prof Rita H de Rossi (Argentina, University of Córdoba) He also noted that Dr Michael Hess, Prof G Jeffrey Leigh, and Dr Antony Williams would be unable to be with us. The attendees introduced themselves and provided a little background information. Housekeeping details regarding breaks and lunch were announced. 2.0 The agenda as circulated was approved with the addition of a report on CAS index nomenclature by Dr.
    [Show full text]
  • WO 2013/089962 Al 20 June 2013 (20.06.2013) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/089962 Al 20 June 2013 (20.06.2013) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every B01J 31/04 (2006.01) B01J 31/18 (2006.01) kind of national protection available): AE, AG, AL, AM, B01J 31/14 (2006.01) B01J 31/22 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 12/065285 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 15 November 2012 (15.1 1.2012) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 13/323,328 12 December 201 1 (12. 12.201 1) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): CHEV¬ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, RON PHILLIPS CHEMICAL COMPANY LP UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/US]; 10001 Six Pines Drive, The Woodlands, Texas TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 77380 (US).
    [Show full text]
  • DARK Classics in Chemical Neuroscience: Heroin and Desomorphine Jaime Mella-Raipan,́ Javier Romero-Parra, and Gonzalo Recabarren-Gajardo*
    pubs.acs.org/chemneuro Review DARK Classics in Chemical Neuroscience: Heroin and Desomorphine Jaime Mella-Raipan,́ Javier Romero-Parra, and Gonzalo Recabarren-Gajardo* Cite This: ACS Chem. Neurosci. 2020, 11, 3905−3927 Read Online ACCESS Metrics & More Article Recommendations ABSTRACT: Opioids are arguably one of the most important pharmacologic classes, mainly due to their rich history, their useful and potent analgesic effects, and also, just as importantly, their “Dark Side”, constituted by their reinforcing properties that have led countless of users to a spiral of addiction, biological dependence, tolerance, withdrawal syndromes, and death. Among the most significant abused and addictive known opioids are heroin and desomorphine, both synthetic derivatives of morphine that belong to the 4,5-epoxymorphinan structural chemical group of the opioid family drugs. These agents share not only structural, pharmacological, and epidemiological features but also a common geographical distribution. A drop in Afghan heroin production and its “exports” to Russia gave rise to widespread consumption of desomorphine in ex-Soviet republics during the first decade of the 21st century, representing an economical and accessible alternative for misusers to this sort of derivative. Herein we review the state of the art of history, chemistry and synthesis, pharmacology, and impact on society of these “cursed cousins”. KEYWORDS: Opioids, morphine, heroin, desomorphine, krokodil, mu-receptors 1. HEROIN Charles Romley Alder Wright, an English chemist working at ’ 1.1. Historical Review. The poppy plant corresponds to St. Mary s Hospital Medical School in London, synthesized fl several morphine esters in 1874, including 3,6-diacetylmor- an angiosperm species type that gives beautiful owers.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • METHYL IODIDE [Methane, Iodo-] [(A) (From Methyl Alcohol)]
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Hazardous Substances (Chemicals) Transfer Notice 2006
    16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but
    [Show full text]
  • Utilizing Phosphorus(I) Methods Towards Phosphorus(III) Heterocycles and Phosphorus(I) Macromolecules Gregory Farrar University of Windsor
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations 2012 Utilizing Phosphorus(I) Methods Towards Phosphorus(III) Heterocycles and Phosphorus(I) Macromolecules Gregory Farrar University of Windsor Follow this and additional works at: http://scholar.uwindsor.ca/etd Recommended Citation Farrar, Gregory, "Utilizing Phosphorus(I) Methods Towards Phosphorus(III) Heterocycles and Phosphorus(I) Macromolecules" (2012). Electronic Theses and Dissertations. Paper 389. This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Utilizing Phosphorus(I) Methods Towards Phosphorus(III) Heterocycles and Phosphorus(I) Macromolecules By Gregory Farrar A Dissertation Submitted to the Faculty of Graduate Studies Through Chemistry and Biochemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario, Canada 2012 © 2012 Gregory Farrar Utilizing Phosphorus(I) Methods Towards Phosphorus(III) Heterocycles and Phosphorus(I) Macromolecules by Gregory Farrar APPROVED BY: Dr. T.
    [Show full text]
  • Pdf 789.61 K
    Regular Article PHYSICAL CHEMISTRY RESEARCH Published by the Iranian Chemical Society www.physchemres.org [email protected] Phys. Chem. Res., Vol. 9, No. 3, 509-523, September 2021 DOI: 10.22036/pcr.2021.241166.1798 Molecular Dynamics Simulation of Phosphorus Trichloride (PCl3) and Phosphorus Triiodide (PI3) Liquids by Using the Force-fields Derived from a Quantum Chemical Approach H. Moghadam*, B. Ghalami-Choobar* and M. Shafaghat-Lonbar Department of Chemistry, Faculty of Science, University of Guilan, P. O. Box: 19141, Rasht, Iran (Received 27 July 2020, Accepted 12 April 2021) In this study, phosphorus trichloride (PCl3) and phosphorus triiodide (PI3), as the condensed inorganic materials, were investigated based on the molecular dynamics simulation. To this purpose, molecular dynamics (MD) simulations were performed by applying force field parameters derived from a quantum chemistry approach. The potential energies were computed at the B3LYP/6-31+G(d) and B3LYP/dgdzvpd levels of theory for different configurations of PCl3 and PI3, respectively. To determine force field parameters, a four-site all-atom force field model was used to correlate the potential energy data. Therefore, the force field parameters were applied to perform the molecular dynamics simulations. The MD simulations were performed to obtain the atomic number density, enthalpy, heat capacity, and radial distribution function in the NPT and NVT ensembles for PCl3 and PI3 dimers. There is a good consistency between the experimental data and simulation results over a wide range of experimental conditions. Keywords: Molecular dynamics simulation, Force-field parameters, DFT calculations, Phosphorus trichloride, Phosphorus triiodide INTRODUCTION quantum chemistry calculations, while many previous simulations used just empirical force fields taken from Computer simulation as a standard tool to facilitate the experimental measurements [5].
    [Show full text]
  • THE CHEMISTRY of SOME TRIPLUOROMETHYL-PHOSPHINES . by MIRZA ARSHAD ALI BEG B..Sc
    THE CHEMISTRY of SOME TRIPLUOROMETHYL-PHOSPHINES . by MIRZA ARSHAD ALI BEG B..Sc.(Hons.)f M.Sc. (Karachi), 1955» A thesis submitted in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Chemistry. We accept this thesis as conforming to the required standard© THE UNIVERSITY OP BRITISH COLUMBIA June, 1961. In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication' of this thesis for financial gain shall not be allowed'without my written permission. Department of ^^R^+^C&&^ The University of British Columbia, Vancouver 8, Canada. Date Af*Ql.tfc% /9£f GRADUATE STUDIES Wqp Pntuersttg of ^rtttsii Columbia Field of Study: Inorganic Chemistry Topics in Inorganic Chemistry H. C. Clark H. G. Heal FACULTY OF GRADUATE STUDIES Topics in Organic Chemistry L. D. Hayward D. E. McGreer A. Rosenthal R. Stewart Radiochemistry D. R. Wiles Seminar in Chemistry : R. Stewart Related Studies: PROGRAMME OF THE . Atomic Physics K. L. Erdman ! FINAL ORAL EXAMINATION Geophysics '. J. A. Jacobs Structure of Metals II V. Griffiths j FOR THE DEGREE OF E. Teghtsoonian DOCTOR OF PHILOSOPHY of M. ARSHAD A. BEG B.Sc. (Hons), M.Sc. (Karachi) PUBLICATIONS FRIDAY, JULY 28th, 1961 at 2:30 p.m.
    [Show full text]
  • United States Patent (19) 11) 4,207,300 Kestner Et Al
    United States Patent (19) 11) 4,207,300 Kestner et al. 45) Jun. 10, 1980 (54) PROCESS FOR THE PREPARATION OF 3,632,311 1/1972 Kovacs et al. ....................... 423/316 ORTHOPHOSPHOROUSACD AND 3,679,374 7/1972 Kovacs ................................ 423/36 PHOSPHINE OTHER PUBLICATIONS 75) Inventors: Mark O. Kestner, Mendham, N.J.; Pamela J. Teliszczak, Richardson, J. Chem. Soc. (London), vol. 51 (1887), pp. Carpentersville, Ill. 801-806. Jacobson, Encyclopedia of Chemical Reactions, vol. 5 (73) Assignee: Borg-Warner Corp., Chicago, Ill. (1953), p. 364. Mellor, Comprehensive Treatise on Inorganic & Theo (21) Appl. No.: 970,846 retical Chemistry, vol. 8 (1928), pp. 901-902. 22 Filed: Dec. 18, 1978 Primary Examiner-O. R. Vertiz 51) Int, C.2 ..................... CO1B 25/06; C01B 25/163 Assistant Examiner-Thomas W. Roy 52 U.S. C. ..................................... 423/299; 423/316 Attorney, Agent, or Firn-Richard J. Schlott 58 Field of Search ........................ 423/316, 299, 304 56 References Cited 57 ABSTRACT The direct reaction of elemental phosphorus acid cata U.S. PATENT DOCUMENTS lyzed by hydroiodic acid produces orthophosphorus 3,437,438 4/1969 Carroll et al. ........................ 423/316 3,437,439 4/1969 Carroll ......... ... 423/316 acid free of orthophosphoric acid and phosphine free of 3,437,440 4/1969 Carroll ................................. 423/316 diphosphine. 3,528,772 9/1970 Whyte et al. ........................ 423/316 3,532,461 10/1970 Whyte et al. ........................ 423/316 5 Claims, No Drawings 4,207,300 1. 2 ing, less reactive substance known as red phosphorus. PROCESS FOR THE PREPARATION OF For the purposes of the process of this invention, only ORTHOPHOSPHOROUSACD AND PHOSPHINE the white phosphorus is useful.
    [Show full text]