FAU Institutional Repository

Total Page:16

File Type:pdf, Size:1020Kb

FAU Institutional Repository FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1989 Elsevier B.V. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/00220981 and may be cited as: Cameron, J. L., & Fankboner, P. V. (1989). Reproductive biology of the commercial sea cucumber Parastichopus californicus (Stimpson) (Echinodermata: Holothuroidea). II. Observations on the ecology of development, recruitment and the juvenile life stage. Journal of Experimental Marine Biology and Ecology, 127(1), 43-67.doi:10.1016/0022-0981(89)90208-6 I i'V ) J. Exp. Mar. BioI. £Col., 1989, Vol. 127, pp. 43-67 43 Elsevier JEM 01229 Reproductive biology of the commercial sea cucumber Parastichopus californicus (Stimpson) (Echinodermata: Holothuroidea). II. Observations on the ecology of development, recruitment, and the juvenile life stage J. Lane Cameron and Peter V. Fankboner Department ofBiological Sciences. Simon Fraser University. Burnaby, British Columbia, Canada (Received 17 November 1987; revision received 9 January 1989; accepted 23 January 1989) Abstract: Evidence from in vitro culture of embryos and larvae of Parastichopus califomicus (Stimpson) suggests that asynchronization of development through metamorphosis and settlement results in a variable pelagic period for larvae within a particular cohort. Additionally, considerable variation in size of 0 + yr recruits observed in situ may indicate that settlement had occurred continuously for some months within the population studied. Recruitment of at least seven species of echinoderms (including P. californicus} was observed at distinct sites that were notably free of the predatory sea stars Solaster dawsoni (Verrill), S. stimpsoni (Verrill), and S. endeca (L.). The swimming response characteristic of adult P. californicus when touched by the sunflower star Pycnopodia helianthoides (Brandt) did not occur with the same regularity or intensity in juveniles. S. dawsoni preyed upon small (:S;2 yr of age) P. califomicus in aquaria; sea cucumbers > 2 yr avoided predation by swimming. Periodic collections of P. californicus recruits revealed a pattern of somatic weight loss in the fall and winter that is coincident with a similar pattern reported for the adults of this species. Visceral atrophy was observed in juvenile animals collected in the late fall. The polynoid wormArctonoepulchra (Johnson) and the endoparasitic gastropod ComenteroxenousparastichopoliTikasingh, common symbionts of adult P. californicus, were also noted on or within juvenile animals. Key words: Echinoderm; Ecology; Holothurian; Juvenile; Parastichopus califomicus INTRODUCTION The California sea cucumber Parastichopus californicus (Stimpson) is commonly found in rocky low-intertidal and subtidal areas away from strong wave action or in quiet bays and on pilings from Baja California to British Columbia (Ricketts & Calvin, 1968; Brumbaugh, 1980; Kozloff, 1983). This sea cucumber is a relatively large (60-100 em long) epibenthic detritivore, that may reach population densities as high as 0.5' m - 2, and has recently become the focus ofa limited commercial fishery within the Harbor Branch Oceanographic Institution Contribution No. 656. Correspondence address: Department of Larval Ecology, Harbor Branch Oceanographic Institution, 5600 Old Dixie Highway, Ft. Pierce, FL 34946, U.S.A. 0022-0981/89/$03.50 © 1989.Elsevier Science Publishers B.V. (Biomedical Division) 44 J.L. CAMERON AND P.V. FANKBONER inland waters of British Columbia, Canada, and Puget Sound, Washington (McDaniel, 1984; Sloan, 1985, 1986). Various aspects of the development ofP. califamicus have been examined. Mortensen (1921) reared the larvae to the early auricularia, while Courtney (1927) examined the fertility of excised gametes at various lengths of time after collection. Johnson & Johnson (1950) report on the maturity of gametes collected by dissection. M. Strathmann (1978) outlines processes for the collection and fertilization of the gametes. Smiley & Cloney (1985) discuss oogenesis and ovulation in Stichapus (= Parastichopus) califamicus (cf. Smiley, 1988). Smiley (1986) discusses metamorpho­ sis of the larvae, while Burke et al. (1986) describe the structure of the larval nervous system. Cameron & Fankboner (1984) describe tentacle structure and feeding processes in adult and juvenile animals, and describe seasonal reproductive processes (Cameron & Fankboner, 1986). Swan (1961) reports that adult P. californicus expel their visceral organs in the fall and early winter ofeach year. Fankboner & Cameron (1985), however, have shown that this process is actually visceral atrophy, not evisceration. Additionally, Margolin (1976) reports that adult P. califamicus respond by swimming to the touch of many predatory sea stars. Interestingly, none ofthe sea stars known to elicit swimming behavior prey regularly upon this sea cucumber (Greer, 1961; Mauzey et al., 1968; Shivji et aI., 1983). While much of the biology and ecology of aspidochirote holothurians in general (Mitsukuri, 1903; Trefz, 1958; Ricketts & Calviri, 1968; Jespersen & Lutzen, 1971; Bakus, 1973; Lawrence, 1979; Roberts, 1979; Sloan, 1979; Conand, 1981; Roberts & Bryce, 1982; and others) and P. califamicus specifically is well known, little has been reported on the ecology of development, recruitment, or the juvenile life stage from this group of sea cucumbers (Bakus, 1973; cf. Sloan, 1980; Conand, 1981, 1983). The occurrence and distribution of new recruits and juveniles, size and growth of recruits, predator-prey interactions among juveniles and co-occurring sea stars, and behavior of newly settled and juvenile animals warrants investigation. With the discovery of apparent nursery areas where recruits and juveniles of P. califamicus were regularly observed, and by rearing the larvae through settlement in vitro, we undertook a study of various aspects of the biology and ecology of development, recruitment, and the juvenile life stage of this sea cucumber. METHODS COLLECTION AND FERTILIZATION OF OOCYTES Adult individuals of P. califamicus were collected by scuba from Woodlands, Indian Arm Fjord, British Columbia, at 5-15 m depth. Portions of the excised ovaries from numerous female animals were placed into beakers containing 1200 ml of Millipore­ filtered (0.45 }lm) seawater and stirred at 60 rpm for 2 h. Ovarian fragments were JUVENILE HOLOTHURIAN ECOLOGY 45 removed by filtering the cultures through 500-pm mesh Nitex screen after which 5 ml dilute sperm solution (Strathmann, 1978) were added to each culture. After ~4 h oocytes exposed to sperm were washed and placed into fresh Millipore-filtered seawater. Prior to fertilization some cultures were treated with echinoderm, Pycnopodia helianthoides (Brandt), radial nerve factor (RNF) (Strathmann & Sato, 1969) or with 10- 3 M dithiothreitol (DTT) (Maruyama, 1980) to induce germinal vesicle breakdown. On one occasion naturally spawned oocytes were collected in situ by pipette as they exited the gonopore of a spawning female. This spawning sea cucumber was then placed, while under water, into a large plastic bag and transported to the laboratory. CULTURING TECHNIQUES Developing embryos and larvae were maintained at 10-12 °C and aerated by stirring with glass paddles attached to slow turning electric motors (60 rpm). Culture salinity was maintained at in situ levels of 27-28%0. Developing larvae were fed equal amounts, in excess, of the marine flagellates Dunaliella tertiolecta, Pavlova lutheri, and Isochrysis galbana (see Hinegardner, 1969; Strathmann, 1971). OCCURRENCE AND DISTRIBUTION OF JUVENILE ECHINODERMS 228 scuba dives were made from May 1979 through December 1984 to observe or collect P. califomicus in various locations around: San Juan Island (Cantilever Pier and Shady Cove) and Shaw Island (Pt. George), Washington; and Indian Arm Fjord (Woodlands Bay and Croker Island), Howe Sound (Kelvin Grove), and Clayoquot Sound (Ritchie Bay), British Columbia (Fig. 1). The presence or absence of juvenile echinoderms, especially P. califomicus, and potentially important predatory sea stars were qualitatively observed on each dive. SIZE AND GROWTH OF RECRUITS Traditionally, the juvenile sea cucumber that arises from the metamorphosis of a doliolaria or vitellaria larva has been termed a pentactula because it possesses five primary buccal tentacles (MacBride, 1914; Hyman, 1955). Even though this stage is morphologically similar to the adult, and generally found in the same habitat, it has been called a larva (Barnes, 1980, p. 995). For the purposes of this paper these newly settled animals are termed larvae as long as they possess no more than their five original buccal tentacles. When one additional buccal tentacle appears, we consider the animal a juvenile of the 0 + year class. Holothurians are quite plastic in their body dimensions, so single measurements of linear size, such as length, are unreliable. Additionally, because of the nature of their respiratory process (the filling and emptying of internal fluid-filled respiratory trees) repeat measurements of mass in individual adult P. califomicus can vary as much as 100g (J. L. Cameron, unpub!. data). Therefore, a bidimensional index of size was determined from the relationship of contracted length (em) times contracted width (em) 46 J.L. CAMERON AND P.V. FANKBONER A BRITISH COLUMBIA Fig. 1. (A) Primary study areas within the inland waters of mainland British Columbia (Howe
Recommended publications
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • Download Complete Work
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Birkeland, Charles, P. K. Dayton and N. A. Engstrom, 1982. Papers from the Echinoderm Conference. 11. A stable system of predation on a holothurian by four asteroids and their top predator. Australian Museum Memoir 16: 175–189, ISBN 0-7305-5743-6. [31 December 1982]. doi:10.3853/j.0067-1967.16.1982.365 ISSN 0067-1967 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia THE AUSTRALIAN MUSEUM, SYDNEY MEMOIR 16 Papers from the Echinoderm Conference THE AUSTRALIAN MUSEUM SYDNEY, 1978 Edited by FRANCIS W. E. ROWE The Australian Museum, Sydney Published by order of the Trustees of The Australian Museum Sydney, New South Wales, Australia 1982 Manuscripts accepted lelr publication 27 March 1980 ORGANISER FRANCIS W. E. ROWE The Australian Museum, Sydney, New South Wales, Australia CHAIRMEN OF SESSIONS AILSA M. CLARK British Museum (Natural History), London, England. MICHEL J ANGOUX Universite Libre de Bruxelles, Bruxelles, Belgium. PORTER KIER Smithsonian Institution, Washington, D.C., 20560, U.S.A. JOHN LUCAS James Cook University, Townsville, Queensland, Australia. LOISETTE M. MARSH Western Australian Museum, Perth, Western Australia. DAVID NICHOLS Exeter University, Exeter, Devon, England. DAVID L. PAWSON Smithsonian Institution, Washington, D.e. 20560, U.S.A. FRANCIS W. E. ROWE The Australian Museum, Sydney, New South Wales, Australia. CONTRIBUTIONS BIRKELAND, Charles, University of Guam, U.S.A. 96910. (p. 175). BRUCE, A.
    [Show full text]
  • Appendix 3 Marine Spcies Lists
    Appendix 3 Marine Species Lists with Abundance and Habitat Notes for Provincial Helliwell Park Marine Species at “Wall” at Flora Islet and Reef Marine Species at Norris Rocks Marine Species at Toby Islet Reef Marine Species at Maude Reef, Lambert Channel Habitats and Notes of Marine Species of Helliwell Provincial Park Helliwell Provincial Park Ecosystem Based Plan – March 2001 Marine Species at wall at Flora Islet and Reef Common Name Latin Name Abundance Notes Sponges Cloud sponge Aphrocallistes vastus Abundant, only local site occurance Numerous, only local site where Chimney sponge, Boot sponge Rhabdocalyptus dawsoni numerous Numerous, only local site where Chimney sponge, Boot sponge Staurocalyptus dowlingi numerous Scallop sponges Myxilla, Mycale Orange ball sponge Tethya californiana Fairly numerous Aggregated vase sponge Polymastia pacifica One sighting Hydroids Sea Fir Abietinaria sp. Corals Orange sea pen Ptilosarcus gurneyi Numerous Orange cup coral Balanophyllia elegans Abundant Zoanthids Epizoanthus scotinus Numerous Anemones Short plumose anemone Metridium senile Fairly numerous Giant plumose anemone Metridium gigantium Fairly numerous Aggregate green anemone Anthopleura elegantissima Abundant Tube-dwelling anemone Pachycerianthus fimbriatus Abundant Fairly numerous, only local site other Crimson anemone Cribrinopsis fernaldi than Toby Islet Swimming anemone Stomphia sp. Fairly numerous Jellyfish Water jellyfish Aequoria victoria Moon jellyfish Aurelia aurita Lion's mane jellyfish Cyanea capillata Particuilarly abundant
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • Review, the (Medical) Benefits and Disadvantage of Sea Cucumber
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 12, Issue 5 Ver. III (Sep. – Oct. 2017), PP 30-36 www.iosrjournals.org Review, The (medical) benefits and disadvantage of sea cucumber Leonie Sophia van den Hoek, 1) Emad K. Bayoumi 2). 1 Department of Marine Biology Science, Liberty International University, Wilmington, USA. Professional Member Marine Biological Association, UK. 2 Department of General Surgery, Medical Academy Named after S. I. Georgiesky of Crimea Federal University, Crimea, Russia Corresponding Author: Leonie Sophia van den Hoek Abstract: A remarkable feature of Holothurians is the catch collagen that forms their body wall. Catch collagen has two states, soft and stiff, that are under neurological control [1]. A study [3] provides evidence that the process of new organ formation in holothurians can be described as an intermediate process showing characteristics of both epimorphic and morphallactic phenomena. Tropical sea cucumbers, have a previously unappreciated role in the support of ecosystem resilience in the face of global change, it is an important consideration with respect to the bêche-de-mer trade to ensure sea cucumber populations are sustained in a future ocean [9]. Medical benefits of the sea cucumber are; Losing weight [19], decreasing cholesterol [10], improved calcium solubility under simulated gastrointestinal digestion and also promoted calcium absorption in Caco-2 and HT-29 cells [20], reducing arthritis pain [21], HIV therapy [21], treatment osteoarthritis [21], antifungal steroid glycoside [22], collagen protein [14], alternative to mammalian collagen [14], alternative for blood thinners [29], enhancing immunity and disease resistance [30].
    [Show full text]
  • Pisaster Ochraceus (Ochre Star)
    Benjamin Miner INFECTIOUSNESS OF SEA STAR Western Washington WASTING DISEASE University Shannon Point Marine Center FUNDING AND COLLABORATORS NSF . co-PI Ian Hewson WA SeaGrant . Co-PI Melissa Miner Western Washington University SEA STAR WASTING SYNDROME General description for a set of symptoms that are found in sea stars Typically, lesions appear in the ectoderm followed by decay of tissue surrounding the lesions, leading to eventual fragmentation of the body and death GEOGRAPHIC EXTENT Data from MARINe Locations of die-offs . Vancouver area BC (fall 2013) . Seattle area WA (fall 2013) . Monterey Bay area, CA (fall 2013) . Southern CA (winter & spring 2014) . Oregon coast (spring 2014) . Salish sea (late spring 2014) . Sitka AK & Northern Vancouver Island (fall 2014) . BC, CA SPECIES AFFECTED Evidence of disease . Pycnopodia helianthoides (sunflower star) . Evasterias trochelii (mottled star) . Pisaster ochraceus (ochre star) . Pisaster brevispinus (giant pink star) . Solaster dawsoni (morning sun star) . Patiria miniata (bat star) . Solaster stimpsoni (striped sun star) . Orthasterias koehleri (rainbow star) . Pisaster giganteus (giant star) . Dermasterias imbricata (leather star) . Leptasterias spp (six-armed star) . Mediaster aequalis (vermilion star) . Henricia spp. Linkia columbiae (fragile star) . Astropecten spp. (sand star) . Crossaster papposus (rose star) . Stylasterias forreri (velcro star) . Astrometis sertulifera (fragile rainbow star) Appears unaffected . Pteraster spp. CAUSE OF THE DISEASE Evidence suggests that it is a virus. There is also evidence that environmental factors are involved. Star probably die of a secondary bacterial infection. QUESTIONS QUESTIONS Can individuals with signs of the disease affect “healthy” conspecifics? .Is the viral load of the densovirus associated with wasting disease higher in “sick” individuals? Does temperature affect the progression of the disease? INFECTIOUSNESS EXPERIMENT DESIGN PYCNOPODIA HELIANTHOIDES Collection sites .
    [Show full text]
  • Intertidal Organisms of Point Reyes National Seashore
    Intertidal Organisms of Point Reyes National Seashore PORIFERA: sea sponges. CRUSTACEANS: barnacles, shrimp, crabs, and allies. CNIDERIANS: sea anemones and allies. MOLLUSKS : abalones, limpets, snails, BRYOZOANS: moss animals. clams, nudibranchs, chitons, and octopi. ECHINODERMS: sea stars, sea cucumbers, MARINE WORMS: flatworms, ribbon brittle stars, sea urchins. worms, peanut worms, segmented worms. UROCHORDATES: tunicates. Genus/Species Common Name Porifera Prosuberites spp. Cork sponge Leucosolenia eleanor Calcareous sponge Leucilla nuttingi Little white sponge Aplysilla glacialis Karatose sponge Lissodendoryx spp. Skunk sponge Ophlitaspongia pennata Red star sponge Haliclona spp. Purple haliclona Leuconia heathi Sharp-spined leuconia Cliona celata Yellow-boring sponge Plocarnia karykina Red encrusting sponge Hymeniacidon spp. Yellow nipple sponge Polymastia pachymastia Polymastia Cniderians Tubularia marina Tubularia hydroid Garveia annulata Orange-colored hydroid Ovelia spp. Obelia Sertularia spp. Sertularia Abientinaria greenii Green's bushy hydroid Aglaophenia struthionides Giant ostrich-plume hydroid Aglaophenia latirostris Dainty ostrich-plume hydroid Plumularia spp. Plumularia Pleurobrachia bachei Cat's eye Polyorchis spp. Bell-shaped jellyfish Chrysaora melanaster Striped jellyfish Velella velella By-the-wind-sailor Aurelia auria Moon jelly Epiactus prolifera Proliferating anemone Anthopleura xanthogrammica Giant green anemone Anthopleura artemissia Aggregated anemone Anthopleura elegantissima Burrowing anemone Tealia lofotensis
    [Show full text]
  • Echinodermata
    Echinodermata Bruce A. Miller The phylum Echinodermata is a morphologically, ecologically, and taxonomically diverse group. Within the nearshore waters of the Pacific Northwest, representatives from all five major classes are found-the Asteroidea (sea stars), Echinoidea (sea urchins, sand dollars), Holothuroidea (sea cucumbers), Ophiuroidea (brittle stars, basket stars), and Crinoidea (feather stars). Habitats of most groups range from intertidal to beyond the continental shelf; this discussion is limited to species found no deeper than the shelf break, generally less than 200 m depth and within 100 km of the coast. Reproduction and Development With some exceptions, sexes are separate in the Echinodermata and fertilization occurs externally. Intraovarian brooders such as Leptosynapta must fertilize internally. For most species reproduction occurs by free spawning; that is, males and females release gametes more or less simultaneously, and fertilization occurs in the water column. Some species employ a brooding strategy and do not have pelagic larvae. Species that brood are included in the list of species found in the coastal waters of the Pacific Northwest (Table 1) but are not included in the larval keys presented here. The larvae of echinoderms are morphologically and functionally diverse and have been the subject of numerous investigations on larval evolution (e.g., Emlet et al., 1987; Strathmann et al., 1992; Hart, 1995; McEdward and Jamies, 1996)and functional morphology (e.g., Strathmann, 1971,1974, 1975; McEdward, 1984,1986a,b; Hart and Strathmann, 1994). Larvae are generally divided into two forms defined by the source of nutrition during the larval stage. Planktotrophic larvae derive their energetic requirements from capture of particles, primarily algal cells, and in at least some forms by absorption of dissolved organic molecules.
    [Show full text]
  • Marine Ecology Progress Series 498:117
    The following supplement accompanies the article Mesoscale variability in oceanographic retention sets the abiotic stage for subtidal benthic diversity Robin Elahi1,2,*, Timothy R. Dwyer1, Kenneth P. Sebens1,2,3 1Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA 2Department of Biology, University of Washington, Seattle, Washington 98195. USA 3School of Aquatic and Fisheries Sciences, University of Washington, Seattle, Washington 98195, USA *Corresponding author: [email protected] Marine Ecology Progress Series 498: 117–132 (2014) Supplement. Abiotic and biotic characteristics of sites and seascapes, details on the current stations, and results of statistical analyses 1 50 a 28 46 3 40 1415 5 713 12 30 11 20 9 16 18 17 Sessile richness 10 10 0 0 5 10 15 20 25 25 3 b 214 Haro 15 Channel 4 20 12 Rosario 58 Sound 7 13 Hood 1 6 15 10 11 9 16 10 Mobile richness 5 17 18 0 0 5 10 15 20 25 Quadrat Fig. S1. Species accumulation curves for the number of (a) sessile and (b) mobile taxa in quadrats. Numbers beside curves correspond to sites in Fig. 1 and Table S1. 1 Table S1. Summary of site locations and abiotic correlates of water retention (mean ± SD) Site Site name Site Region Transects Depth (m) Latitude (N) Longitude Sediment cover Dissolution Temperature (°C) number code (n) (W) (%) (mg cm–2 d−1) 1 Turn Point TP Haro 6 15.5 ± 2.6 48°41'11" 123°14'14" 0 ± 0 NA NA 2 Kellet Bluff KB Haro 6 14.4 ± 1.3 48°35'19" 123°12'09" 0 ± 0 NA NA 3 Lime Kiln LK Haro 6 15.1 ± 2 48°30'58" 123°09'11" 0 ± 0 NA NA 4 Long
    [Show full text]
  • Black Rockfish S. Melanops, While Spatially-Mapped and Observed in Some of the Same Schools and Locations As Blue Rockfish, Were
    Part One: Survey of Punta Gorda Ecological Reserve Black rockfish S. melanops, while spatially-mapped and observed in some of the same schools and locations as blue rockfish, were more widely distrib- uted in areas also occupied by kelp greenling H. decagrammus and canary rockfish S. pinniger (Figure 26a–c). Cluster analyses by habitat and relief suggest that these three species are more closely associated to each other than to blue rockfish S. mystinus (Figures 22, 23, 24, and 25). While they do cluster together, each has a unique habitat preference. All three were found over Rocksand1 and Rocksand3 substrates, however kelp greenling showed a preference for low-relief habitats common to canary rockfish (“boulderlow” and “rocklow”), differing from black rockfish, which shares blue rockfish’s preference for “rockhigh” habitat. Given these differences, spatial distribution patterns reveal that low-relief “generalists” common to areas with both sand and rock, such as kelp greenling, are more pervasive at PGER than canary rockfish, which were found in “rock-sand” interface areas. Our visual observa- tions and orientation analysis, which indicate that canary rockfish are in contact with or near sand substrate adjacent to reefs, validates the results from both cluster analysis and mapped distributions. Macroinvertebrates PGER is dominated by filtering organisms that are able to withstand a high particulate load and a strong, current-dominated environment. Colonial suspension feeders such as cnidarians, sponges, and tunicates were the most numerous organisms on hard substrates. Other organisms observed in moder- ate numbers at PGER include predatory and filter-feeding sea stars and the deposit-feeding sea cucumber.
    [Show full text]
  • Final Supplemental Environmental Impact Statement Maury Island Aquatic Reserve
    Final Supplemental Environmental Impact Statement Maury Island Aquatic Reserve Lead Agency: Washington State Department of Natural Resources Aquatic Resources Program October 29, 2004 Final Supplemental Environmental Impact Statement – Proposed Maury Island Aquatic Reserve Fact sheet – Project Title: Maury Island Aquatic Reserve Final Supplemental Environmental Impact Statement (SEIS) for the Department of Natural Resources Aquatic Reserves Program Project Description: The purpose of this action is to adopt and implement appropriate management strategies for state-owned aquatic lands at the Maury Island site, which includes Quartermaster Harbor and the eastern shoreline of Maury Island. Maury Island is in King County, Township 21 North, Range 02 East and 03 East, and Township 22 North, Range 02 East and 03 East. This non-project Final Supplemental Environmental Impact Statement provides an opportunity for the public and private sector, affected tribes, and agencies with jurisdiction, expertise, and interest to review and comment on the proposed action by the Washington State Department of Natural Resources (DNR) to implement appropriate management strategies for the Maury Island site. This document analyzes reasonable alternatives, the probable significant adverse and beneficial environmental impacts of the alternatives, and their relation to existing policies, rules, and regulations. The Aquatic Reserves Program Guidance Final Programmatic Environmental Impact Statement (FEIS) was issued on September 6, 2002 to define criteria for establishing an aquatic reserve. The Maury Island Aquatic Reserve SEIS implements the guidance. Copies of the programmatic FEIS are available for review through either the SEPA Center or the Aquatic Resources Division, Washington Department of Natural Resources, 1111 St. SE, Olympia, Washington, or the State Library.
    [Show full text]
  • Testing Evolutionary Developmental Hypotheses with Sea Urchins: a Study on Plasticity and Homology
    SEA URCHIN HYPOTHESES: A STUDY OF PLASTICITY AND HOMOLOGY TESTING EVOLUTIONARY DEVELOPMENTAL HYPOTHESES WITH SEA URCHINS: A STUDY OF PLASTICITY AND HOMOLOGY By LISA MARIE PINTO, H.B.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment ofthe Requirements for the Degree Master ofScience McMaster University © Copyright by Lisa Marie Pinto, August 2009. MASTEROF SCIENCE (2009) MCMASTER UNIVERSITY (Biology) Hamilton, Ontario TITLE: Testing Evolutionary Developmental Hypotheses with Sea Urchins: A Study on Plasticity and Homology AUTHOR: Lisa Marie Pinto, H.B.Sc. (McMaster, University) SUPERVISOR: Assistant Professor, lR. Stone NUMBER OF PAGES: viii, 62 11 Abstract Sea urchins traditionally have been considered as model organisms for developmental studies, as they transform from bilaterally symmetric larvae to pentaradially symmetric adults. They are classified universally as members in the phylum Echinodermata, but skeletal homologies between the class in which sea urchins are contained and other echinoderm classes remain contested. And, culturally, the high demand for sea urchin sushi, a delicacy known as uni, has spiked interest in sea urchin farming and how to capitalize on making a commercially more-desirable food product for human consumption. In this thesis, experiments were conducted to test evolutionary developmental hypotheses about sea urchin life history plasticity, skeleton homologies, and reproductive energetics. I found that sea urchin rudiments can be resorbed, exhibiting extreme plasticity and, thereby, functioning as capacitors for ensuring metamorphose in favourable conditions; sea urchin primary podia may be considered as nonhomologous with sea cucumber ambulacral podia, in accordance with the extra-axial theory; and gravid sea urchins fed a carrot-only diet produced gonads that were more desirable commercially than were gonads produced by sea urchins fed a seaweed and carrot diet.
    [Show full text]