Appendix 3 Marine Spcies Lists
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N. -
Rapid Assessment Shore Survey for Exotic Species in San Francisco Bay - May 2004
Rapid Assessment Shore Survey for Exotic Species in San Francisco Bay - May 2004 Andrew N. Cohen, San Francisco Estuary Institute, Oakland, CA Dale R. Calder, Royal Ontario Museum, Toronto, Ontario James T. Carlton, Williams College/Mystic Seaport–Maritime Studies Program, Mystic, CT John W. Chapman, Oregon State University/Hatfield Marine Science Center, Newport, OR Leslie H. Harris, Natural History Museum of Los Angeles County, Los Angeles, CA Taiju Kitayama, Tokyo National Science Museum, Tokyo, Japan Charles C. Lambert, University of Washington/Friday Harbor Laboratory, Friday Harbor, WA Gretchen Lambert, University of Washington/Friday Harbor Laboratory, Friday Harbor, WA Christina Piotrowski, California Academy of Science, San Francisco, CA Michelle Shouse, U.S. Geological Survey, Menlo Park, CA Luis A. Solórzano, U.S. Food and Drug Administration, Alameda, CA Conducted for the California State Coastal Conservancy, Oakland, CA; San Francisco Bay- Delta Science Consortium and Association of Bay Area Governments, Oakland, CA; National Geographic Society, Washington, DC; and the Rose Foundation, Oakland, CA. Cite as: Cohen, A.N., D.R. Calder, J.T. Carlton, J.W. Chapman, L.H. Harris, T. Kitayama, C.C. Lambert, G. Lambert, C. Piotrowski, M. Shouse and L.A. Solórzano. 2005. Rapid Assessment Shore Survey for Exotic Species in San Francisco Bay - May 2004. Final Report for the California State Coastal Conservancy, Association of Bay Area Governments/San Francisco Bay-Delta Science Consortium, National Geographic Society and Rose Foundation. San Francisco Estuary Institute, Oakland, CA. Introduction Exotic species constitute one of the main environmental stressors in the San Francisco Estuary. To further assess the extent of this problem, we conducted a Rapid Assessment (RA) survey of exotic species at shoreline stations in San Francisco Bay in the spring of 2004. -
Ascidian Cannibalism Correlates with Larval Behavior and Adult Distribution
FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1988 Elsevier Ltd. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/00220981 and may be cited as: Young, C. M. (1988). Ascidian cannibalism correlates with larval behavior and adult distribution. Journal of Experimental Marine Biology and Ecology, 117(1), 9-26. doi:10.1016/0022-0981(88)90068-8 J. Exp. Mar. Bioi. £Col., 1988, Vol. 117, pp. 9-26 9 Elsevier JEM 01042 Ascidian cannibalism correlates with larval behavior and adult distribution Craig M. Young Department ofLarval Ecology. Harbor Branch Oceanographic Institution, Fort Pierce, Florida. U.S.A. (Received 24 March 1987; revision received 9 December 1987; accepted 22 December 1987) Abstract: In the San Juan Islands, Washington, solitary ascidians .that occur in dense monospecific aggregations demonstrate gregarious settlement as larvae, whereas species that occur as isolated individuals do not. All gregarious species reject their own eggs and larvae as food, but nongregarious species consume conspecific eggs and larvae. Moreover, the rejection mechanism is species-specific in some cases. Correla tion analysis suggests that species specificity of the rejection response has a basis in siphon diameter, egg density, and larval size, but not in number of oral tentacles, or tentacle branching. One strongly cannibalistic species, Corella inflata Huntsman, avoids consuming its own eggs and newly released tadpoles by a unique brooding mechanism that involves floating eggs, negative geotaxis after hatching, and adult orientation. Key words: Ascidian; Cannibalism; Distribution; Larva; Settlement behavior INTRODUCTION Many sessile marine invertebrates, including filter-feeders such as mussels, oysters, barnacles and ascidians, occur in discrete, dense aggregations. -
MARINE TANK GUIDE About the Marine Tank
HOME EDITION MARINE TANK GUIDE About the Marine Tank With almost 34,000 miles of coastline, Alaska’s intertidal zones, the shore areas exposed and covered by ocean tides, are home to a variety of plants and animals. The Anchorage Museum’s marine tank is home to Alaskan animals which live in the intertidal zone. The plants and animals in the Museum’s marine tank are collected under an Alaska Department of Fish and Game Aquatic Resource Permit during low tide at various beaches in Southcentral and Southeast Alaska. Visitors are asked not to touch the marine animals. Touching is stressful for the animals. A full- time animal care technician maintains the marine tank. Since the tank is not located next to the ocean, ocean water cannot be constantly pumped through it. This means special salt water is mixed at the Museum. The tank is also cleaned regularly. Equipment which keeps the water moving, clean, chilled to 43°F and constantly monitored. Contamination from human hands would impact the cleanliness of the water and potentially hurt the animals. A second tank is home to the Museum’s king crab, named King Louie, and black rockfish, named Sebastian. King crab and black rockfish of Alaska live in deeper waters than the intertidal zone creatures. This guide shares information about some of the Museum’s marine animals. When known, the Dena’ina word for an animal is included, recognizing the thousands of years of stewardship and knowledge of Indigeneous people of the Anchorage area and their language. The Dena’ina & Marine Species The geographically diverse Dena’ina lands span both inland and coastal areas, including Anchorage. -
COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp. -
Biodiversity Journal, 2021, 12 (1): 225–228
Biodiversity Journal, 2021, 12 (1): 225–228 https://doi.org/10.31396/Biodiv.Jour.2021.12.4.225.228 First record of Calliostoma lusitanicum F. Nordsieck et García- Talavera, 1979 (Gastropoda Calliostomatiidae) in the Mediter- ranean Sea and remarks on C. alexandrinum Pallary, 1912 Andrea Nappo1*, Daniel Pellegrini2 & Attilio Pagli3 1Via S’Arrulloni 25, 09045 Quartu Sant’Elena, Cagliari, Italy; e-mail: [email protected] 2Via Colle Morello 2, 00038 Valmontone, Roma, Italy; e-mail: [email protected] 3Via Valdorme 55, 50053 Empoli, Firenze, Italy; e-mail: [email protected] *Corresponding author ABSTRACT In this work is reported for the first time the presence of Calliostoma lusitanicum F. Nordsieck et García-Talavera, 1979 (Gastropoda Calliostomatiidae) in the Mediterranean Sea. Present sightings widen the known distribution of this species, found in the Madeira Archipelago and Canary Islands. The relationship between C. lusitanicum and C. alexandrinum Pallary, 1912 is discussed. KEY WORDS Calliostoma lusitanicum; Calliostomatiidae; Mollusca; Mediterranean Sea. Received 08.11.2020; accepted 26.02.2021; published online 15.03.2021 INTRODUCTION as shell height. Photos are obtained with a Nikon D90 and processed with Adobe Photoshop CC®. According to WoRMS (accessed on ABBREVIATIONS AND ACRONYMS. The 14.10.2020), 291 re cent species are currently placed following abbreviations and acronyms are used: in the genus Calliostoma Swainson, 1840 (Gas- AN: Andrea Nappo collection (Quartu Sant’Elena, tropoda Calliostomatiidae) with a worldwide distri- Cagliari, Italy); AP: Attilio Pagli collection (Em- bution. In the Medi terranean Sea, according to the poli, Firenze, Italy); DP: Daniel Pellegrini collec- systematic list of the SIM (Italian Society of Mala- tion (Valmontone, Roma, Italy); MNHN: Muséum cology) (accessed 14.10.2020), 11 species are pres- National d’Histoire Naturelle (Paris, France); SIM: ent. -
I © Copyright 2015 Kevin R. Turner
© Copyright 2015 Kevin R. Turner i Effects of fish predation on benthic communities in the San Juan Archipelago Kevin R. Turner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Kenneth P. Sebens, Chair Megan N. Dethier Daniel E. Schindler Program Authorized to Offer Degree: Biology ii University of Washington Abstract Effects of fish predation on benthic communities in the San Juan Archipelago Kevin R. Turner Chair of the Supervisory Committee: Professor Kenneth P. Sebens Department of Biology Predation is a strong driver of community assembly, particularly in marine systems. Rockfish and other large fishes are the dominant predators in the rocky subtidal habitats of the San Juan Archipelago in NW Washington State. Here I examine the consumptive effects of these predatory fishes, beginning with a study of rockfish diet, and following with tests of the direct influence of predation on prey species and the indirect influence on other community members. In the first chapter I conducted a study of the diet of copper rockfish. Food web models benefit from recent and local data, and in this study I compared my findings with historic diet data from the Salish Sea and other localities along the US West Coast. Additionally, non-lethal methods of diet sampling are necessary to protect depleted rockfish populations, and I successfully used gastric lavage to sample these fish. Copper rockfish from this study fed primarily on shrimp and other demersal crustaceans, and teleosts made up a very small portion of their diet. Compared to previous studies, I found much higher consumption of shrimp and much iii lower consumption of teleosts, a difference that is likely due in part to geographic or temporal differences in prey availability. -
Animal Origins and the Evolution of Body Plans 621
Animal Origins and the Evolution 32 of Body Plans In 1822, nearly forty years before Darwin wrote The Origin of Species, a French naturalist, Étienne Geoffroy Saint-Hilaire, was examining a lob- ster. He noticed that when he turned the lobster upside down and viewed it with its ventral surface up, its central nervous system was located above its digestive tract, which in turn was located above its heart—the same relative positions these systems have in mammals when viewed dorsally. His observations led Geoffroy to conclude that the differences between arthropods (such as lobsters) and vertebrates (such as mammals) could be explained if the embryos of one of those groups were inverted during development. Geoffroy’s suggestion was regarded as preposterous at the time and was largely dismissed until recently. However, the discovery of two genes that influence a sys- tem of extracellular signals involved in development has lent new support to Geof- froy’s seemingly outrageous hypothesis. Genes that Control Development A A vertebrate gene called chordin helps to establish cells on one side of the embryo human and a lobster carry similar genes that control the development of the body as dorsal and on the other as ventral. A probably homologous gene in fruit flies, called axis, but these genes position their body sog, acts in a similar manner, but has the opposite effect. Fly cells where sog is active systems inversely. A lobster’s nervous sys- become ventral, whereas vertebrate cells where chordin is active become dorsal. How- tem runs up its ventral (belly) surface, whereas a vertebrate’s runs down its dorsal ever, when sog mRNA is injected into an embryo (back) surface. -
554 Journal of Paleontology, V. 66, No. 4, 1992 Figure 9
554 JOURNAL OF PALEONTOLOGY, V. 66, NO. 4, 1992 FIGURE 9—Crepidula adunca encrusting living Calliostoma ligatum, Friday Harbor, Washington, shell height of C. ligatum, 21.0 mm, UCMP Type No. 39688. 1, two C. adunca conforming to upper whorls of C. ligatum; 2, C. adunca permanent scar on last whorl of hermitted C. ligatum, shell height, 22.0 mm, UCMP Type No. 39689. 1979). Other species also compete for, or inhabit, gastropod (Hyden and Forest, 1980). However, the shell-encrusting and shells (McLean, 1983; Vermeij, 1987; Walker, 1990). Because boring organisms that occur with hermit crabs have a long fossil empty shells may be rare, post-Triassic gastropod fossil assem- record, dating from the middle Jurassic. Determining the extent blages have most likely been taphonomically affected by sec- of hermitted shells in fossil assemblages should be the first line ondary occupants of shells. Because hermit crab modification of inquiry before paleoecological or evolutionary assessments of gastropod assemblages is great, Shimoyama et al. (1979) sug- are made. gested that the bivalve fossil record provided a more accurate Pagurized shells can be recognized by the settlement of bionts paleoecological record than gastropod assemblages. However, in specific locations on fossil shells (Palmer and Hancock, 1973; gastropod fossil assemblages provide valuable paleoecological Walker, 1988b, 1989, this paper). Recent and fossil biont pat- information for the history of the hermit crab. terns appear to be conservative from the Oligocene to the pres- Hermit crab body fossils are rare. Therefore, it is important ent. That is, taphonomically preserved biont patterns (e.g., east to study their other fossil record: that of the epi- and endobionts Gulf Coast examples) are similar to Recent pagurized shells. -
The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach. -
Urchin Rocks-NW Island Transect Study 2020
The Long-term Effect of Trampling on Rocky Intertidal Zone Communities: A Comparison of Urchin Rocks and Northwest Island, WA. A Class Project for BIOL 475, Marine Invertebrates Rosario Beach Marine Laboratory, summer 2020 Dr. David Cowles and Class 1 ABSTRACT In the summer of 2020 the Rosario Beach Marine Laboratory Marine Invertebrates class studied the intertidal community of Urchin Rocks (UR), part of Deception Pass State Park. The intertidal zone at Urchin Rocks is mainly bedrock, is easily reached, and is a very popular place for visitors to enjoy seeing the intertidal life. Visits to the Location have become so intense that Deception Pass State Park has established a walking trail and docent guides in the area in order to minimize trampling of the marine life while still allowing visitors. No documentation exists for the state of the marine community before visits became common, but an analogous Location with similar substrate exists just offshore on Northwest Island (NWI). Using a belt transect divided into 1 m2 quadrats, the class quantified the algae, barnacle, and other invertebrate components of the communities at the two locations and compared them. Algal cover at both sites increased at lower tide levels but while the cover consisted of macroalgae at NWI, at Urchin Rocks the lower intertidal algae were dominated by diatom mats instead. Barnacles were abundant at both sites but at Urchin Rocks they were even more abundant but mostly of the smallest size classes. Small barnacles were especially abundant at Urchin Rocks near where the walking trail crosses the transect. Barnacles may be benefitting from areas cleared of macroalgae by trampling but in turn not be able to grow to large size at Urchin Rocks. -
Phylum Chordata Bateson, 1885
Checklist of the Invertebrate Chordata and the Hemichordata of British Columbia (Tunicates and Acorn Worms) (August, 2009) by Aaron Baldwin, PhD Candidate School of Fisheries and Ocean Science University of Alaska, Fairbanks E-mail [email protected] The following checklist contains species in the chordate subphylum Tunicata and the acorn worms which have been listed as found in British Columbia. This list is certainly incomplete. The taxonomy follows that of the World Register of Marine Species (WoRMS database, www.marinespecies.org) and the Integrated Taxonomic Information System (ITIS, www.itis.gov). For several families and higher taxa I was unable to locate author's names so have left these blank. Common names are mainly from Lamb and Hanby (2005). Phylum Chordata Bateson, 1885 Subpylum Tunicata Class Ascidacea Nielsen, 1995 Order Entergona Suborder Aplousobranchia Family Cionidae Genus Ciona Fleming, 1822 Ciona savignyi Herdman, 1882 Family Clavelinidae Genus Clavelina Savigny, 1816 Clavelina huntsmani Van Name, 1931 Family Didemnidae Genus Didemnum Savigny, 1816 Didemnum carnulentum Ritter and Forsyth, 1917 Didenmum sp (Lamb and Hanby, 2005) INV Genus Diplosoma Macdonald, 1859 Diplosoma listerianum (Milne-Edwards, 1841) Genus Trididemnum delle Valle, 1881 Trididemnum alexi Lambert, 2005 Family Holozoidae Genus Distaplia delle Valle, 1881 Distaplia occidentalis Bancroft, 1899 Distaplia smithi Abbot and Trason, 1968 Family Polycitoridae Genus Cystodytes von Drasche, 1884 Cystodytes lobatus (Ritter, 1900) Genus Eudistoma Caullery, 1909