MARINE TANK GUIDE About the Marine Tank
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N. -
COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp. -
Metridium Farcimen (Tilesius, 1809)
RESEARCH ARTICLE Individual marking of soft-bodied subtidal invertebrates in situ ± A novel staining technique applied to the giant plumose anemone Metridium farcimen (Tilesius, 1809) Christopher D. Wells1,2*, Kenneth P. Sebens1,2,3 1 Biology Department, University of Washington, Seattle, WA, United States of America, 2 Friday Harbor a1111111111 Laboratories, University of Washington, Friday Harbor, WA, United States of America, 3 School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract The ability to recognize individuals and track growth over time is crucial to population OPEN ACCESS dynamics research as well as studies of animal behavior. Invertebrates are particularly diffi- cult to track as they often molt, have regenerative capabilities, or lack hard parts to attach Citation: Wells CD, Sebens KP (2017) Individual marking of soft-bodied subtidal invertebrates in markers. We tested, in laboratory and field studies, a new way of marking sea anemones situ ± A novel staining technique applied to the (order Actiniaria) by injection of three vital stains (i.e., neutral red, methylene blue, and fluo- giant plumose anemone Metridium farcimen rescein). Neutral red and methylene blue did not affect growth or survival, but fluorescein (Tilesius, 1809). PLoS ONE 12(11): e0188263. was lethal at high concentrations. Marked individuals could be identified up to seven months https://doi.org/10.1371/journal.pone.0188263 after injection -
Testing the Generality of the Trophic Cascade Paradigm for Sea Otters: a Case Study with Kelp Forests in Northern Washington, USA
Hydrobiologia (2007) 579:233–249 DOI 10.1007/s10750-006-0403-x PRIMARY RESEARCH PAPER Testing the generality of the trophic cascade paradigm for sea otters: a case study with kelp forests in northern Washington, USA Sarah K. Carter Æ Glenn R. VanBlaricom Æ Brian L. Allen Received: 6 April 2006 / Revised: 24 August 2006 / Accepted: 15 September 2006 / Published online: 31 January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Trophic cascade hypotheses for biolog- followed by a decline in diversity as one or a few ical communities, linking predation by upper tro- perennial algal species become dominant. Both sea phic levels to major features of ecological structure otter predation and commercial sea urchin harvest and dynamics at lower trophic levels, are widely are ecologically and economically important subscribed and may influence conservation policy. sources of urchin mortality in nearshore benthic Few such hypotheses have been evaluated for systems in northern Washington marine waters. We temporal or spatial generality. Previous studies of recorded changes in density of macroalgae in San sea otter (Enhydra lutris) predation along the outer Juan Channel, a marine reserve in the physically coast of North America suggest a pattern, often protected inland waters of northern Washington, elevated to the status of paradigm, in which sea otter resulting from three levels of experimental urchin presence leads to reduced sea urchin (Strongylo- harvest: (1) simulated sea otter predation (monthly centrotus spp.) biomass and rapid increases in complete harvest of sea urchins), (2) simulated abundance and diversity of annual algal species, commercial urchin harvest (annual size-selective harvest of sea urchins), and (3) no harvest (control). -
Marine Invertebrate Field Guide
Marine Invertebrate Field Guide Contents ANEMONES ....................................................................................................................................................................................... 2 AGGREGATING ANEMONE (ANTHOPLEURA ELEGANTISSIMA) ............................................................................................................................... 2 BROODING ANEMONE (EPIACTIS PROLIFERA) ................................................................................................................................................... 2 CHRISTMAS ANEMONE (URTICINA CRASSICORNIS) ............................................................................................................................................ 3 PLUMOSE ANEMONE (METRIDIUM SENILE) ..................................................................................................................................................... 3 BARNACLES ....................................................................................................................................................................................... 4 ACORN BARNACLE (BALANUS GLANDULA) ....................................................................................................................................................... 4 HAYSTACK BARNACLE (SEMIBALANUS CARIOSUS) .............................................................................................................................................. 4 CHITONS ........................................................................................................................................................................................... -
Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D. -
The Effects of Multiple Predators on the Size Structure of Red Urchin Populations in British Columbia
The Effects Of Multiple Predators On the Size Structure of Red Urchin Populations in British Columbia An undergraduate Directed Studies (BISC 498) research project by Christine Stevenson Introduction Predator-prey body size relationships influence trophic structure, transfer efficiency, and interaction strength within a food web (Jonsson and Ebenman 1998). Size distributions of both predators and prey are an important component to the population dynamics of a community. Knowledge of the strength of predatory interactions within a food web can provide insight to the relationships between the sizes of prey and their predators. Predators are generally larger than the size their prey and predator size is often positively correlated to prey size (Vezina 1985, Warren and Lawton 1987, Cohen et al. 1993). The relative body size of a predator and its prey largely contribute to the ecology and evolutionary consequences of predator-prey relationships. This is most defined in systems involving size- dependent predators. These predators are effective agents of selection among prey species that differ in body size or growth rate. Size dependent predators therefore influence the structure of prey populations by diminishing prey species of a preferred size (Kerfoot and Peterson 1980). Prey species that can reach a large size through embellishments of the exoskeleton can often attain a size refuge from predators (Sousa 1992). Thus, the risk of predation may be lower for larger prey compared to smaller individuals. The risk of an individual prey being consumed may also depend on the size- structure of the predator population, as larger predators generally have the ability to handle and consume larger prey (Sousa 1992). -
Appendix 3 Marine Spcies Lists
Appendix 3 Marine Species Lists with Abundance and Habitat Notes for Provincial Helliwell Park Marine Species at “Wall” at Flora Islet and Reef Marine Species at Norris Rocks Marine Species at Toby Islet Reef Marine Species at Maude Reef, Lambert Channel Habitats and Notes of Marine Species of Helliwell Provincial Park Helliwell Provincial Park Ecosystem Based Plan – March 2001 Marine Species at wall at Flora Islet and Reef Common Name Latin Name Abundance Notes Sponges Cloud sponge Aphrocallistes vastus Abundant, only local site occurance Numerous, only local site where Chimney sponge, Boot sponge Rhabdocalyptus dawsoni numerous Numerous, only local site where Chimney sponge, Boot sponge Staurocalyptus dowlingi numerous Scallop sponges Myxilla, Mycale Orange ball sponge Tethya californiana Fairly numerous Aggregated vase sponge Polymastia pacifica One sighting Hydroids Sea Fir Abietinaria sp. Corals Orange sea pen Ptilosarcus gurneyi Numerous Orange cup coral Balanophyllia elegans Abundant Zoanthids Epizoanthus scotinus Numerous Anemones Short plumose anemone Metridium senile Fairly numerous Giant plumose anemone Metridium gigantium Fairly numerous Aggregate green anemone Anthopleura elegantissima Abundant Tube-dwelling anemone Pachycerianthus fimbriatus Abundant Fairly numerous, only local site other Crimson anemone Cribrinopsis fernaldi than Toby Islet Swimming anemone Stomphia sp. Fairly numerous Jellyfish Water jellyfish Aequoria victoria Moon jellyfish Aurelia aurita Lion's mane jellyfish Cyanea capillata Particuilarly abundant -
The Marine Fauna of New Zealand: the Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae)
ISSN 0083-7903, 65 (Print) ISSN 2538-1016; 65 (Online) The Marine Fauna of New Zealand: The Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae) by A. G. BEU New Zealand Oceanographic Institute Memoir 65 1978 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH The Marine Fauna of New Zealand: The Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae) by A. G. BEU New Zealand Geological Survey, DSIR, Lower Hutt New Zealand Oceanographic Institute Memoir 65 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to ''World List of Scientific Periodicals" (4th edn.): Mem. N.Z. oceanogr. Inst. 65 Received for publication September 1973 © Crown Copyright 1978 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page Abstract . � 5 INTRODUCTION 5 4AXONOMY 10 Family CYMATIIDAE 10 Genus Cymatona 10 Cymatona kampyla 10 Cymatona kampyla kampyla 12 Cymatona kampyla tomlini . 18 Cymatona kampyla jobbernsi 18 Genus Fusitriton 18 Fusitriton cancellatus 22 Fusitriton cancellatus retiolus 22 Fusitriton cance/latus laudandus 23 ECOLOGY . 25 Benthic sampling programme of N.Z. Oceanographic Institute 25 Sampling methods 25 Distribution anomalies 25 Distribution 26 Distribution with depth 26 Distribution with latitude 27 Distribution with sediment type 27 Ecological conclusions 33 Dispersal times and routes of Fusitriton, and their effect on Cymatona 34 Dispersal and distribution 34 Ecological displacement of Cymatona kampyla kampyla 35 ACKNOWLEDGMENTS 36 REFERENCES 36 APPENDIX 1: Station List 38 APPENDIX 2: Dimensions of Cymatona 41 APPENDIX 3: Dimensions of Fusitriton 42 INDEX 44 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. -
Distribution and Abundance of Some Epibenthic Invertebrates of the Northeastern Gulf of Alaska with Notes on the Feeding Biology of Selected Species
DISTRIBUTION AND ABUNDANCE OF SOME EPIBENTHIC INVERTEBRATES OF THE NORTHEASTERN GULF OF ALASKA WITH NOTES ON THE FEEDING BIOLOGY OF SELECTED SPECIES by Howard M. Feder and Stephen C. Jewett Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 5 August 1978 357 We thank Max Hoberg, University of Alaska, and the research group from the Northwest Fisheries Center, Seattle, Washington, for assistance aboard the MV North Pucijk. We also thank Lael Ronholt, Northwest Fisheries Center, for data on commercially important invertebrates. Dr. D. P. Abbott, of the Hopkins Marine Station, Stanford University, identified the tunicate material. We appreciate the assistance of the Marine Sorting Center and Max Hoberg of the University of Alaska for taxonomic assistance. We also thank Rosemary Hobson, Data Processing, University of Alaska, for help with coding problems and ultimate resolution of those problems. This study was funded by the Bureau of Land Management, Department of the Interior, through an interagency agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Environmental Assessment Program. SUMMARY OF OBJEC!CIVES, CONCLUSIONS, AND IMPLICATIONS WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT The objectives of this study were to obtain (1) a qualitative and quantitative inventory of dominant epibenthic species within the study area, (2) a description of spatial distribution patterns of selected benthic invertebrate species, and (3) preliminary observations of biological interrelationships between selected segments of the benthic biota. The trawl survey was effective, and excellent spatial coverage was obtained, One hundred and thirty-three stations were successfully occupied, yielding a mean epifaunal invertebrate biomass of 2.6 g/mz. -
Appendix C - Invertebrate Population Attributes
APPENDIX C - INVERTEBRATE POPULATION ATTRIBUTES C1. Taxonomic list of megabenthic invertebrate species collected C2. Percent area of megabenthic invertebrate species by subpopulation C3. Abundance of megabenthic invertebrate species by subpopulation C4. Biomass of megabenthic invertebrate species by subpopulation C- 1 C1. Taxonomic list of megabenthic invertebrate species collected on the southern California shelf and upper slope at depths of 2-476m, July-October 2003. Taxon/Species Author Common Name PORIFERA CALCEREA --SCYCETTIDA Amphoriscidae Leucilla nuttingi (Urban 1902) urn sponge HEXACTINELLIDA --HEXACTINOSA Aphrocallistidae Aphrocallistes vastus Schulze 1887 cloud sponge DEMOSPONGIAE Porifera sp SD2 "sponge" Porifera sp SD4 "sponge" Porifera sp SD5 "sponge" Porifera sp SD15 "sponge" Porifera sp SD16 "sponge" --SPIROPHORIDA Tetillidae Tetilla arb de Laubenfels 1930 gray puffball sponge --HADROMERIDA Suberitidae Suberites suberea (Johnson 1842) hermitcrab sponge Tethyidae Tethya californiana (= aurantium ) de Laubenfels 1932 orange ball sponge CNIDARIA HYDROZOA --ATHECATAE Tubulariidae Tubularia crocea (L. Agassiz 1862) pink-mouth hydroid --THECATAE Aglaopheniidae Aglaophenia sp "hydroid" Plumulariidae Plumularia sp "seabristle" Sertulariidae Abietinaria sp "hydroid" --SIPHONOPHORA Rhodaliidae Dromalia alexandri Bigelow 1911 sea dandelion ANTHOZOA --ALCYONACEA Clavulariidae Telesto californica Kükenthal 1913 "soft coral" Telesto nuttingi Kükenthal 1913 "anemone" Gorgoniidae Adelogorgia phyllosclera Bayer 1958 orange gorgonian Eugorgia -
Benthic Data Sheet
DEMERSAL OTTER/BEAM TRAWL DATA SHEET RESEARCH VESSEL_____________________(1/20/13 Version*) CLASS__________________;DATE_____________;NAME:___________________________; DEVICE DETAILS_________ LOCATION (OVERBOARD): LAT_______________________; LONG______________________________ LOCATION (AT DEPTH): LAT_______________________; LONG_____________________________; DEPTH___________ LOCATION (START UP): LAT_______________________; LONG______________________________;.DEPTH__________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ TIME: IN______AT DEPTH_______START UP_______SURFACE_______.DURATION OF TRAWL________; SHIP SPEED__________; WEATHER__________________; SEA STATE__________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_______________________________ INVERTEBRATES Phylum Porifera Order Pennatulacea (sea pens) Class Calcarea __________________________________ Family Stachyptilidae Class Demospongiae (Vase sponge) _________________ Stachyptilum superbum_____________________ Class Hexactinellida (Hyalospongia- glass sponge) Suborder Subsessiliflorae Subclass Hexasterophora Family Pennatulidae Order Hexactinosida Ptilosarcus gurneyi________________________ Family Aphrocallistidae Family Virgulariidae Aphrocallistes vastus ______________________ Acanthoptilum sp. ________________________ Other__________________________________________ Stylatula elongata_________________________ Phylum Cnidaria (Coelenterata) Virgularia sp.____________________________ Other_______________________________________