Tetrapyrrole Biosynthetic Enzyme Protoporphyrinogen IX Oxidase 1 Is Required for Plastid RNA Editing

Total Page:16

File Type:pdf, Size:1020Kb

Tetrapyrrole Biosynthetic Enzyme Protoporphyrinogen IX Oxidase 1 Is Required for Plastid RNA Editing Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing Fan Zhanga,b, Weijiang Tanga, Boris Hedtkec, Linlin Zhonga,b, Lin Liua, Lianwei Penga, Congming Lua,d, Bernhard Grimmc, and Rongcheng Lina,d,1 aKey Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; bUniversity of Chinese Academy of Sciences, Beijing 100049, China; cDepartment of Plant Physiology, Institute of Biology, Humboldt University of Berlin, D-10099 Berlin, Germany; and dNational Center for Plant Gene Research, Beijing 100093, China Edited by Joanne Chory, The Salk Institute for Biological Studies and Howard Hughes Medical Institute, La Jolla, CA, and approved December 19, 2013 (received for review September 3, 2013) RNA editing is a posttranscriptional process that covalently alters Tetrapyrrole biosynthesis is a universal metabolic process, the sequence of RNA molecules and plays important biological occurring in all kingdoms of life. In plants, tetrapyrroles play roles in both animals and land plants. In flowering plants, RNA critical roles in various biological processes, including photo- editing converts specific cytidine residues to uridine in both plastid synthesis and respiration. They serve as cofactors for essential and mitochondrial transcripts. Previous studies identified penta- proteins involved in a wide variety of crucial cellular functions tricopeptide repeat (PPR) motif-containing proteins as site-specific (16, 17). Tetrapyrrolic metabolites, such as Mg protoporphyrin recognition factors for cytidine targets in RNA sequences. How- and heme, have also been suggested to act as signaling molecules ever, the regulatory mechanism underlying RNA editing was largely that coordinate organellar functions within the cell (18, 19). The unknown. Here, we report that protoporphyrinogen IX oxidase 1 tetrapyrrole biosynthesis pathway in plants consists of two major (PPO1), an enzyme that catalyzes protoporphyrinogen IX into pro- branches, the Mg and Fe branch, and is thought to take place toporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an almost exclusively within the plastid (16, 17). Over 20 enzymes unexpected role in editing multiple sites of plastid RNA transcripts, directly involved in tetrapyrrole biosynthesis have been identi- most of which encode subunits of the NADH dehydrogenase-like fied, some of which have been functionally characterized by complex (NDH), in the reference plant Arabidopsis thaliana.We biochemical and genetic approaches (reviews in refs. 16 and 20). identified multiple organellar RNA editing factors (MORFs), includ- It was hitherto unclear whether these enzymes have biological functions that extend beyond their well-established roles as cat- ing MORF2, MORF8, and MORF9, that interact with PPO1. We alysts in the tetrapyrrole pathway. found that two conserved motifs within the 22-aa region at the In this study, we show that disruption of protoporphyrinogen IX N terminus of PPO1 are essential for its interaction with MORFs, its oxidase 1 (PPO1), which encodes the last enzyme in the common RNA editing function, and subsequently, its effect on NDH activity. pathway to chlorophyll and heme biosynthesis (21), causes RNA However, transgenic plants lacking key domains for the tetrapyr- editing defects in 18 of 34 known plastid RNA targets, especially role biosynthetic activity of PPO1 exhibit normal RNA editing. Fur- those encoded by NADH dehydrogenase-like complex (ndh)genes. thermore, MORF2 and MORF9 interact with three PPRs or related PPO1 interacts with plastid-localized MORF proteins, which in PLANT BIOLOGY ndhB ndhD proteins required for editing of and sites. These results turn, additionally interact with two PPR proteins, CHLOROR- reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required ESPIRATORY REDUCTION 28 (CRR28) and ORGANELLE for plastid RNA editing, acting as a regulator that promotes the TRANSCRIPT PROCESSING 82 (OTP82), and a DYW domain- stability of MORF proteins through physical interaction. containing protein, DYW1. We found that the interaction with MORFs is critical for the RNA editing function of PPO1. Our metabolism | organelle | editosome study not only elucidates a role for PPO1 that does not involve tetrapyrrole biosynthesis but also, identifies a distinct regulator NA editing, the process of covalently altering the sequence of plastid RNA editing in higher plants. Rof an RNA molecule, generates protein diversity in eukar- yotes (1, 2). Generally, in land plants, RNA editing highly spe- Significance cifically converts cytidine to uridine nucleotides in transcripts of both plastid and mitochondrial genes (3); 34 cytidine residues in Both posttranscriptional RNA editing and tetrapyrrole metab- plastids and more than 500 residues in mitochondria have been olism are important processes in land plants and animals. A reported to be editing target sites in Arabidopsis thaliana (4, 5). direct link between these two distinct programs had hitherto A series of studies identified members of the PLS subfamily of not been established. This study reveals an unexpected pentatricopeptide repeat (PPR) motif-containing proteins as the function for protoporphyrinogen IX oxidase 1 from model site-specific recognition factors for cytidine targets (6). These spe- plant Arabidopsis thaliana in regulating plastid RNA editing cific PPR trans-acting proteins recognize cis elements within a re- through interacting with and modulating the stability of mul- gion of ∼30 nt within the sites to be edited (1, 6–11). Although the tiple organellar RNA editing factors. In addition to furthering DYW domains of some PPR factors contain several conserved our knowledge of the composition of the plant organellar editing residueswithacytidinedeaminasemotif(12),theenzymethat apparatus, this research provides insight into both the con- executes the editing reaction is elusive. Two recent reports docu- served and divergent roles of enzymes in the tetrapyrrole mented that members of multiple organellar RNA editing fac- metabolism during evolution. tors (MORFs)/RNA editing factor interacting proteins (RIPs) Author contributions: F.Z. and R.L. designed research; F.Z., W.T., B.H., and L.Z. performed widely affect RNA editing sites in both mitochondria and plas- research; L.L. and C.L. contributed new reagents/analytic tools; F.Z., B.H., L.P., B.G., and tids (13, 14). Organelle RNA recognition motif protein 1, which R.L. analyzed data; and F.Z. and R.L. wrote the paper. contains two truncated RIP domains, is also essential for plastid The authors declare no conflict of interest. RNA editing (15). These studies reveal additional components This article is a PNAS Direct Submission. of the plant organellar editing apparatus. However, the mecha- 1To whom correspondence should be addressed. E-mail: [email protected]. nism by which these proteins edit RNA and the complete com- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. position of the editing machinery remain largely unknown. 1073/pnas.1316183111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1316183111 PNAS | February 4, 2014 | vol. 111 | no. 5 | 2023–2028 Downloaded by guest on September 24, 2021 Results light harvesting complex of PSI, and light harvesting complex Disruption of PPO1 Severely Impairs Seedling Growth, Chlorophyll of PSII. The content of some representative subunits of these Synthesis, and NDH Complex Accumulation. The PPO enzymes are complexes was drastically decreased in the ppo1 alleles (Fig. S2A), encoded by PPO1 (At4g01690) and PPO2 (At5g14220) in the indicating that loss of PPO1 widely affects stability of the thy- A. thaliana genome. PPO1 is induced by light and ubiquitously lakoid proteins. Most strikingly, NdhH and NdhK, two subunits expressed in plant tissues, whereas PPO2 transcripts are barely of the chloroplast NDH, were absent in ppo1 (Fig. 1H). The detectable (Fig. S1 A and B). To determine the biological absence of the NDH complex is unlikely caused by changes in function of PPO1 in Arabidopsis, we obtained and analyzed two transcriptional control, because the transcript level of ndhH, independent T-DNA mutant alleles (Fig. 1A). Homozygosity for ndhK, ndhB,andndhD was not affected by the PPO1 mutations either the ppo1-1 or ppo1-2 null mutation resulted in etiolated (Fig. S2B). Moreover, it is also unlikely the result of secondary cotyledons and eventually, seedling lethality (Fig. 1 B and C). effects of seedling lethality, because the NDH complex is pres- To test how the tetrapyrrole biosynthetic pathway was affected ent, even in etioplasts. by the ppo1 mutation, several key intermediates in this pathway were determined by HPLCy. Protoporphyrin IX was drastically Loss of PPO1 Affects Multiple Editing Sites in Plastids. Previous increased in ppo1-1 compared with the WT, consistent with the studies revealed that 16 of 34 known editing sites in plastids occur loss of PPO1 function in the mutant (Fig. 1D). Importantly, the in transcripts encoding multiple subunits of the NDH complex (8). steady state levels of Mg protoporphyrin and chlorophyll were We tested whether the RNA editing status in these sites was al- decreased in ppo1-1 (Fig. 1 E and F). However, the heme level tered in ppo1 mutants. Interestingly, except for the ndhB-746 site, was not influenced by the PPO1 mutation (Fig. 1G). These results the editing efficiencies of all sites in ndhB, ndhD, ndhF,andndhG indicate that PPO1 dominantly affects the Mg branch
Recommended publications
  • Noncanonical Coproporphyrin-Dependent Bacterial Heme Biosynthesis Pathway That Does Not Use Protoporphyrin
    Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin Harry A. Daileya,b,c,1, Svetlana Gerdesd, Tamara A. Daileya,b,c, Joseph S. Burcha, and John D. Phillipse aBiomedical and Health Sciences Institute and Departments of bMicrobiology and cBiochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; dMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; and eDivision of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132 Edited by J. Clark Lagarias, University of California, Davis, CA, and approved January 12, 2015 (received for review August 25, 2014) It has been generally accepted that biosynthesis of protoheme of a “primitive” pathway in Desulfovibrio vulgaris (13). This path- (heme) uses a common set of core metabolic intermediates that way, named the “alternative heme biosynthesis” path (or ahb), has includes protoporphyrin. Herein, we show that the Actinobacteria now been characterized by Warren and coworkers (15) in sulfate- and Firmicutes (high-GC and low-GC Gram-positive bacteria) are reducing bacteria. In the ahb pathway, siroheme, synthesized unable to synthesize protoporphyrin. Instead, they oxidize copro- from uroporphyrinogen III, can be further metabolized by suc- porphyrinogen to coproporphyrin, insert ferrous iron to make Fe- cessive demethylation and decarboxylation to yield protoheme (14, coproporphyrin (coproheme), and then decarboxylate coproheme 15) (Fig. 1 and Fig. S1). A similar pathway exists for protoheme- to generate protoheme. This pathway is specified by three genes containing archaea (15, 16). named hemY, hemH, and hemQ. The analysis of 982 representa- Current gene annotations suggest that all enzymes for pro- tive prokaryotic genomes is consistent with this pathway being karyotic heme synthetic pathways are now identified.
    [Show full text]
  • Magnesium-Protoporphyrin Chelatase of Rhodobacter
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 1941-1944, March 1995 Biochemistry Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli (protoporphyrin IX/tetrapyrrole/chlorophyll/bacteriochlorophyll/photosynthesis) LUCIEN C. D. GIBSON*, ROBERT D. WILLOWSt, C. GAMINI KANNANGARAt, DITER VON WETTSTEINt, AND C. NEIL HUNTER* *Krebs Institute for Biomolecular Research and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom; and tCarlsberg Laboratory, Department of Physiology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark Contributed by Diter von Wettstein, November 14, 1994 ABSTRACT Magnesium-protoporphyrin chelatase lies at Escherichia coli and demonstrate that the extracts of the E. coli the branch point of the heme and (bacterio)chlorophyll bio- transformants can convert Mg-protoporphyrin IX to Mg- synthetic pathways. In this work, the photosynthetic bacte- protoporphyrin monomethyl ester (20, 21). Apart from posi- rium Rhodobacter sphaeroides has been used as a model system tively identifying bchM as the gene encoding the Mg- for the study of this reaction. The bchH and the bchI and -D protoporphyrin methyltransferase, this work opens up the genes from R. sphaeroides were expressed in Escherichia coli. possibility of extending this approach to other parts of the When cell-free extracts from strains expressing BchH, BchI, pathway. In this paper, we report the expression of the genes and BchD were combined, the mixture was able to catalyze the bchH, -I, and -D from R. sphaeroides in E. coli: extracts from insertion of Mg into protoporphyrin IX in an ATP-dependent these transformants, when combined in vitro, are highly active manner.
    [Show full text]
  • AOP 131: Aryl Hydrocarbon Receptor Activation Leading to Uroporphyria
    Organisation for Economic Co-operation and Development DOCUMENT CODE For Official Use English - Or. English 1 January 1990 AOP 131: Aryl hydrocarbon receptor activation leading to uroporphyria Short Title: AHR activation-uroporphyria This document was approved by the Extended Advisory Group on Molecular Screening and Toxicogenomics in June 2018. The Working Group of the National Coordinators of the Test Guidelines Programme and the Working Party on Hazard Assessment are invited to review and endorse the AOP by 29 March 2019. Magdalini Sachana, Administrator, Hazard Assessment, [email protected], +(33- 1) 85 55 64 23 Nathalie Delrue, Administrator, Test Guidelines, [email protected], +(33-1) 45 24 98 44 This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. 2 │ Foreword This Adverse Outcome Pathway (AOP) on Aryl hydrocarbon receptor activation leading to uroporphyria, has been developed under the auspices of the OECD AOP Development Programme, overseen by the Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST), which is an advisory group under the Working Group of the National Coordinators for the Test Guidelines Programme (WNT). The AOP has been reviewed internally by the EAGMST, externally by experts nominated by the WNT, and has been endorsed by the WNT and the Working Party on Hazard Assessment (WPHA) in xxxxx. Through endorsement of this AOP, the WNT and the WPHA express confidence in the scientific review process that the AOP has undergone and accept the recommendation of the EAGMST that the AOP be disseminated publicly.
    [Show full text]
  • The Function of Pufq in the Regulation of Bacteriochlorophyll Biosynthesis in Rhodobacter Capsulatus
    The Function of PufQ in the Regulation of Bacteriochlorophyll Biosynthesis in Rhodobacter capsulatus Himani Rajeshwar Utkhede B.Sc. Simon Fraser University, 200 1 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE in the Department of Molecular Biology and Biochemistry O Himani R. Utkhede 2004 SIMON FRASER UNIVERSITY March, 2004 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Approval I Name: Himani R. Utkhede Degree: Master of Science Title of Thesis: The Function of PufQ in the Regulation of Bacteriochlorophyll Synthesis in Rhodobacter capsulatus. Examining Committee: Dr. W.S. Davidson, Chair Dr. William R. Richards, Senior Supervisor Professor Emeritus, Molecular Biology and Biochemistry Simon Fraser University Dr. Michel Leroux, Supervisor Assistzt Prcfessor, ?v!s!ec.dzr Eic!ca.;- - 2~2L3.icche~isty Simon Fraser University Dr. Erika Plettner, Supervisor Assistant Professor, Chemistry Simon Fraser University Dr. Lynne Quarmby, Internal Examiner Assistant Professor, Biology Simon Fraser University Date Approved: Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further agreed that permission for multiple copying of ths work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.
    [Show full text]
  • On Tuning the Fluorescence Emission of Porphyrin Free Bases Bonded to the Pore Walls of Organo-Modified Silica
    Molecules 2014, 19, 2261-2285; doi:10.3390/molecules19022261 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article On Tuning the Fluorescence Emission of Porphyrin Free Bases Bonded to the Pore Walls of Organo-Modified Silica Rosa I. Y. Quiroz-Segoviano 1, Iris N. Serratos 1, Fernando Rojas-González 1, Salvador R. Tello-Solís 1, Rebeca Sosa-Fonseca 2, Obdulia Medina-Juárez 1, Carmina Menchaca-Campos 3 and Miguel A. García-Sánchez 1,* 1 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, D. F. 09340, Mexico 2 Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, D. F. 09340, Mexico 3 Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca Mor., Mexico * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +52-55-5804-4677; Fax: +52-55-5804-4666. Received: 24 December 2013; in revised form: 29 January 2014 / Accepted: 7 February 2014 / Published: 21 February 2014 Abstract: A sol-gel methodology has been duly developed in order to perform a controlled covalent coupling of tetrapyrrole macrocycles (e.g., porphyrins, phthalocyanines, naphthalocyanines, chlorophyll, etc.) to the pores of metal oxide networks. The resulting absorption and emission spectra intensities in the UV-VIS-NIR range have been found to depend on the polarity existing inside the pores of the network; in turn, this polarization can be tuned through the attachment of organic substituents to the tetrapyrrrole macrocycles before bonding them to the pore network.
    [Show full text]
  • A Primitive Pathway of Porphyrin Biosynthesis and Enzymology in Desulfovibrio Vulgaris
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 4853–4858, April 1998 Biochemistry A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris TETSUO ISHIDA*, LING YU*, HIDEO AKUTSU†,KIYOSHI OZAWA†,SHOSUKE KAWANISHI‡,AKIRA SETO§, i TOSHIRO INUBUSHI¶, AND SEIYO SANO* Departments of *Biochemistry and §Microbiology and ¶Division of Biophysics, Molecular Neurobiology Research Center, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-21, Japan; †Department of Bioengineering, Faculty of Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya-ku, Yokohama 240, Japan; and ‡Department of Public Health, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto 606, Japan Communicated by Rudi Schmid, University of California, San Francisco, CA, February 23, 1998 (received for review March 15, 1998) ABSTRACT Culture of Desulfovibrio vulgaris in a medium billion years ago (3). Therefore, it is important to establish the supplemented with 5-aminolevulinic acid and L-methionine- biosynthetic pathway of porphyrins in D. vulgaris, not only methyl-d3 resulted in the formation of porphyrins (sirohydro- from the biochemical point of view, but also from the view- chlorin, coproporphyrin III, and protoporphyrin IX) in which point of molecular evolution. In this paper, we describe a the methyl groups at the C-2 and C-7 positions were deuter- sequence of intermediates in the conversion of uroporphy- ated. A previously unknown hexacarboxylic acid was also rinogen III to coproporphyrinogen III and their stepwise isolated, and its structure was determined to be 12,18- enzymic conversion. didecarboxysirohydrochlorin by mass spectrometry and 1H NMR. These results indicate a primitive pathway of heme biosynthesis in D. vulgaris consisting of the following enzy- MATERIALS AND METHODS matic steps: (i) methylation of the C-2 and C-7 positions of Materials.
    [Show full text]
  • Preparation of Tetrapyrrole-Amino Acid Covalent Complexes
    I'lunt I'ht.siol.Ritx ltt'nt. 1996. -14 (3). 393-39lt Preparation of tetrapyrrole-amino acid covalent complexes Leszek Fiedorl'2*, Varda Rosenbach-Belkinl, Maruthi Sail and Avigdor Scherzl I BiochernistryDepartment. The Weizn-rannInstitute of Science.76100 Rehovot.Israel. I Prcscntaddress: Institute of Molecular BiologSr.Ja-ciellonian University. Al. Mickiewicza 3. 3 l- 120 Cracow. Poland. ':'Author to whom correspondenceshould bc addrcsscd(fax +48-12-336907:E-mail fiedor@)mol.uj.edu.pl) Abstract The presentedsynthetic approach towards chcn'rical modifications of chlorophylls(Chls) provides a perspectivcto construct model systems. where tetrapyrrole-aminoacid and tetrapyrrole-peptideinteractions coulcl be studied in covalent rnodel compor,rncls. The approach relies on thc lact that in Chls the | 7r propionic rcid sidc chain docs not participatc in the tetrapl'rroleii--electron system. It makes use of a plant enzvmechlolophyllase (EC 3.1.1.1,+).which lrr lilo and in yitrc catalysesreactions at this sidc function. The transesterilicationand hyclrolysisenzymatic rerctions are useful on a preparativescale. ln the transesterificationreaction. a desiredamino acid rcsiduc posscssirrgprimary hydloxyl group can be directly attachedto the propiorric acid side chain o1' Chl. This mcthod allows to replace the phytyl moiety in Chls n'ith seline. The r:rtherreaction. enzyrratic hydrolysis of Chls, yields chlorophyllides and opens a convenientroutc fbr furthcr rnodifications.If sufliciently mild synthetic mcthodsarc uscd. such as catalysisw,ith ,l-dimethyl arnino pyridine or activationwith N-hvdroxvsuccinimide.an arrino acid or peptide residuecan be covalentlybound to chlorophyllides' carboxylic group. lear,'ingthe essentialclectlonic structure of Chl intact. The activation w'ith N-hydroxvsuccininridcallows fbr the coupling cvrn in aqueous rncdia.
    [Show full text]
  • Continuous Chlorophyll Degradation Accompanied by Chlorophyllide and Phytol Reutilization for Chlorophyll Synthesis in Synechocystis Sp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1767 (2007) 920–929 www.elsevier.com/locate/bbabio Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803 ⁎ Dmitrii Vavilin, Wim Vermaas School of Life Sciences and Center for the Study of Early Events in Photosynthesis, Arizona State University, Box 874501, Tempe, AZ 85287, USA Received 3 January 2007; received in revised form 23 March 2007; accepted 27 March 2007 Available online 3 April 2007 Abstract Chlorophyll synthesis and degradation were analyzed in the cyanobacterium Synechocystis sp. PCC 6803 by incubating cells in the presence of 13C-labeled glucose or 15N-containing salts. Upon mass spectral analysis of chlorophyll isolated from cells grown in the presence of 13C-glucose for different time periods, four chlorophyll pools were detected that differed markedly in the amount of 13C incorporated into the porphyrin (Por) and phytol (Phy) moieties of the molecule. These four pools represent (i) unlabeled chlorophyll (12Por12Phy), (ii) 13C-labeled chlorophyll (13Por13Phy), and (iii, iv) chlorophyll, in which either the porphyrin or the phytol moiety was 13C-labeled, whereas the other constituent of the molecule remained unlabeled (13Por12Phy and 12Por13Phy). The kinetics of 12Por12Phy disappearance, presumably due to chlorophyll de- esterification, and of 13Por12Phy, 12Por13Phy, and 13Por13Phy accumulation due to chlorophyll synthesis provided evidence for continuous chlorophyll turnover in Synechocystis cells. The loss of 12Por12Phy was three-fold faster in a photosystem I-less strain than in a photosystem II- less strain and was accelerated in wild-type cells upon exposure to strong light.
    [Show full text]
  • Bilirubin Suppresses Th17 Immunity in Colitis by Upregulating CD39
    Bilirubin suppresses Th17 immunity in colitis by upregulating CD39 Maria Serena Longhi, … , Francisco J. Quintana, Simon C. Robson JCI Insight. 2017;2(9):e92791. https://doi.org/10.1172/jci.insight.92791. Research Article Gastroenterology Immunology Unconjugated bilirubin (UCB), a product of heme oxidation, has known immunosuppressant properties but the molecular mechanisms, other than antioxidant effects, remain largely unexplored. We note that UCB modulates T helper type 17 (Th17) immune responses, in a manner dependent upon heightened expression of CD39 ectonucleotidase. UCB has protective effects in experimental colitis, where it enhances recovery after injury and preferentially boosts IL-10 production by colonic intraepithelial CD4+ cells. In vitro, UCB confers immunoregulatory properties on human control Th17 cells, as reflected by increased levels of FOXP3 and CD39 with heightened cellular suppressor ability. Upregulation of CD39 by Th17 cells is dependent upon ligation of the aryl hydrocarbon receptor (AHR) by UCB. Genetic deletion of CD39, as in Entpd1–/– mice, or dysfunction of AHR, as inA hrd mice, abrogates these UCB salutary effects in experimental colitis. However, in inflammatory bowel disease (IBD) samples, UCB fails to confer substantive immunosuppressive properties upon Th17 cells, because of decreased AHR levels under the conditions tested in vitro. Immunosuppressive effects of UCB are mediated by AHR resulting in CD39 upregulation by Th17. Boosting downstream effects of AHR via UCB or enhancing CD39-mediated ectoenzymatic activity might provide therapeutic options to address development of Th17 dysfunction in IBD. Find the latest version: https://jci.me/92791/pdf RESEARCH ARTICLE Bilirubin suppresses Th17 immunity in colitis by upregulating CD39 Maria Serena Longhi,1 Marta Vuerich,1 Alireza Kalbasi,1 Jessica E.
    [Show full text]
  • Vitamin B, and B,-Proteins Edited by Bernhard Krautler, Duilio Arigoni and Bernard T
    Vitamin B, and B,-Proteins Edited by Bernhard Krautler, Duilio Arigoni and Bernard T. Golding Lectures presented at the 4th European Symposium on Vitamin B,, and B,,-Proteins @ W I LEY-VCH Weinheim - Chichester - New York - Toronto. Brisbane - Singapore This Page Intentionally Left Blank Vitamin B, and BIZ-Proteins Edited by B. Krautler, D. Arigoni and B.T. Golding 633 WILEY-VCH This Page Intentionally Left Blank Vitamin B, and B,-Proteins Edited by Bernhard Krautler, Duilio Arigoni and Bernard T. Golding Lectures presented at the 4th European Symposium on Vitamin B,, and B,,-Proteins @ W I LEY-VCH Weinheim - Chichester - New York - Toronto. Brisbane - Singapore Prof. Dr. B. Krautler Prof. Dr. D. Arigoni Prof. Dr. B.T. Golding Leopold-Franzens-Universitat ETH-Zurich Department of Chemistry Innsbruck Laboratoriuin fur University of Newcastle Institut fur Organische Chemie Organische Chemie NE 17 RU Newcastle Iiinrain 52a Universitatsstrasse 16 upon Thyne A-6020 Innsbruck CH-8092 Zurich This book was carefully produced. Nevertheless, authors, editor and publisher do not warrant the in- formation contained theirein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate. L I The cover picture shows a cartoon of B,,-dependent methionine synthase (see contribution by Drennan et al. in this book). The picture was kindly provided by Martin Tollinger, University of Innsbruck. Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British Library Die Deutsche Bibliothek - CIP-Einheitsaufnahme Vitamin B,, and B,,-proteins :lectures presented at the 4th European Symposium on Vitamin B,, and B,,-Proteins / ed.
    [Show full text]
  • Intrinsic Fluorescence of Protoporphyrin IX from Blood Samples Can Yield Information on the Growth of Prostate Tumours
    J Fluoresc (2010) 20:1159–1165 DOI 10.1007/s10895-010-0662-9 ORIGINAL PAPER Intrinsic Fluorescence of Protoporphyrin IX from Blood Samples Can Yield Information on the Growth of Prostate Tumours Flávia Rodrigues de Oliveira Silva & Maria Helena Bellini & Vivian Regina Tristão & Nestor Schor & Nilson Dias Vieira Jr. & Lilia Coronato Courrol Received: 12 November 2009 /Accepted: 30 March 2010 /Published online: 24 April 2010 # Springer Science+Business Media, LLC 2010 Abstract Prostate cancer is one of the most common types in those with prostate cancer induced by inoculation of of cancer in men, and unfortunately many prostate tumours DU145 cells. A significant contrast between the blood of remain asymptomatic until they reach advanced stages. normal and cancer subjects could be established. Blood Diagnosis is typically performed through Prostate-Specific porphyrin fluorophore showed an enhancement on the Antigen (PSA) quantification, Digital Rectal Examination fluorescence band around 632 nm following tumour (DRE) and Transrectal Ultrasonography (TU). The antigen growth. Fluorescence detection has advantages over other (PSA) is secreted by all prostatic epithelial cells and not light-based investigation methods: high sensitivity, high exclusively by cancerous ones, so its concentration also speed and safety. However it does carry the drawback of increases in the presence of other prostatic diseases. DRE low specificity of detection. The extraction of blood and TU are not reliable for early detection, when porphyrin using acetone can solve this problem, since histological analysis of prostate tissue obtained from a optical excitation of further molecular species can be biopsy is necessary. In this context, fluorescence techniques excluded, and light scattering from blood samples is are very important for the diagnosis of cancer.
    [Show full text]
  • Nomenclature of Tetrapyrroles
    Pure & Appi. Chem. Vol.51, pp.2251—2304. 0033-4545/79/1101—2251 $02.00/0 Pergamon Press Ltd. 1979. Printed in Great Britain. PROVISIONAL INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY and INTERNATIONAL UNION OF BIOCHEMISTRY JOINT COMMISSION ON BIOCHEMICAL NOMENCLATURE*t NOMENCLATURE OF TETRAPYRROLES (Recommendations, 1978) Prepared for publication by J. E. MERRITT and K. L. LOENING Comments on these proposals should be sent within 8 months of publication to the Secretary of the Commission: Dr. H. B. F. DIXON, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK. Comments from the viewpoint of languages other than English are encouraged. These may have special significance regarding the eventual publication in various countries of translations of the nomenclature finally approved by IUPAC-IUB. PROVISIONAL IUPAC—ITJB Joint Commission on Biochemical Nomenclature (JCBN), NOMENCLATUREOF TETRAPYRROLES (Recommendations 1978) CONTENTS Preface 2253 Introduction 2254 TP—O General considerations 2256 TP—l Fundamental Porphyrin Systems 1.1 Porphyrin ring system 1.2 Numbering 2257 1.3 Additional fused rings 1.4 Skeletal replacement 2258 1.5 Skeletal replacement of nitrogen atoms 2259 1.6Fused porphyrin replacement analogs 2260 1.7Systematic names for substituted porphyrins 2261 TP—2 Trivial names and locants for certain substituted porphyrins 2263 2.1 Trivial names and locants 2.2 Roman numeral type notation 2265 TP—3 Semisystematic porphyrin names 2266 3.1 Semisystematic names in substituted porphyrins 3.2 Subtractive nomenclature 2269 3.3 Combinations of substitutive and subtractive operations 3.4 Additional ring formation 2270 3.5 Skeletal replacement of substituted porphyrins 2271 TP—4 Reduced porphyrins including chlorins 4.1 Unsubstituted reduced porphyrins 4.2 Substituted reduced porphyrins.
    [Show full text]