Genomics-Enabled Studies of the Photosynthetic Apparatus in Green Sulfur Bacteria and filamentous Anoxygenic Phototrophic Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Genomics-Enabled Studies of the Photosynthetic Apparatus in Green Sulfur Bacteria and filamentous Anoxygenic Phototrophic Bacteria Arch Microbiol (2004) 182: 265–276 DOI 10.1007/s00203-004-0718-9 MINI-REVIEW Niels-Ulrik Frigaard Seeing green bacteria in a new light: Donald A. Bryant genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria Abstract Based upon their photo- analysis in Cfx. aurantiacus, and Received: 18 April 2004 Revised: 21 July 2004 synthetic nature and the presence of gene inactivation studies in Chl. Accepted: 22 July 2004 a unique light-harvesting antenna tepidum. Based on these results, Published online: 1 September 2004 structure, the chlorosome, the pho- BChl a and BChl c biosynthesis is Ó Springer-Verlag 2004 tosynthetic green bacteria are de- similar in the two organisms, fined as a distinctive group in the whereas carotenoid biosynthesis Bacteria. However, members of the differs significantly. In agreement two taxa that comprise this group, with its facultative anaerobic nature, the green sulfur bacteria (Chlorobi) Cfx. aurantiacus in some cases and the filamentous anoxygenic apparently produces structurally phototrophic bacteria (‘‘Chloroflex- different enzymes for heme and BChl ales’’), are otherwise quite different, biosynthesis, in which one enzyme both physiologically and phyloge- functions under anoxic conditions netically. This review summarizes and the other performs the same how genome sequence information reaction under oxic conditions. The facilitated studies of the biosynthesis Chl. tepidum mutants produced with and function of the photosynthetic modified BChl c and carotenoid apparatus and the oxidation of species also allow the functions of inorganic sulfur compounds in two these pigments to be studied in vivo. model organisms that represent these taxa, Chlorobium tepidum and N.-U. Frigaard (&) Æ D. A. Bryant Chloroflexus aurantiacus. The genes Keywords Bacteriochlorophyll a Æ Department of Biochemistry involved in bacteriochlorophyll Bacteriochlorophyll biosynthesis Æ and Molecular Biology, The Pennsylvania (BChl) c and carotenoid biosynthesis Bacteriochlorophyll c Æ Carotenoid State University, University Park, in these two organisms were identi- biosynthesis Æ Chlorobium Æ PA 16801, USA fied by sequence homology with E-mail: [email protected] Chloroflexus Æ Chlorosome Æ Tel.: +1-814-8637405 known BChl a and carotenoid bio- Functional genomics Æ Inorganic Fax: +1-814-8637024 synthesis enzymes, gene cluster sulfur metabolism Introduction or chlorosomes, of these bacteria are large structures and mostly consist of bacteriochlorophyll (BChl) c, d,ore in Members of the phylum Chlorobi, or green sulfur bac- addition to smaller amounts of BChl a and carotenoids teria, are strictly anaerobic and obligately photoauto- with aromatic end groups (Blankenship et al. 1995; trophic Bacteria, which form a distinct phylogenetic Blankenship and Matsuura 2003; Fig. 1)]. Chlorobium group that shares a common root with the Bacteroidetes tepidum (Wahlund et al. 1991) has emerged as the model (Garrity and Holt 2001a). The light-harvesting antennae, organism of choice for the green sulfur bacteria, because 266 Fig. 1 Simplified model of the photosynthetic apparatus in Chl. tepidum. Carotenoids (not shown) are associated with all complexes containing BChls, except the Fenna–Matthews– Olson (FMO) protein. Under oxic conditions (which are det- rimental to the bacteria), the quencher in the chlorosome prevents excitation transfer from BChl c to the reaction center and thus prevents pho- tosynthetic electron transfer. The quencher is activated by oxidation, with the electrons probably being delivered di- rectly or indirectly to O2; and it is inactivated by reduction by the chlorosome (Csm) proteins CsmI and CsmJ. Excitation transfer is shown by red lines and electron transfer is shown by blue lines it is naturally transformable (Frigaard and Bryant 2001; synthesize BChl c and/or d and contain chlorosomes. Frigaard et al. 2004d) and because its genome has been Chloroflexus aurantiacus is the best-studied member of completely sequenced (Eisen et al. 2002). Much has al- the Chloroflexi (Pierson and Castenholz 1974a). This ready been learned about the biosynthesis of carotenoids, bacterium is facultatively phototrophic and only induces BChls, and other structures and processes in this the synthesis of its photosynthetic apparatus, including organism by a combination of bioinformatic and gene chlorosomes, under anoxic conditions. The synthesis of inactivation approaches (Frigaard et al. 2002, 2003, BChl c and BChl a is inhibited under oxic conditions, 2004a, b, c; Hanson and Tabita 2001, 2003; Maresca whereas carotenoid biosynthesis persists. However, the et al. 2004). A new nomenclature of the green sulfur carotenoid composition is different under oxic and an- bacteria was recently proposed, in which Chl. tepidum is oxic conditions (see below). As Cfx. aurantiacus syn- renamed Chlorobaculum tepidum (Imhoff 2003). thesizes BChl c, it is commonly known as a green The phylum Chloroflexi, which is divided into two filamentous bacterium or a green ‘‘non-sulfur’’ bacte- orders, the ‘‘Chloroflexales’’ and the ‘‘Herpetosipho- rium. However, in recognition of the fact that some nales,’’ is a deep-branching lineage of the Bacteria members of the ‘‘Chloroflexales’’ are not ‘‘green’’ and do (Garrity and Holt 2001b). Members of the former order not synthesize BChl c/d and chlorosomes, members of synthesize BChls and are obligately or facultatively this group are now commonly referred to as ‘‘filamen- phototrophic, while members of the latter order do not tous anoxygenic phototrophic bacteria’’ or ‘‘photosyn- synthesize BChls and are not phototrophs. Although thetic flexibacteria.’’ The genome of Cfx. aurantiacus has members of both groups are designated as Gram-nega- been partially sequenced (see http://www.jgi.doe.gov tive, they do not synthesize lipopolysaccharide and thus and below) and currently is being sequenced to com- do not possess outer membranes. Like all members of pletion (R.E. Blankenship and J. Raymond, personal the Chlorobi, some but not all of the ‘‘Chloroflexales’’ communication). At present, this is the only genome 267 information available for the phylum Chloroflexi, and to comprises a single, circular DNA molecule and contains date there has been no demonstration that Cfx. auran- 2,288 assigned coding sequences, two rRNA operons tiacus is amenable to genetic manipulation. (16S-23S-5S), 50 tRNAs, and two small stable RNAs. Green sulfur bacteria are typically found in anoxic More than half of the proteins (1,217) were similar to aquatic or terrestrial environments where both sulfide proteins of known function and role category and an- and light occur. Green filamentous bacteria are often other 98 proteins were similar to proteins of known found in the anoxic layer of microbial mats but also function but unknown role category. Of the remaining occur in some aquatic environments. The light intensi- 973 proteins of unknown function, the majority ties are exceedingly low in the anoxic layers of stratified (680 proteins) encoded purely hypothetical proteins. lakes or microbial mats in which these organisms typi- Phylogenetic analyses of the genomic data support the cally occur. For example, a layer of Chl. phaeobactero- hypothesis that the Chlorobi are closely related to the ides occurs at the chemocline of the Black Sea at a depth Bacteroidetes (Cytophaga–Flavobacteria–Bacteroides) of approx. 100 m. The light intensity at this depth is grouping. Interestingly, a rather high percentage (12%) nearly 106 times less than at the surface and has been of the predicted proteins are most similar to proteins determined to be ca. 3 nmol photons m)2 s)1 (Over- from archaeal species. mann et al. 1992). Under these conditions, a single The Joint Genome Institute (JGI; Walnut Creek, chlorophyll molecule will absorb one photon in a period Calif., USA) of the United States Department of Energy of ca. 6 h. In order to survive under such low light (DOE) has determined a draft genome sequence for Cfx. intensities, green bacteria evolved highly specialized aurantiacus strain J-10-fl (Table 1). The genomic infor- light-harvesting antennae, known as chlorosomes, which mation presently resides on 1,142 contigs containing a contain the largest numbers of chromophores known in total of 4.9 Mbp. Of these contigs, 541 are larger than nature. In Chl. tepidum, each chlorosome can contain 2 kb and contain a total of 4.3 Mbp. Based on this more than 200·103 BChl c molecules (Martinez-Planells information, the total genome size is probably roughly et al. 2002; Montan˜ o et al. 2003a) and a cell can contain 5 Mbp and perhaps even larger. The data are available about 200–250 chlorosomes. Thus, a Chl. tepidum cell from JGI (http://genome.jgi-psf.org/draft_microbes/ can contain up to 50·106 BChl c molecules, or ten times chlau/chlau.download.html) or GenBank (accession the estimated number of protein molecules per cell. number NZ_AAAH00000000). Because of the incom- plete nature of the Cfx. aurantiacus data and the imprecise size-prediction for its genome, it is not possible Overview of the Chl. tepidum and Cfx. aurantiacus to estimate reliably the number and nature of the coding genomes sequences and stable RNA genes. Although the current genomic sequence information is sufficient for identify- The Institute for Genomic Research (Rockville, Md.) ing many genes of interest, the fragmented nature of the sequenced the genome of Chl. tepidum (Table 1; Eisen data is a serious limitation in whole-organism analyses et al. 2002). The 2.15-Mbp Chl. tepidum genome and comparative genomics. Efforts are therefore Table 1 Comparison of Chl. tepidum and Cfx. aurantiacus and their genomes. Data are taken from Eisen et al. (2002), Frigaard et al. (2004c), and Garrity and Holt (2001b) Chl. tepidum strain TLS Cfx. aurantiacus strain J-10-fl Genome size (bp) 2,154,946 Estimated at ca. 5,000,000 Number of predicted coding 2,288 Estimated at ca. 5,000 sequences Number of rRNA operons 2 Estimated at 2 G+C content (mol%) 56.5 57 Optimum growth temperature 48°C ca. 55°C Growth mode Photolithoautotrophic, Photoheterotrophic or photoautotrophic strictly anaerobic under anoxic conditions; chemoheterotrophic under oxic conditions Morphology Rods (ca.
Recommended publications
  • Noncanonical Coproporphyrin-Dependent Bacterial Heme Biosynthesis Pathway That Does Not Use Protoporphyrin
    Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin Harry A. Daileya,b,c,1, Svetlana Gerdesd, Tamara A. Daileya,b,c, Joseph S. Burcha, and John D. Phillipse aBiomedical and Health Sciences Institute and Departments of bMicrobiology and cBiochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; dMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; and eDivision of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132 Edited by J. Clark Lagarias, University of California, Davis, CA, and approved January 12, 2015 (received for review August 25, 2014) It has been generally accepted that biosynthesis of protoheme of a “primitive” pathway in Desulfovibrio vulgaris (13). This path- (heme) uses a common set of core metabolic intermediates that way, named the “alternative heme biosynthesis” path (or ahb), has includes protoporphyrin. Herein, we show that the Actinobacteria now been characterized by Warren and coworkers (15) in sulfate- and Firmicutes (high-GC and low-GC Gram-positive bacteria) are reducing bacteria. In the ahb pathway, siroheme, synthesized unable to synthesize protoporphyrin. Instead, they oxidize copro- from uroporphyrinogen III, can be further metabolized by suc- porphyrinogen to coproporphyrin, insert ferrous iron to make Fe- cessive demethylation and decarboxylation to yield protoheme (14, coproporphyrin (coproheme), and then decarboxylate coproheme 15) (Fig. 1 and Fig. S1). A similar pathway exists for protoheme- to generate protoheme. This pathway is specified by three genes containing archaea (15, 16). named hemY, hemH, and hemQ. The analysis of 982 representa- Current gene annotations suggest that all enzymes for pro- tive prokaryotic genomes is consistent with this pathway being karyotic heme synthetic pathways are now identified.
    [Show full text]
  • The Function of Pufq in the Regulation of Bacteriochlorophyll Biosynthesis in Rhodobacter Capsulatus
    The Function of PufQ in the Regulation of Bacteriochlorophyll Biosynthesis in Rhodobacter capsulatus Himani Rajeshwar Utkhede B.Sc. Simon Fraser University, 200 1 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE in the Department of Molecular Biology and Biochemistry O Himani R. Utkhede 2004 SIMON FRASER UNIVERSITY March, 2004 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Approval I Name: Himani R. Utkhede Degree: Master of Science Title of Thesis: The Function of PufQ in the Regulation of Bacteriochlorophyll Synthesis in Rhodobacter capsulatus. Examining Committee: Dr. W.S. Davidson, Chair Dr. William R. Richards, Senior Supervisor Professor Emeritus, Molecular Biology and Biochemistry Simon Fraser University Dr. Michel Leroux, Supervisor Assistzt Prcfessor, ?v!s!ec.dzr Eic!ca.;- - 2~2L3.icche~isty Simon Fraser University Dr. Erika Plettner, Supervisor Assistant Professor, Chemistry Simon Fraser University Dr. Lynne Quarmby, Internal Examiner Assistant Professor, Biology Simon Fraser University Date Approved: Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further agreed that permission for multiple copying of ths work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.
    [Show full text]
  • A Primitive Pathway of Porphyrin Biosynthesis and Enzymology in Desulfovibrio Vulgaris
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 4853–4858, April 1998 Biochemistry A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris TETSUO ISHIDA*, LING YU*, HIDEO AKUTSU†,KIYOSHI OZAWA†,SHOSUKE KAWANISHI‡,AKIRA SETO§, i TOSHIRO INUBUSHI¶, AND SEIYO SANO* Departments of *Biochemistry and §Microbiology and ¶Division of Biophysics, Molecular Neurobiology Research Center, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-21, Japan; †Department of Bioengineering, Faculty of Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya-ku, Yokohama 240, Japan; and ‡Department of Public Health, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto 606, Japan Communicated by Rudi Schmid, University of California, San Francisco, CA, February 23, 1998 (received for review March 15, 1998) ABSTRACT Culture of Desulfovibrio vulgaris in a medium billion years ago (3). Therefore, it is important to establish the supplemented with 5-aminolevulinic acid and L-methionine- biosynthetic pathway of porphyrins in D. vulgaris, not only methyl-d3 resulted in the formation of porphyrins (sirohydro- from the biochemical point of view, but also from the view- chlorin, coproporphyrin III, and protoporphyrin IX) in which point of molecular evolution. In this paper, we describe a the methyl groups at the C-2 and C-7 positions were deuter- sequence of intermediates in the conversion of uroporphy- ated. A previously unknown hexacarboxylic acid was also rinogen III to coproporphyrinogen III and their stepwise isolated, and its structure was determined to be 12,18- enzymic conversion. didecarboxysirohydrochlorin by mass spectrometry and 1H NMR. These results indicate a primitive pathway of heme biosynthesis in D. vulgaris consisting of the following enzy- MATERIALS AND METHODS matic steps: (i) methylation of the C-2 and C-7 positions of Materials.
    [Show full text]
  • Intrinsic Fluorescence of Protoporphyrin IX from Blood Samples Can Yield Information on the Growth of Prostate Tumours
    J Fluoresc (2010) 20:1159–1165 DOI 10.1007/s10895-010-0662-9 ORIGINAL PAPER Intrinsic Fluorescence of Protoporphyrin IX from Blood Samples Can Yield Information on the Growth of Prostate Tumours Flávia Rodrigues de Oliveira Silva & Maria Helena Bellini & Vivian Regina Tristão & Nestor Schor & Nilson Dias Vieira Jr. & Lilia Coronato Courrol Received: 12 November 2009 /Accepted: 30 March 2010 /Published online: 24 April 2010 # Springer Science+Business Media, LLC 2010 Abstract Prostate cancer is one of the most common types in those with prostate cancer induced by inoculation of of cancer in men, and unfortunately many prostate tumours DU145 cells. A significant contrast between the blood of remain asymptomatic until they reach advanced stages. normal and cancer subjects could be established. Blood Diagnosis is typically performed through Prostate-Specific porphyrin fluorophore showed an enhancement on the Antigen (PSA) quantification, Digital Rectal Examination fluorescence band around 632 nm following tumour (DRE) and Transrectal Ultrasonography (TU). The antigen growth. Fluorescence detection has advantages over other (PSA) is secreted by all prostatic epithelial cells and not light-based investigation methods: high sensitivity, high exclusively by cancerous ones, so its concentration also speed and safety. However it does carry the drawback of increases in the presence of other prostatic diseases. DRE low specificity of detection. The extraction of blood and TU are not reliable for early detection, when porphyrin using acetone can solve this problem, since histological analysis of prostate tissue obtained from a optical excitation of further molecular species can be biopsy is necessary. In this context, fluorescence techniques excluded, and light scattering from blood samples is are very important for the diagnosis of cancer.
    [Show full text]
  • Nomenclature of Tetrapyrroles
    Pure & Appi. Chem. Vol.51, pp.2251—2304. 0033-4545/79/1101—2251 $02.00/0 Pergamon Press Ltd. 1979. Printed in Great Britain. PROVISIONAL INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY and INTERNATIONAL UNION OF BIOCHEMISTRY JOINT COMMISSION ON BIOCHEMICAL NOMENCLATURE*t NOMENCLATURE OF TETRAPYRROLES (Recommendations, 1978) Prepared for publication by J. E. MERRITT and K. L. LOENING Comments on these proposals should be sent within 8 months of publication to the Secretary of the Commission: Dr. H. B. F. DIXON, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK. Comments from the viewpoint of languages other than English are encouraged. These may have special significance regarding the eventual publication in various countries of translations of the nomenclature finally approved by IUPAC-IUB. PROVISIONAL IUPAC—ITJB Joint Commission on Biochemical Nomenclature (JCBN), NOMENCLATUREOF TETRAPYRROLES (Recommendations 1978) CONTENTS Preface 2253 Introduction 2254 TP—O General considerations 2256 TP—l Fundamental Porphyrin Systems 1.1 Porphyrin ring system 1.2 Numbering 2257 1.3 Additional fused rings 1.4 Skeletal replacement 2258 1.5 Skeletal replacement of nitrogen atoms 2259 1.6Fused porphyrin replacement analogs 2260 1.7Systematic names for substituted porphyrins 2261 TP—2 Trivial names and locants for certain substituted porphyrins 2263 2.1 Trivial names and locants 2.2 Roman numeral type notation 2265 TP—3 Semisystematic porphyrin names 2266 3.1 Semisystematic names in substituted porphyrins 3.2 Subtractive nomenclature 2269 3.3 Combinations of substitutive and subtractive operations 3.4 Additional ring formation 2270 3.5 Skeletal replacement of substituted porphyrins 2271 TP—4 Reduced porphyrins including chlorins 4.1 Unsubstituted reduced porphyrins 4.2 Substituted reduced porphyrins.
    [Show full text]
  • And Formation
    J Med Genet: first published as 10.1136/jmg.17.1.1 on 1 February 1980. Downloaded from Review article Journal of Medical Genetics, 1980, 17, 1-14 Haems and chlorophylls: comparison of function and formation G A F HENDRY AND 0 T G JONES From the Department ofBiochemistry, The Medical School, University ofBristol, Bristol BS8 ITD In 1844 Verdeill reported that acid treatment of at the same time by McMunn3 of cytochromes, chlorophyll or haem yielded apparently similar red another group of haem proteins. compounds; he even postulated that chlorophylls It was the demonstration by Nencki and co- would contain iron. Hoppe-Seyler2 confirmed the workers 45 that the degradation of both chlorophylls apparent similarity of acid derivatives of haems and and haems yielded monopyrroles that led them, in chlorophylls from their light absorption charac- true neo-Darwinian fashion, to postulate a common teristics, a point rather overshadowing the discovery origin for animals and plants. 0 0-'I CH2 II copyright. CH CH3 COOH CIH2 CH2 C-O CH2 http://jmg.bmj.com/ NH2 ( CH3' 'CH3 ® 5- Aminolaevulinic acid a CH2 2 1 12 2 CH2 )H COOH CD FIG 1 Structures ofprotohaem and Protoporphyrin IX chlorophyll a and two of their precursors, acid and 5-aminolaevulinic on September 30, 2021 by guest. Protected protoporphyrin IX (with substituent numbering positions). CH2 CH CH.--,j CH2 CH2 COOCH3 Protohoem (haem- b) CooC20H39 Chlorophyll a 1 J Med Genet: first published as 10.1136/jmg.17.1.1 on 1 February 1980. Downloaded from 2 G A F Hendry and 0 T G Jones Following the work ofWillstatter6 and Fischer and particularly those of avian egg shells, have no Stern,7 the structure of most natural and many central complexed metal.
    [Show full text]
  • The Biosynthesis of Vitamin B12: a Study by 13C Magnetic Resonance Spectroscopy
    Proc. Nat. Acad. Sci. USA Vol. 69, No. 9, pp. 2585-2588, September 1972 The Biosynthesis of Vitamin B12: A Study by 13C Magnetic Resonance Spectroscopy (corrin/cyanocobalamin/porphyrins/porphobilinogen/5-aminolevulinic acid) CHARLES ERIC BROW'N*, JOSEPH J. KATZt, AND DAVID SHEMIN* * Division of Biochemistry, Department of Chemistry, Northwestern University, Evanston, Illinois 60201; and t Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 Contributed by David Shemin, July 11, 1972 ABSTRACT The origin of the methyl group on C-i unless a methyl group of the B12 contained "C. In this ex- of Ring A of the corrin ring of vitamin B12 was investigated the of the acetic acid formed con- by 'IC magnetic resonance spectroscopy. The proton- periment methyl group decoupled "3C spectra of vitamin B12 synthesized from tained radioactivity (6). The radioactivity was only 8-9% [5..13CJ5.aminolevulinic acid by Propionibacteria were ob- of the calculated value, and it was considered possible that tained by Fourier-transform nuclear magnetic resonance ,it was present in the methyl group at C-i. This low yield of of high resolution, and spectra of high-resolution proton radioactivity could be rationalized because the yield of acetic magnetic resonance of the 'IC-labeled B12 were also taken. The 5-carbon atom of 6-aminolevulinic acid is the source acid was low, and the contribution of the methyl group at C-i of seven or eight known positions of vitamin B12, depending to the general pool of the total acetic acid yield could not be on whether the C-i methyl group is also derived from the ascertained.
    [Show full text]
  • Porphyrins; Urine
    LAB #: Sample Report CLIENT #: 12345 PATIENT: Sample Patient DOCTOR: Sample Doctor ID: Doctor's Data, Inc. SEX: Female 3755 Illinois Ave. AGE: 26 St. Charles, IL 60174 U.S.A. !!"#$%&#'()*+,#'(- PORPHYRINS RESULT REFERENCE PERCENTILE nmol/g creatinine INTERVAL 95th 99th Uroporphyrins 69 < 20 Heptacarboxylporphyrins 2.6 < 4 Hexacarboyxlporphyrins 0.94 < 3.5 Pentacarboxylporphyrins 1.4 < 3 Coproporphyrin I 31 < 24 Coproporphyrin III 100 < 70 Coproporphyrin I/Coproporphyrin III 0.3 < 0.8 Total Porphyrins 210 < 110 Precoproporphyrin I* 1.4 < 2 Precoproporphyrin II* 1.7 < 1.2 Precoproporphyrin III* 0 < 1.2 Total Precoproporphyrins* 3.1 < 4 Precoproporphyrins*/Uroporphyrins 0.045 < 0.1 INFORMATION Urinary porphyrins are oxidized intermediate metabolites of heme Porphyrins Pattern Recognition Guide: biosynthesis and can serve as biomarkers of disorders in heme production. Abnormal porphyrin profiles have been associated with genetic disorders, poor nutritional status, oxidative stress, Mercury ↑ Penta, ↑ Copro III, ↑ Precopros, ↑ Precorpros : Uros and high level exposure to toxic chemicals or toxic metals. The ↑ ↑ ratio of Precoproporphyrins-to-Uroporphyrins is reported to Arsenic Uros, Copro I : Copro III increase the sensitivity for detecting abnormalities in individuals Lead ↑ Copro III with low heme biosynthesis. Alcohol, sedatives, analgesics, antibiotics estrogens and oral contraceptives can affect the levels Hexachlorobenzene, Dioxin ↑ Uros of urinary porphyrins. Anemia, pregnancy, and liver disease can Methylchloride, also affect porphyrin
    [Show full text]
  • Porphyrin Metabolism and Haem Biosynthesis in Gilbert's Syndrome
    Gut: first published as 10.1136/gut.28.2.125 on 1 February 1987. Downloaded from Gut, 1987, 28, 125-130 Porphyrin metabolism and haem biosynthesis in Gilbert's syndrome K E L McCOLL, G G THOMPSON, E EL OMAR, M R MOORE, AND A GOLDBERG From the University Dept. Medicine, Gardiner Institute, Western Infirmary, Glasgow SUMMARY Studies in 14 patients with unconjugated hyperbilirubinaemia caused by Gilbert's syndrome have revealed abnormalities of the enzymes of haem biosynthesis measured in peripheral blood cells. The activity of the penultimate enzyme of haem biosynthesis protopor- phyrinogen (PROTO) oxidase was reduced at 3-1±2.6 nmol PROTO/g protein/h (mean±ISD) compared with 8*2±5-1 in controls (p<0.005). This was associated with a compensatory increase in the activity of the initial and rate controlling enzyme of the pathway delta-aminolaevulinic acid (ALA) synthase at 866±636 nmol ALA/g/protein/h compared with 156±63 in controls (p<0.001). Unlike variegate porphyria in which there is a genetic deficiency of PROTO oxidase there was no increased excretion of porphyrins or their precursors in Gilbert's syndrome. Accentuation and subsequent correction of the unconjugated hyperbilirubinaemia with rifampicin produced reciprocal changes in PROTO oxidase activity indicating that bilirubin may be inhibiting the activity of this enzyme. http://gut.bmj.com/ Gilbert's syndrome originally described in 1901 by ferase activity.`8 Gilbert's syndrome may be a Gilbert and Lereboullet' is a benign disorder affect- heterogenous disorder.9 We wish to report a pre- ing 2-5% of the population.
    [Show full text]
  • (12) United States Patent (73) Assignee: Ls3oard Ofareg
    US006262257B1 (12) United States Patent (10) Patent N0.: US 6,262,257 B1 Gale et al. (45) Date of Patent: Jul. 17, 2001 (54) CALIXPYRROLES, Andreetti, G., “Crystal and Molecular Structure of CALIXPYRIDINOPYRROLES AND Cyclo{quarter[(5—t—butyl—2—hydroxy—1,3—phenylene)m CALIXPYRIDINES ethylene]} Toluene (1:1) Clathrate,” J. C.S. Chem. Comm., 1005—1007, 1979. (75) InVeIlIOrSI Philip A- Gale; JOIlathaIl L- Sessler; Asfari, et al., “Quick Synthesis of the First Double Porphy JOhIl W- Genge, all Of Austin, TX rin Double Calix[4]arene,” Tetrahedron Letters, vol. 34, No. (US); Vladimir A. Kral, Praha (CZ); 4,119 627428, 1993 Alldl‘ei Andrievsky, Rochester, NY Baeyer, A., “Ueber ein Condensationsproduct von Pyrrol mit (US); Vincent Lynch, Austin, TX (US); Aceton,” Ber Dtsch. Chem. Ges., 19:2184—2185, 1986. Petra I- 831150111, Edgewater, NJ (Us); Beer, et al, “A Neutral Upper to LoWer Rim Linked Bis— William E- Allell, Austin, TX (Us); Calix[4]arene Receptor that Recognises Anionic Guest Spe ChI‘iStOPhEI‘ T- BI‘OWII, Austin, TX cies,” Tetrahedron Letters, vol. 36, No. 5, pp. 767—770, J an., (US); Andreas Gebauer, Austin, TX 1995 _ (Us) Beer, et al., “Anion Recognition by Novel Ruthenium(II) (73) Assignee:_ ls3oard ofAReg'entrskUligiglersity_ _ of Texas SBi 052/ ridCgem l Calix cogmglunw 4 arene 126941271,Rece tor Molecules,”1994' J. Chem. ystem’ usnn’ ( ) Beer, et al., “Anion Recognition by Redox—Responsive ( * ) Notice, Subject to any disclaimer the term of this Ditopic Bis—Cobaltocenium Receptor Molecules Including a patent is extended or adgusted under 35 Novel Calix[4]arene Derivative That Binds a Dicarboxylate U_S_C_ 154(k)) by 0 days_ Dianion, Organometallzcs, 14:3288—3295, Jul., 1995.' ' Beer, et.
    [Show full text]
  • An Inherited Enzymatic Defect in Porphyria Cutanea Tarda: Decreased Uroporphyrinogen Decarboxylase Activity
    An inherited enzymatic defect in porphyria cutanea tarda: decreased uroporphyrinogen decarboxylase activity. J P Kushner, … , A J Barbuto, G R Lee J Clin Invest. 1976;58(5):1089-1097. https://doi.org/10.1172/JCI108560. Research Article Uroporphyrinogen decarboxylase activity was measured in liver and erythrocytes of normal subjects and in patients with porphyria cutanea tarda and their relatives. In patients with porphyria cutanea tarda, hepatic uroporphyrinogen decarboxylase activity was significantly reduced (mean 0.43 U/mg protein; range 0.25-0.99) as compared to normal subjects (mean 1.61 U/mg protein; range 1.27-2.42). Erythrocyte uroporphyrinogen decarboxylase was also decreased in patients with porphyria cutanea tarda. The mean erythrocyte enzymatic activity in male patients was 0.23 U/mg Hb (range 0.16-0.30) and in female patients was 0.17 U/mg Hb (range 0.15-0.18) as compared with mean values in normal subjects of 0.38 U/mg Hb (range 0.33-0.45) in men and 0.26 U/mg Hb (range 0.18-0.36) in women. With the erythrocyte assay, multiple examples of decreased uroporphyrinogen decarboxylase activity were detected in members of three families of patients with porphyria cutanea tarda. In two of these families subclinical porphyria was also recognized. The inheritance pattern was consistant with an autosomal dominant trait. The difference in erythrocyte enzymatic activity between men and women was not explained but could have been due to estrogens. This possibility was supported by the observation that men under therapy with estrogens for carcinoma of the prostate had values in the normal female range.
    [Show full text]
  • Nitrosoguanidine-Induced Mutants of Propionibacterium Shermanii
    Genet. Res., Camb. (1976), 28, pp. 93-100 93 With 3 text-figures Printed in Great Britain Tetrapyrrole biosynthesis: N-methyl-2V'-nitrosoguanidine- induced mutants of Propionibacterium shermanii BY N. H. GEORGOPAPADAKOU, J. PETRILLO AND A. I. SCOTT Chemistry Department, Yale University, New Haven, Connecticut 06520 AND B. LOW Radidbiology Laboratories, Yale University School of Medicine, New Haven, Connecticut 06510 (Received 26 February 1976) SUMMAKY An isolation method for iV-methyl-JV'-nitrosoguanidine-induced catalase negative mutants of P. shermanii based on replica plating is described. In con- trast to previous methods, it extends to the early stages of tetrapyrrole bio- synthesis which are common in both corrins and porphyrins. It may thus aid in elucidating the mechanism and control of porphyrin and corrin biosynthesis. Some preliminary results are discussed. 1. INTRODUCTION P. shermanii mutants that are unable to synthesize dA-B12* (the form of B12 that is synthesized in vivo) have been induced by a variety of mutagens including dimethyl sulphate (Mashur, Vorob'era & Iordan, 1971; Vorob'eva et al. 1971), MNNG (Vorob'eva, Baranova & Thanh, 1973) nitrosomethyl urea (Arkad'eva & Kalenik, 1971) and ethyl methanesulphonate (Pedziwilk, 1971). All these studies have focused on comparing the fermentations and fermentation products of mutant and parent strain (Fig. 1); in no instance was an attempt made to locate a biochemical defect. Prompted by the renewed interest in the biosynthesis and regulation of porphyrins and corrins (Fig. 2; Bykhovskii, Zaitseva & Bukin, 1969; Sato, Shimizu & Fukui, 1971; Scott, 1975; Friedman, 1975) we have developed a selection method for P. shermanii mutants based on the haem pathway (which is simpler and better understood than the B12 pathway).
    [Show full text]