The Role of Iron in the Pathogenesis of Porphyria Cutanea Tarda. II

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Iron in the Pathogenesis of Porphyria Cutanea Tarda. II The role of iron in the pathogenesis of porphyria cutanea tarda. II. Inhibition of uroporphyrinogen decarboxylase. J P Kushner, … , D P Steinmuller, G R Lee J Clin Invest. 1975;56(3):661-667. https://doi.org/10.1172/JCI108136. Research Article Porphria cutanea tarda is characterized biochemically by excessive hepatic synthesis and urinary excretion of uroporphyrin I and 7-carboxylporphyrins. This pattern of excretion suggest an impaired ability to decarboxylate uroporphyrinogen to the paired ability to decarboxylate uroporphyringen to the 4-carboxyl porphyrinogen, coproporphyrinogen, a reaction catalyzed by the enzyme uroporphyringen decarboxylase. Because clinical evidence has implicated iron in the pathogenesis of porphyria cutanea tarda, these experiments were designed to study the effect of iron on uroporphyrinogen decarboxylase in procine crude liver extracts. Mitochondria-free crude liver extracts were preincubated with ferrous ion and aliquots were assayed for uroporphyrinogen decarboxylase activity. Uroporphyrinogens I and III, the substrates for the decarboxylase assay, were prepared enzymatically from (3H)porphobilinogen. The products of the decarboxylase reaction were identified and quantitated by three methods: (a) extraction into 1.5 N HCl and spectrophotometric quantitation; (b) adsorption onto talc, esterification, paper chromatographic identification, and quantitation by liquid scintillation counting; and (c) adsorption onto talc, esterification, thin-layer chromatographic identification on silica gel, and quantitation by liquid scintillation counting. The thin-layer scinllation method proved most sensitive as it was the only method which accurately identified and quantitated the 7-carboxyl porphyrin reaction product. Uroporphyrinogens I and III were decarboxylated at the same rate by porcine hepatic uroporphyrinogen decarboxylase, and the addition of iron induced marked inhibition of the decarboxylase activity. Ortholpehanthroline blocked the inhibitory […] Find the latest version: https://jci.me/108136/pdf The Role of Iron in the Pathogenesis of Porphyria Cutanea Tarda II. INHIBITION OF UROPORPHYRINOGEN DECARBOXYLASE J. P. KusmqNi, D. P. STEiNmuuim, and G. R. LEE From the Departments of Internal Medicine of the Veterans Administration Hospital, and The University of Utah College of Medicine, Salt Lake City, Utah 84132 A B S T R A C T Porphyria cutanea tarda is character- Uroporphyrinogens I and III were decarboxylated at ized biochemically by excessive hepatic synthesis and the same rate by porcine hepatic uroporphyrinogen de- urinary excretion of uroporphyrin I and 7-carboxyl carboxylase, and the addition of iron induced marked porphyrins. This pattern of excretion suggests an im- inhibition of the decarboxylase activity. Orthophenan- paired ability to decarboxylate uroporphyrinogen to the throline blocked the inhibitory effect of iron. 4-carboxyl porphyrinogen, coproporphyrinogen, a re- The inhibition of uroporphyrinogen decarboxylase by action catalyzed by the enzyme uroporphyrinogen de- ferrous ion, coupled with its previously reported in- carboxylase. hibitory effect on uroporphyrinogen III cosynthetase, Because clinical evidence has implicated iron in the provides a possible biochemical explanation for the pathogenesis of porphyria cutanea tarda, these experi- pattern of urinary porphyrin excretion observed in pa- ments were designed to study the effect of iron on tients with porphyria cutanea tarda and the clinical uroporphyrinogen decarboxylase in porcine crude liver association with disordered iron metabolism. extracts. Mitochondria-free crude liver extracts were preincu- INTRODUCTION bated with ferrous ion and aliquots were assayed for uroporphyrinogen decarboxylase activity. Uroporphyri- Porphyria cutanea tarda (PCT),' the most common of nogens I and III, the substrates for the decarboxylase the clinically recognized disorders of porphyrin me- assay, were prepared enzymatically from [3H]porpho- tabolism (1), is characterized biochemically by the bilinogen. The products of the decarboxylase reaction hepatic synthesis and urinary excretion of excessive were identified and quantitated by three methods: (a) amounts of porphyrins, particularly uroporphyrin I extraction into ethyl acetate at pH 4.0, back extraction (URO I) and smaller amounts of 7-carboxyl porphyrin into 1.5 N HCO and spectrophotometric quantitation; (2-4). The pattern of porphyrin excretion is similar to (b) adsorption onto talc, esterification, paper chromato- that found in congential erythropoietic porphyria graphic identification, and quantitation by liquid scin- (Gunther's disease), but in PCT the erythrocyte does tillation counting; and (c) adsorption onto talc, esteri- not appear to contribute to the excess porphyrin pro- fication, thin-layer chromatographic identification on duction. silica gel, and quantitation by liquid scintillation Defects in porphyrin biosynthetic enzymes have not counting. The thin-layer scintillation method proved been clearly identified in PCT. However, the pattern of most sensitive as it was the only method which accu- 1Abbreviations used in this paper: COPRO, copropor- rately identified and quantitated the 7-carboxyl porphyrin phyrin; COPROGEN, coproporphyrinogen; COSYN, uro- reaction product. porphyrinogen III cosynthetase; PBG, porphobilinogen; PCT, porphyria cutanea tarda; SYN, uroporphyrinogen I Received for publication 16 December 1974 and in revised synthetase; URO, uroporphyrin; UROGEN, uroporphy- form 2 May 1975. rinogen; URODECARB, uroporphyrinogen decarboxylase. The Journal of Clinical Investigation Volume 56 September 1975* 661-667 661 Sticcinyl-CoA + Glycine nate was prepared for each experiment. The homogenate ALA was centrifuged at 37,000 g for 30 min at 4VC. This pro- cedure yielded a mitochondria-free solution which will be referred to as a "crude liver extract." Protein determina- __________PBI tions were performed by the method of Lowry, Rosebrough, UROGENI UROGENIII Farr, and Randall (13). Crudc liver extracts were incu- bated in 25-ml flasks for 2 h at 370C under an 4 J 4 Erlenmeyer 7,6,5-carboxyl porphyrinogens 0@ 7,6,5-carboxyl porphyrinogens air atmosphere in a Dubnoff shaker. Control flasks con- s ~I I 4 tained 4.0 ml of crude liver extract, cysteine (6.7 mM), COPROGENI J 1 COPROGENIII and sufficient 0.1 M Tris-HCl buffer, pH 6.8, to make a 40~ final volume of 8.0 ml. Experimental flasks contained, in PROTOIX addition, ferrous ammonium sulfate (0.7 mM Fe). 0.1-0.4- 40( ml aliquots of the preincubation mixtures were then uti- Heme lized as the source of URODECARB in the assay system. FIGURE 1 The enzymatic pathway for the biosynthesis of URODECARB was assayed by a modification of the heme. (1) =8-aminolaevulinic acid synthetase; (2) = 6- method of Romeo and Levin (11). Unlabeled and tritium- aminolaevulinic acid dehydratase; (3) = SYN; (4) = CO- labeled UROGEN I and III for use as substrates were SYN; (5) = URODECARB; (6) = COPROGEN oxi- prepared enzymatically from PBG. SYN was partially puri- dase; (7) = heme synthetase; ALA - &aminolaevulinic fied from mouse spleen (14) and COSYN was extracted acid; PROTO = protoporphyrin. from the same tissue (15). Tritium-labeled PBG was pre- pared enzymatically from [3,5-3H] aminolaevulinic acid porphyrin excretion suggests the presence of more than (New England Nuclear, Boston, Mass.) by Dr. Ephraim one such defect (Fig. 1). In the normal metabolic path- Y. Levin. Dr. Levin also kindly supplied the SYN and the COSYN. PBG and cysteine were freshly prepared just way leading to the synthesis of heme, two enzymes are before use by dissolving them in 0.1 M Tris-HCl at pH required for the synthesis of uroporphyrinogen III 7.65 for UROGEN I generation or at pH 7.9 for URO- (UROGEN III) from porphobilinogen (PBG): uro- GEN III generation, to optimize COSYN activity.2 porphyrinogen I synthetase (SYN) and uroporphyrino- Aliquots of the incubation mixtures were then added to the tubes in which the UROGEN substrates had been gen III cosynthetase (COSYN) (5). The excretion of generated and the volume in each tube was adjusted to URO I in patients with PCT implies the presence of 1.0 ml with 0.1 M Tris-HCl, pH 6.8. The assay tubes at least a partial deficiency of hepatic COSYN activity. were then incubated for 30 min at 370C in the dark. The In addition, however, the predominance of URO I and reactions were then stopped in one of two ways, depending upon the method to be used in determining the products 7-carboxyl porphyrin in the urine, rather than copro- of the reactions. porphyrin I (COPRO I), suggests the presence of a When reaction products were to be determined by a second enzymatic defect, namely decreased hepatic uro- solvent extraction method, the reactions were stopped with porphyrinogen decarboxylase (URODECARB) activity. 8 ml of 2 M acetate buffer, pH 4.4 and the tubes were Iron overload has been implicated in the pathogenesis allowed to stand in the light for 30 min to oxidize por- phyrinogens to porphyrins (16). From the clear supernate of PCT on the basis of clinical observations (6-9), obtained by centrifuging at 37,000 g for 15 min, decar- and a previous report from our laboratory demonstrated boxylated porphyrins were extracted into 8 ml of ethyl that ferrous ion was a potent inhibitor of hepatic acetate. A 5-ml aliquot of this extract was back extracted COSYN activity (10). The present report describes into 5 ml of 1.5 N HCl. Porphyrin concentration was the inhibitory effect of ferrous ion on hepatic URODE- measured spectrophotometrically
Recommended publications
  • Crystal Structure of Uroporphyrinogen III Synthase from Pseudomonas Syringae Pv. Tomato DC3000
    Biochemical and Biophysical Research Communications 408 (2011) 576–581 Contents lists available at ScienceDirect Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc Crystal structure of uroporphyrinogen III synthase from Pseudomonas syringae pv. tomato DC3000 ⇑ Shuxia Peng a,b, Hongmei Zhang a, Yu Gao a, Xiaowei Pan a, Peng Cao a, Mei Li a, Wenrui Chang a, a National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, PR China b Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China article info abstract Article history: Uroporphyrinogen III synthase (U3S) is one of the key enzymes in the biosynthesis of tetrapyrrole com- Received 11 April 2011 pounds. It catalyzes the cyclization of the linear hydroxymethylbilane (HMB) to uroporphyrinogen III Available online 19 April 2011 (uro’gen III). We have determined the crystal structure of U3S from Pseudomonas syringae pv. tomato DC3000 (psU3S) at 2.5 Å resolution by the single wavelength anomalous dispersion (SAD) method. Each Keywords: psU3S molecule consists of two domains interlinked by a two-stranded antiparallel b-sheet. The confor- Uroporphyrinogen III synthase mation of psU3S is different from its homologous proteins because of the flexibility of the linker between Crystal structure the two domains, which might be related to this enzyme’s catalytic properties. Based on mutation and Mutation activity analysis, a key residue, Arg219, was found to be important for the catalytic activity of psU3S. Enzymatic activity Tetrapyrroles Mutation of Arg219 to Ala caused a decrease in enzymatic activity to about 25% that of the wild type enzyme.
    [Show full text]
  • An Investigation of the Chlorophylls of Selected Prasinophyte Algae
    University of Nebraska at Omaha DigitalCommons@UNO Student Work 5-1-1986 An investigation of the chlorophylls of selected prasinophyte algae. Leslie Carlat Kwasnieski Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork Recommended Citation Kwasnieski, Leslie Carlat, "An investigation of the chlorophylls of selected prasinophyte algae." (1986). Student Work. 3376. https://digitalcommons.unomaha.edu/studentwork/3376 This Thesis is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Student Work by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. AN INVESTIGATION OF THE CHLOROPHYLLS OF SELECTED PRASINOPHYTE ALGAE A Thesis Presented to the Department of Biology and the Faculty of the Graduate College U n iv e rs ity o f Nebraska In Partial Fulfillment o f the Requirements fo r the Degree Master of Arts University of Nebraska at Omaha by Leslie Carl at Kwasnieski May, 1986 UMI Number: EP74978 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI EP74978 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1345 Ann Arbor, Ml 48105-1346 THESIS ACCEPTANCE Accepted for the faculty of the Graduate College, University of Nebraska, in partial fulfillm ent of the requirements for the degree Master of Arts, University of Nebraska at Omaha.
    [Show full text]
  • Hyperbilirubinemia
    Porphyrins Porphyrins (Porphins) are cyclic tetrapyrol compounds formed by the linkage )). of four pyrrole rings through methenyl bridges (( HC In the reduced porphyrins (Porphyrinogens) the linkage of four pyrrole rings (tetrapyrol) through methylene bridges (( CH2 )) The characteristic property of porphyrins is the formation of complexes with the metal ion bound to nitrogen atoms of the pyrrole rings. e.g. Heme (iron porphyrin). Proteins which contain heme ((hemoproteins)) are widely distributed e.g. Hemoglobin, Myoglobin, Cytochromes, Catalase & Tryptophan pyrrolase. Natural porphyrins have substituent side chains on the eight hydrogen atoms numbered on the pyrrole rings. These side chains are: CH 1-Methyl-group (M)… (( 3 )) 2-Acetate-group (A)… (( CH2COOH )) 3-Propionate-group (P)… (( CH2CH2COOH )) 4-Vinyl-group (V)… (( CH CH2 )) Porphyrins with asymmetric arrangement of the side chains are classified as type III porphyrins while those with symmetric arrangement of the side chains are classified as type I porphyrins. Only types I & III are present in nature & type III series is more important because it includes heme. 1 Heme Biosynthesis Heme biosynthesis occurs through the following steps: 1-The starting reaction is the condensation between succinyl-CoA ((derived from citric acid cycle in the mitochondria)) & glycine, this reaction is a rate limiting reaction in the hepatic heme synthesis, it occurs in the mitochondria & is catalyzed by ALA synthase (Aminolevulinate synthase) enzyme in the presence of pyridoxal phosphate as a cofactor. The product of this reaction is α-amino-β-ketoadipate which is rapidly decarboxylated to form δ-aminolevulinate (ALA). 2-In the cytoplasm condensation reaction between two molecules of ALA is catalyzed by ALA dehydratase enzyme to form two molecules of water & one 2 molecule of porphobilinogen (PBG) which is a precursor of pyrrole.
    [Show full text]
  • Levels of 6-Aminolevulinate Dehydratase, Uroporphyrinogen-I Synthase, and Protoporphyrin IX in Erythrocytes from Anemic Mutant M
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 3, pp. 1181-1184, March 1977 Genetics Levels of 6-aminolevulinate dehydratase, uroporphyrinogen-I synthase, and protoporphyrin IX in erythrocytes from anemic mutant mice (hemolytic disease/reticulocytosis/heme biosynthesis/development) SHIGERU SASSA* AND SELDON E. BERNSTEINt * The Rockefeller University, New York, N.Y. 10021; and t The Jackson Laboratory, Bar Harbor, Maine 04609 Communicated by Elizabeth S. Russell, December 23, 1976 ABSTRACT Levels of erythrocyte 6-aminolevulinate MATERIALS AND METHODS dehydratase [ALA-dehydratase; porphobilinogen synthase; 5- aminolevulinate hydro-lyase (adding 5-aminolevulinate and Animals. Genetically anemic mutant mice, their littermate cyclizing), EC 4.2.1.241, uroporphyrinogen-I synthase [Uro- controls, and the C57BL/6J and DBA/2J inbred strains were synthase; porphobilinogen ammonia-lyase (polymerizing), EC reared in research colonies of the Jackson Laboratory. The or- 4.3.1.8], and protoporphyrin IX (Proto) were measured by sen- igins and hematological, as well as general, characteristics of sitive semimicroassays using 2-5 IAl of whole blood obtained the various types of anemic mice have been reviewed elsewhere from normal and anemic mutant mice. The levels of erythrocyte (1-3). The mutants employed in these studies of ALA-dehydratase and Uro-synthase showed marked develop- hemolytic mental changes and ALA-dehydratase was influenced by the disease included: jaundice (ja) (4), spherocytosis (sph) (5), he- L v gene. molytic anemia (ha) (1, 6), and normoblastosis (nb) (1, 7). Other Mice with overt hemolytic diseases (ja/ja, sph/sph, nb/nb, anemias used were: microcytosis (mk) (8), Steel (SI) (9), W series ha/ha) had 10- to 20-fold increases in ALA-dehydratase, Uro- (W) (10), and Hertwig's anemia (an) (11).
    [Show full text]
  • Porphyrins & Bile Pigments
    Bio. 2. ASPU. Lectu.6. Prof. Dr. F. ALQuobaili Porphyrins & Bile Pigments • Biomedical Importance These topics are closely related, because heme is synthesized from porphyrins and iron, and the products of degradation of heme are the bile pigments and iron. Knowledge of the biochemistry of the porphyrins and of heme is basic to understanding the varied functions of hemoproteins in the body. The porphyrias are a group of diseases caused by abnormalities in the pathway of biosynthesis of the various porphyrins. A much more prevalent clinical condition is jaundice, due to elevation of bilirubin in the plasma, due to overproduction of bilirubin or to failure of its excretion and is seen in numerous diseases ranging from hemolytic anemias to viral hepatitis and to cancer of the pancreas. • Metalloporphyrins & Hemoproteins Are Important in Nature Porphyrins are cyclic compounds formed by the linkage of four pyrrole rings through methyne (==HC—) bridges. A characteristic property of the porphyrins is the formation of complexes with metal ions bound to the nitrogen atom of the pyrrole rings. Examples are the iron porphyrins such as heme of hemoglobin and the magnesium‐containing porphyrin chlorophyll, the photosynthetic pigment of plants. • Natural Porphyrins Have Substituent Side Chains on the Porphin Nucleus The porphyrins found in nature are compounds in which various side chains are substituted for the eight hydrogen atoms numbered in the porphyrin nucleus. As a simple means of showing these substitutions, Fischer proposed a shorthand formula in which the methyne bridges are omitted and a porphyrin with this type of asymmetric substitution is classified as a type III porphyrin.
    [Show full text]
  • UROPORPHYRINOGEN HII COSYNTHETASE in HUMAN Hemolysates from Five Patientswith Congenital Erythropoietic Porphyriawas Much Lower
    UROPORPHYRINOGEN HII COSYNTHETASE IN HUMAN CONGENITAL ERYTHROPOIETIC PORPHYRIA * BY GIOVANNI ROMEO AND EPHRAIM Y. LEVIN DEPARTMENT OF PEDIATRICS, THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE Communicated by William L. Straus, Jr., April 24, 1969 Abstract.-Activity of the enzyme uroporphyrinogen III cosynthetase in hemolysates from five patients with congenital erythropoietic porphyria was much lower than the activity in control samples. The low cosynthetase activity in patients was not due to the presence of a free inhibitor or some competing en- zymatic activity, because hemolysates from porphyric subjects did not interfere either with the cosynthetase activity of hemolysates from normal subjects or with cosynthetase prepared from hematopoietic mouse spleen. This partial deficiency of cosynthetase in congenital erythropoietic porphyria corresponds to that shown previously in the clinically similar erythropoietic porphyria of cattle and explains the overproduction of uroporphyrin I in the human disease. Erythropoietic porphyria is a rare congenital disorder of man and cattle, characterized by photosensitivity, erythrodontia, hemolytic anemia, and por- phyrinuria.1 Many of the clinical manifestations of the disease can be explained by the production in marrow, deposition in tissues, and excretion in the urine and feces, of large amounts of uroporphyrin I and coproporphyrin I, which are products of the spontaneous oxidation of uroporphyrinogen I and its decarboxyl- ated derivative, coproporphyrinogen I. In cattle, the condition is inherited
    [Show full text]
  • Noncanonical Coproporphyrin-Dependent Bacterial Heme Biosynthesis Pathway That Does Not Use Protoporphyrin
    Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin Harry A. Daileya,b,c,1, Svetlana Gerdesd, Tamara A. Daileya,b,c, Joseph S. Burcha, and John D. Phillipse aBiomedical and Health Sciences Institute and Departments of bMicrobiology and cBiochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; dMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; and eDivision of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132 Edited by J. Clark Lagarias, University of California, Davis, CA, and approved January 12, 2015 (received for review August 25, 2014) It has been generally accepted that biosynthesis of protoheme of a “primitive” pathway in Desulfovibrio vulgaris (13). This path- (heme) uses a common set of core metabolic intermediates that way, named the “alternative heme biosynthesis” path (or ahb), has includes protoporphyrin. Herein, we show that the Actinobacteria now been characterized by Warren and coworkers (15) in sulfate- and Firmicutes (high-GC and low-GC Gram-positive bacteria) are reducing bacteria. In the ahb pathway, siroheme, synthesized unable to synthesize protoporphyrin. Instead, they oxidize copro- from uroporphyrinogen III, can be further metabolized by suc- porphyrinogen to coproporphyrin, insert ferrous iron to make Fe- cessive demethylation and decarboxylation to yield protoheme (14, coproporphyrin (coproheme), and then decarboxylate coproheme 15) (Fig. 1 and Fig. S1). A similar pathway exists for protoheme- to generate protoheme. This pathway is specified by three genes containing archaea (15, 16). named hemY, hemH, and hemQ. The analysis of 982 representa- Current gene annotations suggest that all enzymes for pro- tive prokaryotic genomes is consistent with this pathway being karyotic heme synthetic pathways are now identified.
    [Show full text]
  • AOP 131: Aryl Hydrocarbon Receptor Activation Leading to Uroporphyria
    Organisation for Economic Co-operation and Development DOCUMENT CODE For Official Use English - Or. English 1 January 1990 AOP 131: Aryl hydrocarbon receptor activation leading to uroporphyria Short Title: AHR activation-uroporphyria This document was approved by the Extended Advisory Group on Molecular Screening and Toxicogenomics in June 2018. The Working Group of the National Coordinators of the Test Guidelines Programme and the Working Party on Hazard Assessment are invited to review and endorse the AOP by 29 March 2019. Magdalini Sachana, Administrator, Hazard Assessment, [email protected], +(33- 1) 85 55 64 23 Nathalie Delrue, Administrator, Test Guidelines, [email protected], +(33-1) 45 24 98 44 This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. 2 │ Foreword This Adverse Outcome Pathway (AOP) on Aryl hydrocarbon receptor activation leading to uroporphyria, has been developed under the auspices of the OECD AOP Development Programme, overseen by the Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST), which is an advisory group under the Working Group of the National Coordinators for the Test Guidelines Programme (WNT). The AOP has been reviewed internally by the EAGMST, externally by experts nominated by the WNT, and has been endorsed by the WNT and the Working Party on Hazard Assessment (WPHA) in xxxxx. Through endorsement of this AOP, the WNT and the WPHA express confidence in the scientific review process that the AOP has undergone and accept the recommendation of the EAGMST that the AOP be disseminated publicly.
    [Show full text]
  • The Function of Pufq in the Regulation of Bacteriochlorophyll Biosynthesis in Rhodobacter Capsulatus
    The Function of PufQ in the Regulation of Bacteriochlorophyll Biosynthesis in Rhodobacter capsulatus Himani Rajeshwar Utkhede B.Sc. Simon Fraser University, 200 1 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE in the Department of Molecular Biology and Biochemistry O Himani R. Utkhede 2004 SIMON FRASER UNIVERSITY March, 2004 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Approval I Name: Himani R. Utkhede Degree: Master of Science Title of Thesis: The Function of PufQ in the Regulation of Bacteriochlorophyll Synthesis in Rhodobacter capsulatus. Examining Committee: Dr. W.S. Davidson, Chair Dr. William R. Richards, Senior Supervisor Professor Emeritus, Molecular Biology and Biochemistry Simon Fraser University Dr. Michel Leroux, Supervisor Assistzt Prcfessor, ?v!s!ec.dzr Eic!ca.;- - 2~2L3.icche~isty Simon Fraser University Dr. Erika Plettner, Supervisor Assistant Professor, Chemistry Simon Fraser University Dr. Lynne Quarmby, Internal Examiner Assistant Professor, Biology Simon Fraser University Date Approved: Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further agreed that permission for multiple copying of ths work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.
    [Show full text]
  • A Primitive Pathway of Porphyrin Biosynthesis and Enzymology in Desulfovibrio Vulgaris
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 4853–4858, April 1998 Biochemistry A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris TETSUO ISHIDA*, LING YU*, HIDEO AKUTSU†,KIYOSHI OZAWA†,SHOSUKE KAWANISHI‡,AKIRA SETO§, i TOSHIRO INUBUSHI¶, AND SEIYO SANO* Departments of *Biochemistry and §Microbiology and ¶Division of Biophysics, Molecular Neurobiology Research Center, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-21, Japan; †Department of Bioengineering, Faculty of Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya-ku, Yokohama 240, Japan; and ‡Department of Public Health, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto 606, Japan Communicated by Rudi Schmid, University of California, San Francisco, CA, February 23, 1998 (received for review March 15, 1998) ABSTRACT Culture of Desulfovibrio vulgaris in a medium billion years ago (3). Therefore, it is important to establish the supplemented with 5-aminolevulinic acid and L-methionine- biosynthetic pathway of porphyrins in D. vulgaris, not only methyl-d3 resulted in the formation of porphyrins (sirohydro- from the biochemical point of view, but also from the view- chlorin, coproporphyrin III, and protoporphyrin IX) in which point of molecular evolution. In this paper, we describe a the methyl groups at the C-2 and C-7 positions were deuter- sequence of intermediates in the conversion of uroporphy- ated. A previously unknown hexacarboxylic acid was also rinogen III to coproporphyrinogen III and their stepwise isolated, and its structure was determined to be 12,18- enzymic conversion. didecarboxysirohydrochlorin by mass spectrometry and 1H NMR. These results indicate a primitive pathway of heme biosynthesis in D. vulgaris consisting of the following enzy- MATERIALS AND METHODS matic steps: (i) methylation of the C-2 and C-7 positions of Materials.
    [Show full text]
  • Porphyrin Formation and Its Regulation in Arthrobacter
    576.852.23.095.3:547.979.733 MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 69-7(1969) PORPHYRIN FORMATION AND ITS REGULATION IN ARTHROBACTER Porphyrines in Arthrobacter: synthese en regulatie G. J. J. KORTSTEE Laboratory of Microbiology, Agricultural University, Wageningen, The Netherlands (Received 20-1-1969) H. VEENMAN & ZONEN N.V. - WAGENINGEN - 1969 Mededelingen Landbouwhogeschool Wageningen 69-7(1969 ) (Communications Agricultural University) isals o published as a thesis CONTENTS INTRODUCTION 1 CHAPTER I. LITERATURE AND PURPOSE OF THE PRESENT INVESTIGATION 3 1. LITERATURE 3 1.1. Introduction 3 1.2. The structure and nomenclature of porphyrins 3 1.3. The function and distribution of tetrapyrroles 6 1.4. The biosynthesis of tetrapyrroles 7 1.5. The regulation of the biosynthesis of tetrapyrroles 9 1.5.1. B vitamins and the biosynthesis of tetrapyrroles 9 1.5.2. Oxygen and the biosynthesis of tetrapyrroles 10 1.5.3. Iron and the biosynthesis of tetrapyrroles 12 1.5.4. Exceptions to the general relation between iron and coproporphyrin HI accumulation 12 1.6. Summary 13 2. THE PURPOSE OF THE PRESENT INVESTIGATION 14 CHAPTER II. MATERIAL AND METHODS 15 1. Micro-organisms, media and cultivation 15 2. Sterilization of media and cleaning of flasks 15 3. Aeration level 15 4. Removal of iron from the nutrient solution 15 5. Determination and uptake of iron 16 6. Determination of cell yield 16 7. Determination of carbohydrates 16 8. Determination of nitrogen 16 9. Isolation of porphyrins 17 10. Identification of porphyrins 17 11. Determination of porphyrins 17 12. Isolation and determination of heme 17 13.
    [Show full text]
  • Structural and Functional Studies of the Light-Dependent Protochlorophyllide Oxidoreductase Enzyme
    Structural and Functional Studies of the Light-Dependent Protochlorophyllide Oxidoreductase Enzyme David Robert Armstrong Department of Molecular Biology and Biotechnology A thesis submitted for the degree of Doctor of Philosophy September 2014 Abstract The light-dependent enzyme protochlorophyllide oxidoreductase (POR) is a key enzyme in the chlorophyll biosynthesis pathway, catalysing the reduction of the C17 - C18 bond in protochlorophyllide (Pchlide) to form chlorophyllide (Chlide). This reaction involves the light- induced transfer of a hydride from the nicotinamide adenine dinucleotide phosphate (NADPH) cofactor, followed by proton transfer from a catalytic tyrosine residue. Much work has been done to elucidate the catalytic mechanism of POR, however little is known about the protein structure. POR isoforms in plants are also notable as components of the prolamellar bodies (PLBs), large paracrystalline structures that are precursors to the thylakoid membranes in mature chloroplasts. Bioinformatics studies have identified a number of proteins, related to POR, which contain similar structural features, leading to the production of a structural model for POR. A unique loop region of POR was shown by EPR to be mobile, with point mutations within this region causing a reduction in enzymatic activity. Production of a 2H, 13C, 15N-labelled sample of POR for NMR studies has enabled significant advancement in the understanding of the protein structure. This includes the calculation of backbone torsion angles for the majority of the protein, in addition to the identification of multiple dynamic regions of the protein. The protocol for purification of Pchlide, the substrate for POR, has been significantly improved, providing high quality pigment for study of the POR ternary complex.
    [Show full text]