Structural and Functional Studies of the Light-Dependent Protochlorophyllide Oxidoreductase Enzyme

Total Page:16

File Type:pdf, Size:1020Kb

Structural and Functional Studies of the Light-Dependent Protochlorophyllide Oxidoreductase Enzyme Structural and Functional Studies of the Light-Dependent Protochlorophyllide Oxidoreductase Enzyme David Robert Armstrong Department of Molecular Biology and Biotechnology A thesis submitted for the degree of Doctor of Philosophy September 2014 Abstract The light-dependent enzyme protochlorophyllide oxidoreductase (POR) is a key enzyme in the chlorophyll biosynthesis pathway, catalysing the reduction of the C17 - C18 bond in protochlorophyllide (Pchlide) to form chlorophyllide (Chlide). This reaction involves the light- induced transfer of a hydride from the nicotinamide adenine dinucleotide phosphate (NADPH) cofactor, followed by proton transfer from a catalytic tyrosine residue. Much work has been done to elucidate the catalytic mechanism of POR, however little is known about the protein structure. POR isoforms in plants are also notable as components of the prolamellar bodies (PLBs), large paracrystalline structures that are precursors to the thylakoid membranes in mature chloroplasts. Bioinformatics studies have identified a number of proteins, related to POR, which contain similar structural features, leading to the production of a structural model for POR. A unique loop region of POR was shown by EPR to be mobile, with point mutations within this region causing a reduction in enzymatic activity. Production of a 2H, 13C, 15N-labelled sample of POR for NMR studies has enabled significant advancement in the understanding of the protein structure. This includes the calculation of backbone torsion angles for the majority of the protein, in addition to the identification of multiple dynamic regions of the protein. The protocol for purification of Pchlide, the substrate for POR, has been significantly improved, providing high quality pigment for study of the POR ternary complex. Various biophysical techniques have been used to study the macromolecular structure of these complexes, indicating the formation of large aggregates of the cyanobacterial enzyme induced by substrate binding, similar to PLBs. This has also led to the identification of ring structures, composed of 5 and 6 monomers of POR, which are likely to be the primary components of the cyanobacterial POR structures. Page | i Acknowledgements Firstly, I would like to thank my two supervisors Mike and Neil for their endless support and expertise, which has helped me tremendously throughout my project. I have been privileged to have two supervisors with such a vast combined knowledge of all things biochemical, and I have attempted to absorb as much of that as possible! I have also been extremely lucky to have formed a number of excellent collaborations, gaining experience in many different biophysical techniques, including: NMR with Hans Wienk in Utrecht; AUC with Steve Harding and David Morou-Besong in Nottingham; EPR with Steve Rigby, and NMR with Matt Cliff, both in Manchester; and DLS at Malvern Instruments. I am also grateful to the BBSRC for funding my research (and my Friday night pub trips!). From the Hunter group, I must especially thank Mo for all her help and preventing me, literally, from burning down the lab. Notable mentions also go to Andy Proudfoot for laying the foundations for my project, Sarah for her collaboration on pigment work, and Cvet and Qian for their wizardry on AFM and EM, respectively. I am so glad to have made so many friends within this lab: Dave and Lizzy, who drew out the board game geek in me; Jimbo, for doing all my running at football; Gooch, in particular for winding up Ken; Ken, for being so enjoyable to wind up (top red!); and Craig, for his many philosophical ‘would you rather’ questions. From the NMR group, special thanks go to Andrea, who has helped me immensely and has shown a lot of patience with me over the years. All of the NMR group have given me invaluable help during lab meetings and carried me through to the weekend with Friday cake! A shout out goes to all my excellent drinking buddies, the various Kelly lab members, those from other regions of Firth Court, and the friends I’ve had since undergrad. I have had some great housemates, particularly Dean, Mike and Gav, and felt safe with Ellie’s Neighbourhood Watch alerts. I’m also indebted to Intra Mural for many hours of cheap football. My best times have always come with two pairs of brilliant friends. In Sheffield, Jack and Ash, who have always been there, from the sweaty Corp nights through to the drug checks with German police. In St Albans, Paul and Mark, who never let me forget where home is - I could never stay North for more than a few weeks without coming back to see you guys. Finally, I am so grateful for the support and love of my family. My Nana has always shown how proud she is of me and sent me back up North with many a cake! Bex, you’re the best big sister anyone could hope for. Mostly though, this is for my parents, who are two of the kindest people and have always pushed me to do my best. I love you both very much. Page | ii Table of Contents Abstract ............................................................................................................................. i Acknowledgements ........................................................................................................... ii Table of Contents ............................................................................................................. iii Table of Figures ................................................................................................................. x Table of Tables .................................................................................................................xv Table of Equations............................................................................................................xv List of Abbreviations ....................................................................................................... xvi 1. Introduction .............................................................................................................. 1 1.1 Oxygenic photosynthesis .................................................................................................. 1 1.2 Photosynthetic Bacteria .................................................................................................... 2 1.2.1 Cyanobacteria ............................................................................................................ 3 1.3 Structure of chlorophylls................................................................................................... 3 1.4 Common steps in tetrapyrrole biosynthesis ..................................................................... 4 1.4.1 Formation of δ-aminolaevulinic acid ......................................................................... 4 1.4.2 δ-aminolaevulinic acid to porphobilinogen ............................................................... 5 1.4.3 Porphobilinogen to hydroxymethylbilane ................................................................. 6 1.4.4 Hydroxymethylbilane to uroporphyrinogen III .......................................................... 6 1.4.5 Uroporphyrinogen III to coproporphyrinogen III ....................................................... 7 1.4.6 Coproporphyrinogen III to protoporphyrinogen IX ................................................... 7 1.4.7 Protoporphyrinogen IX to protoporphyrin IX ............................................................ 8 1.5 The haem and chlorophyll branch point ........................................................................... 9 1.5.1 Ferrochelatase ........................................................................................................... 9 1.6 Protoporphyrin IX to Mg protoporphyrin IX ................................................................... 10 1.7 Mg protoporphyrin IX to Mg protoporphyrin IX monomethyl ester .............................. 11 1.8 Formation of the isocyclic ring ........................................................................................ 12 1.9 Protochlorophyllide to Chlorophyllide ............................................................................ 13 1.9.1 Light-independent protochlorophyllide oxidoreductase (DPOR) ............................ 14 Page | iii 1.9.1.1 DPOR subunits and homology to nitrogenase .................................................. 14 1.9.1.2 Structure of L-protein ....................................................................................... 15 1.9.1.3 Structure of NB-protein .................................................................................... 15 1.9.1.4 Redox function of DPOR ................................................................................... 17 1.9.2 Light-dependent protochlorophyllide oxidoreductase ............................................ 17 1.9.3 POR in plants ............................................................................................................ 18 1.9.4 SDR Superfamily of enzymes ................................................................................... 19 1.9.4.1 Rossmann Fold .................................................................................................. 20 1.9.4.2 Catalysis ............................................................................................................ 20 1.9.4.3 Oligomerisation ................................................................................................. 21 1.9.5 POR homology model .............................................................................................
Recommended publications
  • An Investigation of the Chlorophylls of Selected Prasinophyte Algae
    University of Nebraska at Omaha DigitalCommons@UNO Student Work 5-1-1986 An investigation of the chlorophylls of selected prasinophyte algae. Leslie Carlat Kwasnieski Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork Recommended Citation Kwasnieski, Leslie Carlat, "An investigation of the chlorophylls of selected prasinophyte algae." (1986). Student Work. 3376. https://digitalcommons.unomaha.edu/studentwork/3376 This Thesis is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Student Work by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. AN INVESTIGATION OF THE CHLOROPHYLLS OF SELECTED PRASINOPHYTE ALGAE A Thesis Presented to the Department of Biology and the Faculty of the Graduate College U n iv e rs ity o f Nebraska In Partial Fulfillment o f the Requirements fo r the Degree Master of Arts University of Nebraska at Omaha by Leslie Carl at Kwasnieski May, 1986 UMI Number: EP74978 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI EP74978 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1345 Ann Arbor, Ml 48105-1346 THESIS ACCEPTANCE Accepted for the faculty of the Graduate College, University of Nebraska, in partial fulfillm ent of the requirements for the degree Master of Arts, University of Nebraska at Omaha.
    [Show full text]
  • Hyperbilirubinemia
    Porphyrins Porphyrins (Porphins) are cyclic tetrapyrol compounds formed by the linkage )). of four pyrrole rings through methenyl bridges (( HC In the reduced porphyrins (Porphyrinogens) the linkage of four pyrrole rings (tetrapyrol) through methylene bridges (( CH2 )) The characteristic property of porphyrins is the formation of complexes with the metal ion bound to nitrogen atoms of the pyrrole rings. e.g. Heme (iron porphyrin). Proteins which contain heme ((hemoproteins)) are widely distributed e.g. Hemoglobin, Myoglobin, Cytochromes, Catalase & Tryptophan pyrrolase. Natural porphyrins have substituent side chains on the eight hydrogen atoms numbered on the pyrrole rings. These side chains are: CH 1-Methyl-group (M)… (( 3 )) 2-Acetate-group (A)… (( CH2COOH )) 3-Propionate-group (P)… (( CH2CH2COOH )) 4-Vinyl-group (V)… (( CH CH2 )) Porphyrins with asymmetric arrangement of the side chains are classified as type III porphyrins while those with symmetric arrangement of the side chains are classified as type I porphyrins. Only types I & III are present in nature & type III series is more important because it includes heme. 1 Heme Biosynthesis Heme biosynthesis occurs through the following steps: 1-The starting reaction is the condensation between succinyl-CoA ((derived from citric acid cycle in the mitochondria)) & glycine, this reaction is a rate limiting reaction in the hepatic heme synthesis, it occurs in the mitochondria & is catalyzed by ALA synthase (Aminolevulinate synthase) enzyme in the presence of pyridoxal phosphate as a cofactor. The product of this reaction is α-amino-β-ketoadipate which is rapidly decarboxylated to form δ-aminolevulinate (ALA). 2-In the cytoplasm condensation reaction between two molecules of ALA is catalyzed by ALA dehydratase enzyme to form two molecules of water & one 2 molecule of porphobilinogen (PBG) which is a precursor of pyrrole.
    [Show full text]
  • Levels of 6-Aminolevulinate Dehydratase, Uroporphyrinogen-I Synthase, and Protoporphyrin IX in Erythrocytes from Anemic Mutant M
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 3, pp. 1181-1184, March 1977 Genetics Levels of 6-aminolevulinate dehydratase, uroporphyrinogen-I synthase, and protoporphyrin IX in erythrocytes from anemic mutant mice (hemolytic disease/reticulocytosis/heme biosynthesis/development) SHIGERU SASSA* AND SELDON E. BERNSTEINt * The Rockefeller University, New York, N.Y. 10021; and t The Jackson Laboratory, Bar Harbor, Maine 04609 Communicated by Elizabeth S. Russell, December 23, 1976 ABSTRACT Levels of erythrocyte 6-aminolevulinate MATERIALS AND METHODS dehydratase [ALA-dehydratase; porphobilinogen synthase; 5- aminolevulinate hydro-lyase (adding 5-aminolevulinate and Animals. Genetically anemic mutant mice, their littermate cyclizing), EC 4.2.1.241, uroporphyrinogen-I synthase [Uro- controls, and the C57BL/6J and DBA/2J inbred strains were synthase; porphobilinogen ammonia-lyase (polymerizing), EC reared in research colonies of the Jackson Laboratory. The or- 4.3.1.8], and protoporphyrin IX (Proto) were measured by sen- igins and hematological, as well as general, characteristics of sitive semimicroassays using 2-5 IAl of whole blood obtained the various types of anemic mice have been reviewed elsewhere from normal and anemic mutant mice. The levels of erythrocyte (1-3). The mutants employed in these studies of ALA-dehydratase and Uro-synthase showed marked develop- hemolytic mental changes and ALA-dehydratase was influenced by the disease included: jaundice (ja) (4), spherocytosis (sph) (5), he- L v gene. molytic anemia (ha) (1, 6), and normoblastosis (nb) (1, 7). Other Mice with overt hemolytic diseases (ja/ja, sph/sph, nb/nb, anemias used were: microcytosis (mk) (8), Steel (SI) (9), W series ha/ha) had 10- to 20-fold increases in ALA-dehydratase, Uro- (W) (10), and Hertwig's anemia (an) (11).
    [Show full text]
  • Porphyrins & Bile Pigments
    Bio. 2. ASPU. Lectu.6. Prof. Dr. F. ALQuobaili Porphyrins & Bile Pigments • Biomedical Importance These topics are closely related, because heme is synthesized from porphyrins and iron, and the products of degradation of heme are the bile pigments and iron. Knowledge of the biochemistry of the porphyrins and of heme is basic to understanding the varied functions of hemoproteins in the body. The porphyrias are a group of diseases caused by abnormalities in the pathway of biosynthesis of the various porphyrins. A much more prevalent clinical condition is jaundice, due to elevation of bilirubin in the plasma, due to overproduction of bilirubin or to failure of its excretion and is seen in numerous diseases ranging from hemolytic anemias to viral hepatitis and to cancer of the pancreas. • Metalloporphyrins & Hemoproteins Are Important in Nature Porphyrins are cyclic compounds formed by the linkage of four pyrrole rings through methyne (==HC—) bridges. A characteristic property of the porphyrins is the formation of complexes with metal ions bound to the nitrogen atom of the pyrrole rings. Examples are the iron porphyrins such as heme of hemoglobin and the magnesium‐containing porphyrin chlorophyll, the photosynthetic pigment of plants. • Natural Porphyrins Have Substituent Side Chains on the Porphin Nucleus The porphyrins found in nature are compounds in which various side chains are substituted for the eight hydrogen atoms numbered in the porphyrin nucleus. As a simple means of showing these substitutions, Fischer proposed a shorthand formula in which the methyne bridges are omitted and a porphyrin with this type of asymmetric substitution is classified as a type III porphyrin.
    [Show full text]
  • UROPORPHYRINOGEN HII COSYNTHETASE in HUMAN Hemolysates from Five Patientswith Congenital Erythropoietic Porphyriawas Much Lower
    UROPORPHYRINOGEN HII COSYNTHETASE IN HUMAN CONGENITAL ERYTHROPOIETIC PORPHYRIA * BY GIOVANNI ROMEO AND EPHRAIM Y. LEVIN DEPARTMENT OF PEDIATRICS, THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE Communicated by William L. Straus, Jr., April 24, 1969 Abstract.-Activity of the enzyme uroporphyrinogen III cosynthetase in hemolysates from five patients with congenital erythropoietic porphyria was much lower than the activity in control samples. The low cosynthetase activity in patients was not due to the presence of a free inhibitor or some competing en- zymatic activity, because hemolysates from porphyric subjects did not interfere either with the cosynthetase activity of hemolysates from normal subjects or with cosynthetase prepared from hematopoietic mouse spleen. This partial deficiency of cosynthetase in congenital erythropoietic porphyria corresponds to that shown previously in the clinically similar erythropoietic porphyria of cattle and explains the overproduction of uroporphyrin I in the human disease. Erythropoietic porphyria is a rare congenital disorder of man and cattle, characterized by photosensitivity, erythrodontia, hemolytic anemia, and por- phyrinuria.1 Many of the clinical manifestations of the disease can be explained by the production in marrow, deposition in tissues, and excretion in the urine and feces, of large amounts of uroporphyrin I and coproporphyrin I, which are products of the spontaneous oxidation of uroporphyrinogen I and its decarboxyl- ated derivative, coproporphyrinogen I. In cattle, the condition is inherited
    [Show full text]
  • Comparing the Reaction Mechanism of Dark-Operative Protochlorophyllide
    With or without light: comparing the reaction mechanism of dark-operative protochlorophyllide oxidoreductase with the energetic requirements of the light-dependent protochlorophyllide oxidoreductase Pedro J. Silva REQUIMTE, Faculdade de Cienciasˆ da Saude,´ Universidade Fernando Pessoa, Rua Carlos da Maia, Porto, Portugal ABSTRACT The addition of two electrons and two protons to the C17DC18 bond in protochloro- phyllide is catalyzed by a light-dependent enzyme relying on NADPH as electron donor, and by a light-independent enzyme bearing a .Cys/3Asp-ligated [4Fe–4S] cluster which is reduced by cytoplasmic electron donors in an ATP-dependent manner and then functions as electron donor to protochlorophyllide. The precise sequence of events occurring at the C17DC18 bond has not, however, been determined experimentally in the dark-operating enzyme. In this paper, we present the computational investigation of the reaction mechanism of this enzyme at the B3LYP/6-311CG(d,p)//B3LYP/6-31G(d) level of theory. The reaction mechanism begins with single-electron reduction of the substrate by the .Cys/3Asp-ligated [4Fe–4S], yielding a negatively-charged intermediate. Depending on the rate of Fe–S cluster re-reduction, the reaction either proceeds through double protonation of the single-electron-reduced substrate, or by alternating proton/electron transfer. The computed reaction barriers suggest that Fe–S cluster re-reduction should be Submitted 24 March 2014 the rate-limiting stage of the process. Poisson–Boltzmann computations on the Accepted 9 August 2014 full enzyme–substrate complex, followed by Monte Carlo simulations of redox Published 2 September 2014 and protonation titrations revealed a hitherto unsuspected pH-dependence of the Corresponding author reaction potential of the Fe–S cluster.
    [Show full text]
  • Noncanonical Coproporphyrin-Dependent Bacterial Heme Biosynthesis Pathway That Does Not Use Protoporphyrin
    Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin Harry A. Daileya,b,c,1, Svetlana Gerdesd, Tamara A. Daileya,b,c, Joseph S. Burcha, and John D. Phillipse aBiomedical and Health Sciences Institute and Departments of bMicrobiology and cBiochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; dMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; and eDivision of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132 Edited by J. Clark Lagarias, University of California, Davis, CA, and approved January 12, 2015 (received for review August 25, 2014) It has been generally accepted that biosynthesis of protoheme of a “primitive” pathway in Desulfovibrio vulgaris (13). This path- (heme) uses a common set of core metabolic intermediates that way, named the “alternative heme biosynthesis” path (or ahb), has includes protoporphyrin. Herein, we show that the Actinobacteria now been characterized by Warren and coworkers (15) in sulfate- and Firmicutes (high-GC and low-GC Gram-positive bacteria) are reducing bacteria. In the ahb pathway, siroheme, synthesized unable to synthesize protoporphyrin. Instead, they oxidize copro- from uroporphyrinogen III, can be further metabolized by suc- porphyrinogen to coproporphyrin, insert ferrous iron to make Fe- cessive demethylation and decarboxylation to yield protoheme (14, coproporphyrin (coproheme), and then decarboxylate coproheme 15) (Fig. 1 and Fig. S1). A similar pathway exists for protoheme- to generate protoheme. This pathway is specified by three genes containing archaea (15, 16). named hemY, hemH, and hemQ. The analysis of 982 representa- Current gene annotations suggest that all enzymes for pro- tive prokaryotic genomes is consistent with this pathway being karyotic heme synthetic pathways are now identified.
    [Show full text]
  • Metabolism of the Stimulated Rat Spleen: I. Ferrochelatase Activity As an Index of Tissue Erythropoiesis
    Metabolism of the stimulated rat spleen: I. Ferrochelatase activity as an index of tissue erythropoiesis Abraham Mazur J Clin Invest. 1968;47(10):2230-2238. https://doi.org/10.1172/JCI105908. Assay of the enzyme ferrochelatase in marrow, liver, spleen, and red cells has been employed to assess the extent of erythropoietic stimulation in animals bearing the Walker 256 carcinosarcoma and in rats treated by administration of phenylhydrazine, cobalt chloride, human urinary erythropoietin, or chronic blood loss. In all instances, the spleen sustains the most marked increase of ferrochelatase activity, per gram of tissue. Spleen erythropoietic activity stimulation was confirmed by quantitative measurements in respiring slices of 59Fe and 14C incorporation into hemoglobin and ferritin. Increased spleen ferrochelatase activity in cobalt chloride-treated rats is prevented by actinomycin D, indicating that stimulated synthesis of the enzyme is associated with the metabolism of RNA. Find the latest version: https://jci.me/105908/pdf Metabolism of the Stimulated Rat Spleen I. FERROCHELATASE ACTIVITY AS AN INDEX OF TISSUE ERYTHROPOIESIS ABRAHAM MAZUR From The New York Blood Center, New York 10021 A B S TR A C T Assay of the enzyme ferrochelatase examination or the measurement of incorporation in marrow, liver, spleen, and red cells has been of injected 59Fe into the tissues (4). In addition, employed to assess the extent of erythropoietic other splenic cells (reticuloendothelial cells) may stimulation in animals bearing the Walker 256 car- hypertrophy, e.g., in response to phenylhydrazine cinosarcoma and in rats treated by administration administration (5). of phenylhydrazine, cobalt chloride, human urinary Because the entire spleen is readily available, erythropoietin, or chronic blood loss.
    [Show full text]
  • Some Biochemical Changes in Heme Synthesis in Iron Deficiency
    Indian J Physiol Pharmacol 2000; 44 (4): 491-494 SOME BIOCHEMICAL CHANGES IN HEME SYNTHESIS IN IRON DEFICIENCY D. C. SHARMA* AND RATI MATHUR Department of Biochemistry, S. M. S. Medical College, Jaipur - 302 004 (Received on January 18, 2000) Abstract: Some enzymes and intermediates of heme synthesis were determined in blood and urine of 26 women with severe iron deficiency anemia (IDA). Erythrocyte free protoporphyrin was almost doubled and delta-aminolevulinate dehydrase significantly raised. But urinary excretion of delta-aminolevulinic acid and reticulocyte ferrochelatase were significantly reduced in iron deficiency anemia. Hence these could serve as useful indices of iron deficiency and consequent anemia. Key words: iron deficiency anemia delta-aminolevulinate dehydrase protoporphyrin ferrochelatase delta-aminolevulinic acid INTRODUCTION iron incorporation at the level of ferrochelatase. However, this enzyme was Anemia is the chief manifestation of never measured in blood in IDA, despite iron deficiency. Several parameters are reports of its decrease in human leucocytes available for diagnosis of iron deficiency (3) and pig heart muscle (4). Therefore, we anemia (IDA). These include classical decided to estimate it. parameters, like, erythrocyte morphology, red cell indices, bone marrow iron, Another enzyme of heme biosynthesis-­ serum iron, iron binding capacity, delta aminolevulinate dehydrase (ALAD) has transferrin saturation, and more recent been studied in IDA in the past but the tests-erythrocyte protoporphyrin, serum reports were conflicting; ranging from ferritin, transferrin receptors (1) and zinc normal (5) to higher (6-8) or reduced (3). protoporphyrin (2). Similar contradiction was also seen in the reported excretion of delta-aminolevulinic Iron is known to affect synthesis of heme acid (ALA) in urine by iron deficient anemic and free protoporphyrin accumulates in persons in this study.
    [Show full text]
  • Surprising Roles for Bilins in a Green Alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland
    COMMENTARY COMMENTARY Surprising roles for bilins in a green alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland It is well established that the origin of plastids which serves as chromophore of phyto- can be traced to an endosymbiotic event in chromes (Fig. 1). An intriguing feature of which a free-living photosynthetic prokaryote all sequenced chlorophyte genomes is that, invaded a eukaryotic cell more than 1 billion although they lack phytochromes, their years ago. Most genes from the intruder genomes encode two HMOXs, HMOX1 were gradually transferred to the host nu- andHMOX2,andPCYA.InPNAS,Duanmu cleus whereas a small number of these genes et al. (6) investigate the role of these genes in were maintained in the plastid and gave the green alga Chlamydomonas reinhardtii rise to the plastid genome with its associated and made unexpected findings. protein synthesizing system. The products of Duanmu et al. first show that HMOX1, many of the genes transferred to the nucleus HMOX2, and PCYA are catalytically active were then retargeted to the plastid to keep it and produce bilins in vitro (6). They also functional. Altogether, approximately 3,000 demonstrate in a very elegant way that these nuclear genes in plants and algae encode proteins are functional in vivo by expressing plastid proteins, whereas chloroplast ge- a cyanobacteriochrome in the chloroplast Fig. 1. Tetrapyrrole biosynthetic pathways. The heme nomes contain between 100 and 120 genes of C. reinhardtii, where, remarkably, the and chlorophyll biosynthetic pathways diverge at pro- (1). A major challenge for eukaryotic pho- photoreceptor is assembled with bound toporphyrin IX (ProtoIX).
    [Show full text]
  • Chromophores in Photomorphogenesis W
    Encyclopedia of Plant Physiolo New Series Volume 16 A Editors A.Pirson, Göttingen M.H.Zimmermann, Harvard Photo- morphogenesis Edited by W. Shropshire, Jr. and H. Möhr Contributors K. Apel M. Black A.E. Canham J.A. De Greef M.J. Dring H. Egnéus B. Frankland H. Frédéricq L. Fukshansky M. Furuya V. Gaba A.W. Galston J. Gressel W. Haupt S.B. Hendricks M.G. Holmes M. Jabben H. Kasemir C. J.Lamb M.A. Lawton K. Lüning A.L. Mancinelli H. Möhr D.C.Morgan L.H.Pratt P.H.Quail R.H.Racusen W. Rau W. Rüdiger E. Schäfer H. Scheer J.A. Schiff P. Schopfer S. D. Schwartzbach W. Shropshire, Jr. H. Smith W.O. Smith R. Taylorson W.J. VanDerWoude D. Vince-Prue H.I. Virgin E. Wellmann With 173 Figures Springer-Verlag Berlin Heidelberg New York Tokyo 1983 Univers;:^.'::- Bibüw i-,L* München W. SHROPSHIRE, JR. Smithsonian Institution Radiation Biology Laboratory 12441 Parklawn Drive Rockville, MD 20852/USA H. MOHR Biologisches Institut II der Universität Lehrstuhl für Botanik Schänzlestr. 1 D-7800 Freiburg/FRG ISBN 3-540-12143-9 (in 2 Bänden) Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-12143-9 (in 2 Volumes) Springer-Verlag New York Heidelberg Berlin Tokyo Library of Congress Cataloging in Publication Data. Main entry under title: Pholomorphogcncsis. (Encyclo• pedia of plant physiology; new ser., v. 16) Includes indexes. 1. Plants Photomorphogenesis Addresses, essays, lectures. I. Shropshire, Walter. II. Mohr, Hans, 1930. III. Apel, K. IV. Scries. QK711.2.E5 vol. 16 581.1s [581.L9153] 83-10615 [QK757] ISBN 0-387-12143-9 (U.S.).
    [Show full text]
  • A Framework for Application of Metabolic Modeling in Yeast to Predict the Effects of Nssnv in Human Orthologs Hayley Dingerdissen George Washington University
    Himmelfarb Health Sciences Library, The George Washington University Health Sciences Research Commons Biochemistry and Molecular Medicine Faculty Biochemistry and Molecular Medicine Publications 6-3-2014 A framework for application of metabolic modeling in yeast to predict the effects of nsSNV in human orthologs Hayley Dingerdissen George Washington University Daniel S. Weaver SRI International Menlo Park, Menlo Park, CA Peter D. Karp SRI International Menlo Park, Menlo Park, CA Yang Pan George Washington University Vahan Simonyan US Food and Drug Administration, Rockville, MD See next page for additional authors Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/smhs_biochem_facpubs Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Dingerdissen, H., Weaver, D.S., Karp, P.D., Pan, Y., Simonyan, V. et al. (2014). A framework for application of metabolic modeling in yeast to predict the effects of nsSNV in human orthologs. Biology Direct, 9:9. This Journal Article is brought to you for free and open access by the Biochemistry and Molecular Medicine at Health Sciences Research Commons. It has been accepted for inclusion in Biochemistry and Molecular Medicine Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact [email protected]. Authors Hayley Dingerdissen, Daniel S. Weaver, Peter D. Karp, Yang Pan, Vahan Simonyan, and Raja Mazumder This journal article is available at Health Sciences Research Commons: http://hsrc.himmelfarb.gwu.edu/smhs_biochem_facpubs/
    [Show full text]