A Primitive Pathway of Porphyrin Biosynthesis and Enzymology in Desulfovibrio Vulgaris
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crystal Structure of Uroporphyrinogen III Synthase from Pseudomonas Syringae Pv. Tomato DC3000
Biochemical and Biophysical Research Communications 408 (2011) 576–581 Contents lists available at ScienceDirect Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc Crystal structure of uroporphyrinogen III synthase from Pseudomonas syringae pv. tomato DC3000 ⇑ Shuxia Peng a,b, Hongmei Zhang a, Yu Gao a, Xiaowei Pan a, Peng Cao a, Mei Li a, Wenrui Chang a, a National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, PR China b Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China article info abstract Article history: Uroporphyrinogen III synthase (U3S) is one of the key enzymes in the biosynthesis of tetrapyrrole com- Received 11 April 2011 pounds. It catalyzes the cyclization of the linear hydroxymethylbilane (HMB) to uroporphyrinogen III Available online 19 April 2011 (uro’gen III). We have determined the crystal structure of U3S from Pseudomonas syringae pv. tomato DC3000 (psU3S) at 2.5 Å resolution by the single wavelength anomalous dispersion (SAD) method. Each Keywords: psU3S molecule consists of two domains interlinked by a two-stranded antiparallel b-sheet. The confor- Uroporphyrinogen III synthase mation of psU3S is different from its homologous proteins because of the flexibility of the linker between Crystal structure the two domains, which might be related to this enzyme’s catalytic properties. Based on mutation and Mutation activity analysis, a key residue, Arg219, was found to be important for the catalytic activity of psU3S. Enzymatic activity Tetrapyrroles Mutation of Arg219 to Ala caused a decrease in enzymatic activity to about 25% that of the wild type enzyme. -
Mitochondrial Transport of Protoporphyrinogen IX in Erythroid Cells
www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 25 Editorial Mitochondrial transport of protoporphyrinogen IX in erythroid cells Yvette Y. Yien, Alessa R. Ringel and Barry H. Paw Comment on: Yien Y, et al. TMEM14C is required for erythroid mitochondrial heme metabolism. J. Clin. Invest. 2014; 124:4294-4304. Heme plays a vital role in essential processes factors, indicating the presence of extragenic modifiers of such as detoxification, oxygen transport, circadian the disease that participate in the heme synthesis pathway. rhythm, microRNA processing, respiration, regulation Among potential modifiers are the genes required for of transcription and translation, and apoptosis. The the transport of heme, heme intermediates and iron majority of heme in the body is synthesized in red blood (summarized in Figure 1). One such example is a loss-of- cells, whose function is to transport oxygen via the function mutation in MFRN1 (SLC25A37), the erythroid heme-containing oxygen carrier protein, hemoglobin. mitochondrial iron transporter, which exacerbated Defects in erythroid heme homeostasis can result in protoporphyrin IX accumulation due to a gain-of-function anemia, caused by the decrease in hemoglobin synthesis, C-terminal deletion in ALAS2 [2]. porphyria, caused by accumulation of photoreactive heme In an RNAseq screen for transporters of heme intermediates, and iron overload [1]. intermediates in terminally differentiating erythroid Heme synthesis requires the coordinated transport cells, we identified Tmem14c as a gene that is required of heme intermediates and iron within the cell and across for heme synthesis and erythropoiesis in zebrafish and membranes to provide substrates access to enzymes, mice [3]. TMEM14C is an inner mitochondrial membrane prevent intercalation of photo-reactive heme intermediates protein with three tightly packed transmembrane into cellular membranes, and minimize generation of helices, predictive of its function as a transporter [4]. -
Evidence for the Role of Endogenous Carbon Monoxide in Memory Processing
Evidence for the Role of Endogenous Carbon Monoxide in Memory Processing M. C. Cutajar and T. M. Edwards Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/19/4/557/1816404/jocn.2007.19.4.557.pdf by guest on 18 May 2021 Abstract & For a decade and a half, nitric oxide (NO) has been impli- number of electrophysiological investigations have concluded cated in memory processing across a wide variety of tasks and that endogenous CO is involved in long-term potentiation. species. Comparatively, endogenously produced carbon mon- Although not evidence for a role in memory per se, these oxide (CO) has lagged behind as a target for research into the studies did point to the possible importance of CO in mem- pharmacological processes underlying memory formation. This ory processing. In addition, there is now evidence to suggest is surprising given that CO is formed in memory-associated that endogenous CO is important in avoidance learning and brain regions, is structurally similar to NO, and along with possible for other tasks. This review therefore seeks to pro- NO can activate guanylate cyclase, which is an enzyme well mote endogenous CO as a potentially important target for characterized in memory processing. Nevertheless, a limited memory research. & INTRODUCTION important in memory processing (Kemenes, Kemenes, Carbon monoxide (CO) is traditionally thought of as Andrew, Benjamin, & O’Shea, 2002; Izquierdo et al., an air pollutant. Indeed, inhalation of environmental 2000; Bernabeu et al., 1997; Kendrick et al., 1997). By CO in sufficient quantities may lead to intoxication detailing the evidence for CO production in the hippo- through the production of carbonmonoxyhemoglobin, campus, its role in synaptic plasticity and those few which results in decreased oxygen storage and trans- behavioral studies implicating CO in memory consoli- port in the bloodstream. -
Significance and Implications of Vitamin B-12 Reaction Shema- ETH ZURICH VARIANT: Mechanisms and Insights
Taylor University Pillars at Taylor University Student Scholarship: Chemistry Chemistry and Biochemistry Fall 2019 Significance and Implications of Vitamin B-12 Reaction Shema- ETH ZURICH VARIANT: Mechanisms and Insights David Joshua Ferguson Follow this and additional works at: https://pillars.taylor.edu/chemistry-student Part of the Analytical Chemistry Commons, Inorganic Chemistry Commons, Organic Chemistry Commons, Other Chemistry Commons, and the Physical Chemistry Commons CHEMISTRY THESIS SIGNIFICANCE AND IMPLICATIONS OF VITAMIN B-12 REACTION SCHEMA- ETH ZURICH VARIANT: MECHANISMS AND INSIGHTS DAVID JOSHUA FERGUSON 2019 2 Table of Contents: Chapter 1 6 Chapter 2 17 Chapter 3 40 Chapter 4 59 Chapter 5 82 Chapter 6 118 Chapter 7 122 Appendix References 3 Chapter 1 A. INTRODUCTION. Vitamin B-12 otherwise known as cyanocobalamin is a compound with synthetic elegance. Considering how it is composed of an aromatic macrocyclic corrin there are key features of this molecule that are observed either in its synthesis of in the biochemical reactions it plays a role in whether they be isomerization reactions or transfer reactions. In this paper the focus for the discussion will be on the history, chemical significance and total synthesis of vitamin B12. Even more so the paper will be concentrated one of the two variants of the vitamin B-12 synthesis, namely the ETH Zurich variant spearheaded by Albert Eschenmoser.Examining the structure as a whole it is observed that a large portion of the vitamin B12 is a corrin structure with a cobalt ion in the center of the macrocyclic part, and that same cobalt ion has cyanide ligands. -
Hyperbilirubinemia
Porphyrins Porphyrins (Porphins) are cyclic tetrapyrol compounds formed by the linkage )). of four pyrrole rings through methenyl bridges (( HC In the reduced porphyrins (Porphyrinogens) the linkage of four pyrrole rings (tetrapyrol) through methylene bridges (( CH2 )) The characteristic property of porphyrins is the formation of complexes with the metal ion bound to nitrogen atoms of the pyrrole rings. e.g. Heme (iron porphyrin). Proteins which contain heme ((hemoproteins)) are widely distributed e.g. Hemoglobin, Myoglobin, Cytochromes, Catalase & Tryptophan pyrrolase. Natural porphyrins have substituent side chains on the eight hydrogen atoms numbered on the pyrrole rings. These side chains are: CH 1-Methyl-group (M)… (( 3 )) 2-Acetate-group (A)… (( CH2COOH )) 3-Propionate-group (P)… (( CH2CH2COOH )) 4-Vinyl-group (V)… (( CH CH2 )) Porphyrins with asymmetric arrangement of the side chains are classified as type III porphyrins while those with symmetric arrangement of the side chains are classified as type I porphyrins. Only types I & III are present in nature & type III series is more important because it includes heme. 1 Heme Biosynthesis Heme biosynthesis occurs through the following steps: 1-The starting reaction is the condensation between succinyl-CoA ((derived from citric acid cycle in the mitochondria)) & glycine, this reaction is a rate limiting reaction in the hepatic heme synthesis, it occurs in the mitochondria & is catalyzed by ALA synthase (Aminolevulinate synthase) enzyme in the presence of pyridoxal phosphate as a cofactor. The product of this reaction is α-amino-β-ketoadipate which is rapidly decarboxylated to form δ-aminolevulinate (ALA). 2-In the cytoplasm condensation reaction between two molecules of ALA is catalyzed by ALA dehydratase enzyme to form two molecules of water & one 2 molecule of porphobilinogen (PBG) which is a precursor of pyrrole. -
RLIN1, Encoding a Putative Coproporphyrinogen III Oxidase, Is Involved in Lesion Initiation in Rice
Available online at www.sciencedirect.com Journal of Genetics and Genomics 38 (2011) 29e37 www.jgenetgenomics.org RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice Changhui Sun a,b,d,1, Linchuan Liu b,c,1, Jiuyou Tang b, Aihong Lin b,c, Fantao Zhang b,d, Jun Fang b, Genfa Zhang a,*, Chengcai Chu a,b,c,* a Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China b The State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China c Graduate School of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China d Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China Received 11 October 2010; revised 17 October 2010; accepted 20 October 2010 Abstract Lesion mimic is necrotic lesions on plant leaf or stem in the absence of pathogenic infection, and its exact biological mechanism is varied. By a large-scale screening of our T-DNA mutant population, we identified a mutant rice lesion initiation 1 (rlin1), which was controlled by a single nuclear recessive gene. Map-based cloning revealed that RLIN1 encoded a putative coproporphyrinogen III oxidase in tetrapyrrole biosynthesis pathway. Sequencing results showed that a G to T substitution occurred in the second exon of RLIN1 and led to a missense mutation from Asp to Tyr. Ectopic expression of RLIN1 could rescue rlin1 lesion mimic phenotype. -
Porphyrins & Bile Pigments
Bio. 2. ASPU. Lectu.6. Prof. Dr. F. ALQuobaili Porphyrins & Bile Pigments • Biomedical Importance These topics are closely related, because heme is synthesized from porphyrins and iron, and the products of degradation of heme are the bile pigments and iron. Knowledge of the biochemistry of the porphyrins and of heme is basic to understanding the varied functions of hemoproteins in the body. The porphyrias are a group of diseases caused by abnormalities in the pathway of biosynthesis of the various porphyrins. A much more prevalent clinical condition is jaundice, due to elevation of bilirubin in the plasma, due to overproduction of bilirubin or to failure of its excretion and is seen in numerous diseases ranging from hemolytic anemias to viral hepatitis and to cancer of the pancreas. • Metalloporphyrins & Hemoproteins Are Important in Nature Porphyrins are cyclic compounds formed by the linkage of four pyrrole rings through methyne (==HC—) bridges. A characteristic property of the porphyrins is the formation of complexes with metal ions bound to the nitrogen atom of the pyrrole rings. Examples are the iron porphyrins such as heme of hemoglobin and the magnesium‐containing porphyrin chlorophyll, the photosynthetic pigment of plants. • Natural Porphyrins Have Substituent Side Chains on the Porphin Nucleus The porphyrins found in nature are compounds in which various side chains are substituted for the eight hydrogen atoms numbered in the porphyrin nucleus. As a simple means of showing these substitutions, Fischer proposed a shorthand formula in which the methyne bridges are omitted and a porphyrin with this type of asymmetric substitution is classified as a type III porphyrin. -
UROPORPHYRINOGEN HII COSYNTHETASE in HUMAN Hemolysates from Five Patientswith Congenital Erythropoietic Porphyriawas Much Lower
UROPORPHYRINOGEN HII COSYNTHETASE IN HUMAN CONGENITAL ERYTHROPOIETIC PORPHYRIA * BY GIOVANNI ROMEO AND EPHRAIM Y. LEVIN DEPARTMENT OF PEDIATRICS, THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE Communicated by William L. Straus, Jr., April 24, 1969 Abstract.-Activity of the enzyme uroporphyrinogen III cosynthetase in hemolysates from five patients with congenital erythropoietic porphyria was much lower than the activity in control samples. The low cosynthetase activity in patients was not due to the presence of a free inhibitor or some competing en- zymatic activity, because hemolysates from porphyric subjects did not interfere either with the cosynthetase activity of hemolysates from normal subjects or with cosynthetase prepared from hematopoietic mouse spleen. This partial deficiency of cosynthetase in congenital erythropoietic porphyria corresponds to that shown previously in the clinically similar erythropoietic porphyria of cattle and explains the overproduction of uroporphyrin I in the human disease. Erythropoietic porphyria is a rare congenital disorder of man and cattle, characterized by photosensitivity, erythrodontia, hemolytic anemia, and por- phyrinuria.1 Many of the clinical manifestations of the disease can be explained by the production in marrow, deposition in tissues, and excretion in the urine and feces, of large amounts of uroporphyrin I and coproporphyrin I, which are products of the spontaneous oxidation of uroporphyrinogen I and its decarboxyl- ated derivative, coproporphyrinogen I. In cattle, the condition is inherited -
Noncanonical Coproporphyrin-Dependent Bacterial Heme Biosynthesis Pathway That Does Not Use Protoporphyrin
Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin Harry A. Daileya,b,c,1, Svetlana Gerdesd, Tamara A. Daileya,b,c, Joseph S. Burcha, and John D. Phillipse aBiomedical and Health Sciences Institute and Departments of bMicrobiology and cBiochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; dMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; and eDivision of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132 Edited by J. Clark Lagarias, University of California, Davis, CA, and approved January 12, 2015 (received for review August 25, 2014) It has been generally accepted that biosynthesis of protoheme of a “primitive” pathway in Desulfovibrio vulgaris (13). This path- (heme) uses a common set of core metabolic intermediates that way, named the “alternative heme biosynthesis” path (or ahb), has includes protoporphyrin. Herein, we show that the Actinobacteria now been characterized by Warren and coworkers (15) in sulfate- and Firmicutes (high-GC and low-GC Gram-positive bacteria) are reducing bacteria. In the ahb pathway, siroheme, synthesized unable to synthesize protoporphyrin. Instead, they oxidize copro- from uroporphyrinogen III, can be further metabolized by suc- porphyrinogen to coproporphyrin, insert ferrous iron to make Fe- cessive demethylation and decarboxylation to yield protoheme (14, coproporphyrin (coproheme), and then decarboxylate coproheme 15) (Fig. 1 and Fig. S1). A similar pathway exists for protoheme- to generate protoheme. This pathway is specified by three genes containing archaea (15, 16). named hemY, hemH, and hemQ. The analysis of 982 representa- Current gene annotations suggest that all enzymes for pro- tive prokaryotic genomes is consistent with this pathway being karyotic heme synthetic pathways are now identified. -
1.1-Billion-Year-Old Porphyrins Establish a Marine Ecosystem Dominated by Bacterial Primary Producers
1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers N. Guenelia,1, A. M. McKennab, N. Ohkouchic, C. J. Borehamd, J. Beghine, E. J. Javauxe, and J. J. Brocksa,1 aResearch School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia; bNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310-4005; cDepartment of Biogeochemistry, Japan Agency for Marine–Earth Science and Technology, 237-0061 Kanagawa Prefecture, Yokosuka, Natsushimacho, Japan; dGeoscience Australia, Symonston, ACT 2609, Australia; and eDepartment of Geology, Unité de Recherche Geology, University of Liège, 4000 Liege, Belgium Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved June 8, 2018 (received for review March 6, 2018) The average cell size of marine phytoplankton is critical for the the molecular fossils of biological lipids, can provide comple- flow of energy and nutrients from the base of the food web to mentary information about primary producers. For example, higher trophic levels. Thus, the evolutionary succession of primary hydrocarbon fossils of carotenoid pigments extracted from sed- producers through Earth’s history is important for our understand- imentary rocks have been used to detect phototrophic green ing of the radiation of modern protists ∼800 million years ago and (Chlorobiaceae) and purple sulfur bacteria (PSB) (Chromatia- ∼ the emergence of eumetazoan animals 200 million years later. ceae) in 1,640-My-old marine ecosystems (4, 5), while the con- Currently, it is difficult to establish connections between primary centration of eukaryotic steranes, relative to bacterial hopanes, production and the proliferation of large and complex organisms may provide basic information about the ecological relevance of because the mid-Proterozoic (∼1,800–800 million years ago) rock Precambrian algae (6). -
Phototrophic Pigment Production with Microalgae
Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis committee Promotor Prof. Dr R.H. Wijffels Professor of Bioprocess Engineering Wageningen University Co-promotors Dr D.E. Martens Assistant professor, Bioprocess Engineering Group Wageningen University Dr P.P. Lamers Assistant professor, Bioprocess Engineering Group Wageningen University Other members Prof. Dr H. van Amerongen, Wageningen University Prof. Dr M.J.E.C. van der Maarel, University of Groningen Prof. Dr C. Vilchez Lobato, University of Huelva, Spain Dr S. Verseck, BASF Personal Care and Nutrition GmbH, Düsseldorf, Germany This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis submitted in fulfilment of the requirement for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 5 December 2014 at 11 p.m. in the Aula. K. J. M. Mulders Phototrophic pigment production with microalgae, 192 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With propositions, references and summaries in Dutch and English ISBN 978-94-6257-145-7 Abstract Microalgal pigments are regarded as natural alternatives for food colourants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main focus on secondary carotenoids. Different microalgal groups each possess their own set of primary pigments. Besides, a selected group of green algae (Chlorophytes) accumulate secondary pigments (secondary carotenoids) when exposed to oversaturating light conditions. -
Magnesium-Protoporphyrin Chelatase of Rhodobacter
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 1941-1944, March 1995 Biochemistry Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli (protoporphyrin IX/tetrapyrrole/chlorophyll/bacteriochlorophyll/photosynthesis) LUCIEN C. D. GIBSON*, ROBERT D. WILLOWSt, C. GAMINI KANNANGARAt, DITER VON WETTSTEINt, AND C. NEIL HUNTER* *Krebs Institute for Biomolecular Research and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom; and tCarlsberg Laboratory, Department of Physiology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark Contributed by Diter von Wettstein, November 14, 1994 ABSTRACT Magnesium-protoporphyrin chelatase lies at Escherichia coli and demonstrate that the extracts of the E. coli the branch point of the heme and (bacterio)chlorophyll bio- transformants can convert Mg-protoporphyrin IX to Mg- synthetic pathways. In this work, the photosynthetic bacte- protoporphyrin monomethyl ester (20, 21). Apart from posi- rium Rhodobacter sphaeroides has been used as a model system tively identifying bchM as the gene encoding the Mg- for the study of this reaction. The bchH and the bchI and -D protoporphyrin methyltransferase, this work opens up the genes from R. sphaeroides were expressed in Escherichia coli. possibility of extending this approach to other parts of the When cell-free extracts from strains expressing BchH, BchI, pathway. In this paper, we report the expression of the genes and BchD were combined, the mixture was able to catalyze the bchH, -I, and -D from R. sphaeroides in E. coli: extracts from insertion of Mg into protoporphyrin IX in an ATP-dependent these transformants, when combined in vitro, are highly active manner.