Free PDF Download

Total Page:16

File Type:pdf, Size:1020Kb

Free PDF Download European Review for Medical and Pharmacological Sciences 2019; 23: 2640-2668 Drug efficacies on bone mineral density and fracture rate for the treatment of postmenopausal osteoporosis: a network meta-analysis L. YANG, N. KANG, J.-C. YANG, Q.-J. SU, Y.-Z. LIU, L. GUAN, T. LIU, X.-L. MENG, Y. WANG, Y. HAI Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China Abstract. – OBJECTIVE: Globally, a great Key Words number of elderly suffer from osteoporosis, es- Postmenopausal osteoporosis, Abaloparatide, De- pecially postmenopausal women. Osteoporosis nosumab, Teriparatide, Network meta-analysis. results in low bone mineral density (BMD) and high risk of fragility fracture. However, there is no defined strategy to select the most suit- able anti-osteoporotic drugs for osteoporosis Introduction patients. Therefore, this study aims to select the most effective anti-osteoporotic drug for post- Osteoporosis is a systemic skeletal disease in menopausal women with osteoporosis. which increased bone weakness highlights the risk of MATERIALS AND METHODS: Literature search fracture1. It is associated with a significant social and was conducted in PubMed, EMBASE, and the Co- public health burden. Elderly women are more likely chrane Library. Raw data from the related ran- domized clinical trials were extracted. A pairwise to suffer from this disease since the reduced estrogen and network meta-analysis model was utilized to levels after menopause contributes to a rapid decline assess the efficacy of ten drugs on the percentage in bone mass2,3. According to the National Osteopo- change of BMD in the lumbar spine and total hip rosis Foundation, there are approximately 9.1 million from baseline to one year of treatment. Risks of osteoporosis women and an additional 26 million vertebral fracture and non-vertebral fracture were women with low bone mass in America, which is far evaluated as well. We reported the effect size with a weighted mean difference (WMD) for continuous more than the estimated 2.8 million osteoporosis men outcomes and odds ratio (OR) for dichotomous and 14.4 million men with low bone mass. Several 4,5 outcomes. All the drugs were ranked based on prospective studies suggested that improved bone the surface under the cumulative ranking curve mineral density (BMD) is associated with a reduction (SUCRA) value. Furthermore, the heterogeneity, in the fracture rate. Hence, improving BMD and re- consistency and publication bias of enrolled litera- ducing fracture are the primary therapeutic goals. ture were assessed. There are two main categories of therapies ap- RESULTS: With regard to lumbar spine BMD, the ten selected drugs all showed significant effi- plied to prevent or treat postmenopausal osteoporo- cacy compared with placebo. In regard to total hip sis. One is anti-resorptive agents containing estrogen BMD and vertebral fracture, with the exception of or selective estrogen receptor modulators (bazedox- calcitonin, the remaining nine drugs all showed sig- ifen, raloxifene), calcitonin, bisphosphonates (alen- nificant efficacy compared with placebo. Six drugs dronate, ibandronate, risedronate, zoledronate), – abaloparatide, alendronate, risedronate, strontium denosumab, and odanacatib. The other category ranelate, teriparatide, and zoledronate – were signifi- cantly more effective compared with placebo for the is the drugs which have anabolic effects on bone treatment of non-vertebral fractures. As the SUCRA such as strontium ranelate, PTH1-84, and PTH1-34 6 values indicated, abaloparatide performed the best (teriparatide) . Recently, a new drug abaloparatide, on improving lumbar spine BMD, vertebral fracture which is also a parathyroid hormone-related protein and non-vertebral fracture, while denosumab was analog drug similar to teriparatide, has completed the best choice to improve total hip BMD. the Phase III trial and exerts a marked effect on the CONCLUSIONS: To sum up, abaloparatide, de- improvement of BMD and fracture rate7. nosumab, and teriparatide showed the best effi- cacy for the treatment of postmenopausal oste- There are multiple therapies for postmenopaus- oporosis, especially abaloparatide. al osteoporosis. Previously, randomized clinical 2640 Corresponding Author: Yong Hai, MD; e-mail: [email protected] Comparison of ten drugs for the treatment of postmenopausal osteoporosis trials (RCTs) and traditional pairwise meta-anal- hip, VF and NVF; (5) Sufficient data should be yses have been performed to determine the most provided in the original studies. effective one. However, the conclusions remain Exclusion data were applied: (1) Men or pre- controversial. Therefore, a network meta-analy- menopausal women were included in the study; sis (NMA) is necessary for identifying the most (2) Participants were treated by combined thera- effective therapy8. However, one previously-pub- py or sequential therapy; (3) The duration of fol- lished NMA9 had some drawbacks because it in- low-up was less than 12 months. cluded some sub-standard trials reporting oste- oporosis induced by glucocorticoid treatment or Data Extraction and Quality male osteoporosis. Furthermore, some other arti- Assessment cles10,11 only assessed a few drugs and the sample Data extracted from the included studies were size was small. assessed independently by two reviewers (San Therefore, we conducted this NMA in order Zhang, Si Li), with discussion to the third review- to evaluate the comparative efficacy of ten prima- er (Er Wang) to resolve any discrepancies. Infor- ry drugs in postmenopausal women with osteo- mation including the name of first author, year of porosis, including abaloparatide (ALE), alendro- publication, sample size, comparators, drug dos- nate (ALE), calcitonin (CT), denosumab (DEN), age, mean age of patients, blinding condition, out- ibandronate (IBA), risedronate (RIS), raloxifene comes of the study and maximum follow-up time (RLX), strontium ranelate (STR), teriparatide were extracted. The quality of the included studies (TPD), and zoledronate (ZOL). The efficacy of was assessed according to the modified JADAD the ten drugs on percentage change of BMD from score (out of 7). The studies gaining scores of 4 to baseline to one-year treatment in the lumbar spine 7 were considered as high-quality and regarded as and total hip, vertebral fracture (VF) rate and low-quality if they gained a score of 1 to 312. non-vertebral fracture (NVF) rate was assessed. Statistical Analysis Four outcomes (lumbar spine BMD, total hip Materials and Methods BMD, VF, and NVF) were analyzed. Pairwise me- ta-analysis of studies that directly compared different Search Strategy treatments was conducted using STATA 14.0 (Stata Literature search and identification process were Corp., College Station, TX, USA) software. The per- conducted in PubMed, EMBASE, and the Cochrane centage change of BMD in the lumbar spine and total Library from inception until April 18, 2018 (date hip was reported using the weighted mean differ- of final search). Articles published in both English ence (WMD) and the 95% confidence interval (95% and Chinese languages were searched using the CI). The risk of vertebral fracture and non-vertebral following medical subject headings: “Osteoporo- fracture was reported using the odds ratio (OR) and sis, Postmenopausal, Abaloparatide, Alendronate, the 95% confidence interval (95% CI). Cochran’s Q Calcitonin, Denosumab, Ibandronate, Risedronate, test and Higgins’ I-squared test were used to test the Raloxifene, Strontium Ranelate, Teriparatide, Zole- heterogeneity of enrolled studies. A p-value of the dronate, randomized controlled trial”, and their syn- Cochran’s Q test statistic less than 0.05 or I-square onyms. The search procedures were performed by larger than 50% indicated significant heterogeneity two independent reviewers. Reference lists of ac- among included studies for each pairwise compari- quired articles were manually searched. son. The fixed-effect model was applied for studies without significant heterogeneity and otherwise, the Inclusion and Exclusion Criteria random-effects model was applied. Studies meeting the following criteria were in- Next, the network meta-analysis was performed cluded: (1) A randomized controlled trial; (2) Sub- by Bayesian analysis methods using R software jects were postmenopausal women with osteopo- (Version 3.2.3; R Foundation for Statistical Com- rosis; (3) The study was designed to compare the puting, Vienna, Austria)13. The effect sizes of WMD effects of the following drugs with placebo (PLA) and OR and their corresponding 95% confidence in- or between each other: ABL, ALE, CT, DEN, tervals (95% CI) were calculated with a random-ef- IBA, RIS, RLX, STR, TPD, ZOL; (4) At least one fects model. In order to evaluate the consistency of of the following outcomes was assessed in each the network meta-analysis model, the node-splitting study: percentage change of BMD from baseline method was utilized to assess the difference between to one-year treatment of the lumbar spine or total direct and indirect comparisons. Furthermore, the 2641 L. Yang, N. Kang, J.-C. Yang, Q.-J. Su, Y.-Z. Liu, L. Guan, T. Liu, X.-L. Meng, Y. Wang, Y. Hai effects of drugs were ranked by the surface under articles were removed for other reasons (e.g., com- the cumulative ranking (SUCRA) curve values14. bined therapy or sequential therapy, unrelated drugs Higher SUCRA value indicated the pronounced or diseases other than osteoporosis, re-analysis or efficacy of the drug. Funnel
Recommended publications
  • Efficacy and Safety of Elcatonin in Postmenopausal Women with Osteoporosis: a Systematic Review with Network Meta-Analysis of Randomized Clinical Trials
    Osteoporosis International (2019) 30:1723–1732 https://doi.org/10.1007/s00198-019-04997-6 REVIEW Efficacy and safety of elcatonin in postmenopausal women with osteoporosis: a systematic review with network meta-analysis of randomized clinical trials W.-C. Chen1,2 & E.-Y. Lin3 & Y.-N. Kang1,4 Received: 20 November 2018 /Accepted: 21 April 2019 /Published online: 1 May 2019 # International Osteoporosis Foundation and National Osteoporosis Foundation 2019 Abstract Summary The present systematic review aimed to evaluate bone mineral density (BMD) change and complication rates of elcatonin on treating postmenopausal osteoporosis. The result confirmed efficacy of elcatonin and safety in combination thera- pies of elcatonin (C-E). Introduction Postmenopausal osteoporosis is an important issue in global aging trends. One treatment of osteoporosis is elcatonin, a kind of calcitonin. However, it has been challenged for long time because of safety. Many trials investigated on this topic, but they were designed differently. Those designs can be categorized in monotherapy of elcatonin (M-E) and C-E. Unfortunately, no synthesized evidence dealt this topic. Methods This study systematically identified target trials from six important databases and only included randomized controlled trial for synthesis. Two investigators assessed quality of eligible trials using the Cochrane Risk of Bias Tool, and they indepen- dently extracted data. Network meta-analysis performed Peto odds ratio (POR, used for dealing with zero cell) or weighted mean difference (WMD, for continuous data) with 95% confidence intervals (CI) and consistency H. Results Sixteen trials recruiting 2754 women with postmenopausal osteoporosis were included in our study. Elcatonin therapies and non-elcatonin medications had comparable fracture rates and bone mineral density change.
    [Show full text]
  • 1 Advances in Therapeutic Peptides Targeting G Protein-Coupled
    Advances in therapeutic peptides targeting G protein-coupled receptors Anthony P. Davenport1Ϯ Conor C.G. Scully2Ϯ, Chris de Graaf2, Alastair J. H. Brown2 and Janet J. Maguire1 1Experimental Medicine and Immunotherapeutics, Addenbrooke’s Hospital, University of Cambridge, CB2 0QQ, UK 2Sosei Heptares, Granta Park, Cambridge, CB21 6DG, UK. Ϯ Contributed equally Correspondence to Anthony P. Davenport email: [email protected] Abstract Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) — nearly fifty GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first- in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, and both to introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to bias ligands to activate specific downstream signalling pathways in order to optimise efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma-half life have been revolutionary. Here, we discuss the current status of peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties. Introduction G protein-coupled receptors (GPCRs) mediate a wide range of signalling processes and are targeted by one third of drugs in clinical use1. Although most GPCR-targeting therapeutics are small molecules2, the endogenous ligands for many GPCRs are peptides (comprising 50 or fewer amino acids), which suggests that this class of molecule could be therapeutically useful.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2008) (Rev
    Harmonized Tariff Schedule of the United States (2008) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2008) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM GADOCOLETICUM 280776-87-6 ABAFUNGIN 129639-79-8 ACIDUM LIDADRONICUM 63132-38-7 ABAMECTIN 65195-55-3 ACIDUM SALCAPROZICUM 183990-46-7 ABANOQUIL 90402-40-7 ACIDUM SALCLOBUZICUM 387825-03-8 ABAPERIDONUM 183849-43-6 ACIFRAN 72420-38-3 ABARELIX 183552-38-7 ACIPIMOX 51037-30-0 ABATACEPTUM 332348-12-6 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABETIMUSUM 167362-48-3 ACIVICIN 42228-92-2 ABIRATERONE 154229-19-3 ACLANTATE 39633-62-0 ABITESARTAN 137882-98-5 ACLARUBICIN 57576-44-0 ABLUKAST 96566-25-5 ACLATONIUM NAPADISILATE 55077-30-0 ABRINEURINUM 178535-93-8 ACODAZOLE 79152-85-5 ABUNIDAZOLE 91017-58-2 ACOLBIFENUM 182167-02-8 ACADESINE 2627-69-2 ACONIAZIDE 13410-86-1 ACAMPROSATE
    [Show full text]
  • Elcatonin (Rinn) Sensitivity Reactions, Including Anaphylaxis, Have Pression of the Airway Or Vulnerable Neurological Structures
    Bone Morphogenetic Proteins/Calcitonins 1093 ports of swelling of neck and throat tissue, with resultant com- Elcatonin (rINN) sensitivity reactions, including anaphylaxis, have pression of the airway or vulnerable neurological structures. [Aminosuberic Acid 1,7]-eel Calcitonin; [Asu1,7]-E-CT; Carbocal- occurred. Complications were often life-threatening, and had required res- piratory support and/or tracheotomy in some cases. The use of citonin; Elcatonina; Elcatonine; Elcatoninum. 1-Butyric acid-7-(L- Calcitonin has inhibited lactation in animals. alternative treatments or enrollment in approved clinical studies 2-aminobutyric acid)-26-L-aspartic acid-27-L-valine-29-L-alanine- Nausea and vomiting may be reduced by giving doses 1 calcitonin (salmon). was recommended when treating cervical spine problems. at bedtime or by giving an antiemetic beforehand. 1. FDA. FDA Public Health Notification: Life-threatening compli- Элькатонин cations associated with recombinant human bone morphogenetic Calcitonin (pork) may contain trace amounts of thyroid C148H244N42O47 = 3363.8. protein in cervical spine fusion. Available at: http:// CAS — 60731-46-6. hormones, but clinical effects are unlikely in most pa- www.fda.gov/cdrh/safety/070108-rhbmp.html (accessed 17/07/08) ATC — H05BA04. tients. ATC Vet — QH05BA04. Preparations Antibody formation. Long-term treatment with heterologous Description. Elcatonin is a synthetic analogue of eel calcitonin. calcitonins may lead to the formation of neutralising antibodies. Proprietary Preparations (details are given in Part 3) Pharmacopoeias. In Jpn. This appears to be common in patients given calcitonin (pork) or, Belg.: InductOs; Cz.: InductOs; Osigraft; Denm.: InductOs; Osigraft; Fin.: to a lesser extent, calcitonin (salmon). Calcitonin (human) is less InductOs; Gr.: InductOs; Osigraft; Irl.: InductOs; Ital.: Osigraft; Neth.: Os- 1 igraft; Norw.: InductOs; Port.: Osigraft; Spain: InductOs; Osigraft; Swed.: Incompatibility.
    [Show full text]
  • Raloxifene Or Calcitonin
    Appendices Table of Contents Appendix A. Search Strategy ................................................................................................... A-1 Appendix B. Risk of Bias Assessment Decision Aid .............................................................. B-1 Appendix C. Included References Risk of Bias Assessment ................................................. C-1 Appendix D. Evidence Tables .................................................................................................. D-1 Table D1. Characteristics of observational studies with low or medium risk of bias ............ D-1 Table D2. Characteristics of RCTs and CCTs with low or medium risk of bias .................... D-6 Table D3. Key Questions 1 & 2 Evidence Overview ........................................................... D-15 Table D4. Key Questions 3 & 4 Evidence Overview ........................................................... D-28 Table D5. Key Questions 5 & 6 Evidence Overview ........................................................... D-45 Table D6. Key Questions 7 & 8 Evidence Overview ........................................................... D-50 Table D7. Characteristics of eligible studies with high risk of bias ..................................... D-52 Strength of Evidence Tables ..................................................................................................... 57 Alendronate ....................................................................................................................... D-57 Table D8.
    [Show full text]
  • Use of Serotonin Reuptake Inhibitors and Risk of Subsequent Bone Loss In
    www.nature.com/scientificreports OPEN Use of serotonin reuptake inhibitors and risk of subsequent bone loss in a nationwide population‑based cohort study Sunyoung Kang1,6, Minkyung Han2,6, Chun Il Park3, Inkyung Jung4, Eun Hwa Kim2, Young Jun Boo1, Jee In Kang1,5* & Se Joo Kim1,5* This study examined whether the use of SRIs is associated with an increased risk of bone loss using a nested case–control design with a nationwide population–based cohort in Korea. Using the Korean National Health Screening Cohort, subjects newly diagnosed with osteoporosis or osteopenia (n = 55,799) were matched with controls (n = 278,995) at a ratio of 1:5. We stratifed the participants by their time‑dependent use of SRIs and sex and controlled for various confounders, including lifestyle habits, laboratory data, and comorbidities. Conditional logistic regression showed that both recent and former users of SRIs had an increased risk of subsequent bone loss compared with non‑users: men [recent users: odds ratio (OR) 1.35, 95% confdential interval (CI) 1.20, 1.53; former‑users: OR 1.10, 95% CI 1.01, 1.20]; women (recent users: OR 1.38, 95% CI 1.28–1.48; former‑users: OR 1.07, 95% CI 1.02, 1.21). The use of SRIs was associated with an increased risk of bone loss in both men and women. In particular, the association was stronger in recent users. These fndings provide population‑ level evidence for the risk of bone loss associated with SRI exposure and highlight the importance of monitoring the bone health of SRI users.
    [Show full text]
  • Vertebroplasty and Kyphoplasty As Treatment for Osteoporotic Vertebral Fractures
    ISSN 1889-836X Volume 2 Number 2 July 2010 Revista de Osteoporosis y Metabolismo Mineral EDITORIALS Bone Pathology of Gaucher's Disease 5 López-Herce Cid JA The paradox of vitamin D deficiency in sunny regions, in young people, or in osteoporotic 7 patients treated with vitamin D, could be explained by common genetic variation. Have we found the Rosetta Stone to this apparent contradiction? Quesada Gómez JM ORIGINAL ARTICLES Factors related to vitamin D deficiency in medical students in Gran Canaria 11 Groba Marco MV, Mirallave Pescador A, González Rodríguez E, García Santana S, González Padilla E, Saavedra Santana P et al Effect of zoledronic acid on the markers for bone remodelling in Paget’s disease 21 Díaz Curiel M, Serrano Morales R, De la Piedra Gordo C, Moro Álvarez MJ, Andrade Poveda M Vertebroplasty and kyphoplasty as a treatment for osteoporotic fractures 27 Pérez-Núñez MI, Riancho Moral JA REVIEWS Importance of the type of formulation of the preparations of calcium and vitamin D in the prevention 35 and treatment of osteoporosis García Quetglas E, Urdaneta Abate M, Sádaba Díaz de Rada B, Landecho Acha M, Lucena Ramírez F, Azanza Perea JR Cardiovascular disease, type 2 diabetes and osteoporosis 47 Reyes García R, Rozas Moreno P, Muñoz Torres M Determining the principal metabolites of vitamin D in the blood through on-line solid phase 55 extraction with liquid chromatography-mass spectrometry in tandem Mata-Granados JM, Ferreiro-Verab C, Luque de Castro MD, Quesada Gómez JM SPECIAL DOCUMENTS Current perspectives on the role of
    [Show full text]
  • Pharmacological Study of Teriparatide on Ovariectomy-Induced Hyperalgesia in Rats
    Title Pharmacological study of teriparatide on ovariectomy-induced hyperalgesia in rats Author(s) 田中, 智哉 Citation 北海道大学. 博士(歯学) 甲第13876号 Issue Date 2020-03-25 DOI 10.14943/doctoral.k13876 Doc URL http://hdl.handle.net/2115/78480 Type theses (doctoral) File Information Tomoya_Tanaka.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 博 士 論 文 Pharmacological study of teriparatide on ovariectomy-induced hyperalgesia in rats (卵巣摘除ラットモデルを用いた骨粗鬆性痛覚過 敏に対するテリパラチドの薬理作用の解明) 令和 2 年 3 月申請 北海道大学 大学院歯学研究科口腔医学専攻 田 中 智 哉 目次 Introduction .................................................................................................................. 3 Materials and methods ................................................................................................ 4 Experimental animals ....................................................................................................................4 Experimental design ......................................................................................................................4 Pain-related behavioral test ...........................................................................................................5 Plantar test ................................................................................................................................. 5 von Frey test ..............................................................................................................................6 Skeletal analyses ...........................................................................................................................6
    [Show full text]
  • Supplement Ii to the Japanese Pharmacopoeia Seventeenth Edition
    SUPPLEMENT II TO THE JAPANESE PHARMACOPOEIA SEVENTEENTH EDITION O‹cial from June 28, 2019 English Version THE MINISTRY OF HEALTH, LABOUR AND WELFARE Notice: This English Version of the Japanese Pharmacopoeia is published for the convenience of users unfamiliar with the Japanese language. When and if any discrepancy arises between the Japanese original and its English translation, the former is authentic. Printed in Japan The Ministry of Health, Labour and Welfare Ministerial Notification No. 49 Pursuant to Paragraph 1, Article 41 of Act on Securing Quality, Efficacy and Safety of Products Including Pharmaceuticals and Medical Devices (Act No. 145, 1960), this notification stated that a part of the Japanese Pharmacopoeia was revised as follows*. NEMOTO Takumi The Minister of Health, Labour and Welfare June 28, 2019 A part of the Japanese Pharmacopoeia (Ministerial Notification No. 64, 2016) was revised as follows*. (The text referred to by the term ``as follows'' are omitted here. All of the revised Japanese Pharmacopoeia in accordance with this notification (hereinafter referred to as ``new Pharmacopoeia'' in Supplement 2) are made available for public exhibition at the Pharmaceutical Evaluation Division, Pharmaceutical Safety and Environmen- tal Health Bureau, Ministry of Health, Labour and Welfare, at each Regional Bureau of Health and Welfare, and at each Prefectural Office in Japan). Supplementary Provisions (Effective Date) Article 1 This Notification is applied from June 28, 2019. (Transitional measures) Article 2 In the case of drugs which are listed in the Japanese Pharmacopoeia (hereinafter referred to as ``previous Pharmacopoeia'') [limited to those listed in new Pharmacopoeia] and drugs which have been approved as of June 28, 2019 as prescribed under Paragraph 1, Article 14 of Act on Securing Quality, Efficacy and Safety of Products Including Pharmaceuticals and Medical Devices [including drugs the Minister of Health, Labour and Welfare specifies (the Ministry of Health and Welfare Ministerial Notification No.
    [Show full text]
  • Pharmaceuticals Appendix
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Orphan Drug Designation List
    Orphan Drug Designations and Approvals List as of 06‐01‐2016 Governs July 1, 2016 ‐ September 30, 2016 Row Contact Generic Name Trade Name Designation Date Designation Num Company/Sponsor 1 (-)-(3aR,4S,7aR)-4-Hydroxy-4- m-tolylethynyl-octahydro- Novartis indole-1-carboxylic acid Pharmaceuticals methyl ester n/a 10/12/2011 Treatment of Fragile X syndrome Corp. 2 (1-methyl-2-nitro-1H- imidazole-5-yl)methyl N,N'- bis(2-broethyl) diamidophosphate n/a 6/5/2013 Treatment of pancreatic cancer EMD Serono 3 (1-methyl-2-nitro-1H- imidazole-5-yl)methyl N,N'- bis(2-bromoethyl) Threshold diamidophosphate n/a 3/9/2012 Treatment of soft tissue sarcoma Pharmaceuticals, Inc. 4 (1OR)-7-amino-12-fluoro- 2,10,16-trimethyl-15 oxo- 10,15,16,17-tetrahydro-2H-8,4- Treatment of anaplastic (metheno)pyrazolo[4,3- lymphoma kinase (ALK)-positive h][2,5,11]benzoxadiazacyclote or ROS1-positive non-small cell tradecine-3-carbonitrile n/a 6/23/2015 lung cancer Pfizer, Inc. 5 (1R,3R,4R,5S)-3-O-[2-O- Treatment of vaso-occlusive benzoyl-3-O-(sodium(2S)-3- crisis in patients with sickle cell cyclohexyl-propanoate- n/a 2/17/2009 disease. Pfizer, Inc. 6 (1S)-1-(9-deazahypoxanthin-9- yl)-1,4-dideoxy-1,4-imino-D- Treatment of T-cell non- Mundipharma ribitol-hydrochloride n/a 1/29/2004 Hodgkin's lymphoma Research Limited 7 (1S)-1-(9-deazahypoxanthin-9- yl)-1,4-dideoxy-1,4-imino-D- Treatment of acute Mundipharma ribitol-hydrochloride n/a 8/13/2004 lymphoblastic leukemia Research Limited Page 1 of 364 Orphan Drug Designations and Approvals List as of 06‐01‐2016 Governs July 1, 2016 ‐ September 30, 2016 Row Contact Generic Name Trade Name Designation Date Designation Num Company/Sponsor 8 Treatment of chronic lymphocytic leukemia and related leukemias to include (1S)-1-(9-deazahypoxanthin-9- prolymphocytic leukemia, adult T- yl)-1,4-dideoxy-1,4-imino-D- cell leukemia, and hairy cell Mundipharma ribitol-hydrochloride n/a 8/10/2004 leukemia Research Ltd.
    [Show full text]