Advancements and Technologies Driving Peptide Drug Design and Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PARSABIV (Etelcalcetide) RATIONALE for INCLUSION IN
PARSABIV (etelcalcetide) RATIONALE FOR INCLUSION IN PA PROGRAM Background Parsabiv (etelcalcetide) is a calcimimetic agent that increases the sensitivity of the calcium-sensing receptor to activation by extracellular calcium. These calcium-sensing receptors are on the parathyroid hormone gland and are the principal regulators of PTH (parathyroid hormone) synthesis and secretion. By increasing the sensitivity of the calcium sensing receptors, a reduction in PTH secretion is achieved. Reductions in PTH are associated with a decrease in bone turnover and bone fibrosis in patients with CKD (chronic kidney disease) on hemodialysis and uncontrolled secondary hyperparathyroidism (HPT) (1). Regulatory Status FDA approved indication: Parsabiv is a calcium-sensing receptor agonist indicated for treatment of secondary hyperparathyroidism (HPT) in adult patients with chronic kidney disease (CKD) on hemodialysis (1). Limitation of Use: Parsabiv has not been studied in adult patients with parathyroid carcinoma, primary hyperparathyroidism, or with CKD who are not on hemodialysis and is not recommended for use in these populations (1). Initial treatment with Parsabiv is contraindicated if serum calcium is less than the lower limit of the normal range. Life threatening events and fatal outcomes were reported due to hypocalcemia. Hypocalcemia can prolong QT interval, lower the threshold for seizures, and cause hypotension, worsening heart failure, and/or arrhythmia. Monitor serum calcium carefully for the occurrence of hypocalcemia during treatment. Once the maintenance dose has been established, serum calcium should be measured monthly for patients with secondary hyperparathyroidism with CKD on hemodialysis (1). In patients with secondary hyperparathyroidism with chronic kidney disease who are on hemodialysis, serum calcium should be measured within 1 week of starting Parsabiv, and intact parathyroid hormone (iPTH) should be measured 4 weeks after initiation or dose adjustment of Parsabiv (1). -
Mepact, INN-Mifamurtide
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT MEPACT 4 mg powder for concentrate for dispersion for infusion 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each vial contains 4 mg mifamurtide*. After reconstitution, each mL of suspension in the vial contains 0.08 mg mifamurtide. *fully synthetic analogue of a component of Mycobacterium sp. cell wall. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Powder for concentrate for dispersion for infusion White to off-white homogeneous cake or powder. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications MEPACT is indicated in children, adolescents and young adults for the treatment of high-grade resectable non-metastatic osteosarcoma after macroscopically complete surgical resection. It is used in combination with post-operative multi-agent chemotherapy. Safety and efficacy have been assessed in studies of patients 2 to 30 years of age at initial diagnosis (see section 5.1). 4.2 Posology and method of administration Mifamurtide treatment should be initiated and supervised by specialist physicians experienced in the diagnosis and treatment of osteosarcoma. Posology The recommended dose of mifamurtide for all patients is 2 mg/m2 body surface area. It should be administered as adjuvant therapy following resection: twice weekly at least 3 days apart for 12 weeks, followed by once-weekly treatments for an additional 24 weeks for a total of 48 infusions in 36 weeks. Special populations Adults > 30 years None of the patients treated in the osteosarcoma studies were 65 years or older and in the phase III randomised study, only patients up to the age of 30 years were included. -
1. Two Components, Two Sets of Lecturers
Conditions 1. Two components, two sets of lecturers. 2. Lectures 1-5 Prof. F. Hudecz Lectures 6-9 Dr. Gy. Domány Lectures 10-12 Dr. P. Buzder-Lantos 3. Examination: two parts determined by the lecturers and one mark. - option A: written test - option B: presentation based on literature - option C: oral examination 4. Participation at lectures > 70 % [email protected] Some Approved Peptide Pharmaceuticals and their Methods of Manufacture First generatioin Second generation New generation Oxytocin (L) Carbetocin (S) Abarelix (GnRH) (L) ACTH (1-24) & (1-39) (L,S) Terlipressin (L,S) Cetrorelix (GnRH) (L) Vasopressin (L,S) Felypressin (L,S) Ganirelix (GnRH) (L) Insulin (E,SS, R) Buserelin (L,S) Eptifibatide Glucagon (E,S,R) Deslorelin (L,S) Bivalirudin (L) Calcitonins (L,S,R) Goserelin (L) Copaxone (L) TRH (L) Histrelin (L) Techtide P-289(S) Gonadorelin (L,S) Leuprolide (L,S) Cubicin (F) Somatostatin (L,S) Nafarelin (S) Fuzeon (antiHIV (H) GHRH (1-29) & (1-44) (S) Tryptorelin (L,S) Ziconotide (pain) (S) CRF (Human & Ovine) (S) Lecirelin (S) Pramlintide (diabetes) (S) Cyclosporin (F) Lanreotide (S) Exenatide (diabetes) (S) Thymopentin (L) Octreotide (L,S) Icatibant (brady-rec) Thymosin Alpha-1 (S) Atosiban (L) Romiplostim (hormon) Secretins (Human & Porcine) (E,S) Desmopressin (L,S) Degarelix (GnRH) Parathyroid Hormone (1-34) & (1-84)(S) Lypressin (L) Mifamurtide (rák, adj.) Vasoactive Intestinal Polypeptide (S) Ornipressin Ecallantide (ödéma) Brain Natriuretic Peptide (R) Pitressin (L) Liraglutide (diabetes) Cholecystokinin (L) ACE Inhibitors (Enalapril, Lisinopril) (L) Tesamorelin Tetragastrin (L) HIV Protease Inhibitors (L) Surfaxin Pentagastrin (L) Peginesatide Eledoisin (L) Carfilzomib Linaclotide (enz.inh) L = in solution; S = on solid phase; E = extraction; F = fermentation; H = hybrid synthesis; R = recombinant; SS = semi-synthesis. -
Parsabiv, INN-Etelcalcetide
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Parsabiv 2.5 mg solution for injection Parsabiv 5 mg solution for injection Parsabiv 10 mg solution for injection 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Parsabiv 2.5 mg solution for injection Each vial contains 2.5 mg of etelcalcetide (as hydrochloride) in 0.5 mL of solution. Each mL contains 5 mg etelcalcetide. Parsabiv 5 mg solution for injection Each vial contains 5 mg of etelcalcetide (as hydrochloride) in 1 mL of solution. Each mL contains 5 mg etelcalcetide. Parsabiv 10 mg solution for injection Each vial contains 10 mg of etelcalcetide (as hydrochloride) in 2 mL of solution. Each mL contains 5 mg etelcalcetide. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Solution for injection. Clear colourless solution. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Parsabiv is indicated for the treatment of secondary hyperparathyroidism (SHPT) in adult patients with chronic kidney disease (CKD) on haemodialysis therapy. 4.2 Posology and method of administration Posology The recommended initial dose of etelcalcetide is 5 mg administered by bolus injection 3 times per week. Corrected serum calcium should be at or above the lower limit of the normal range prior to administration of first dose of Parsabiv, a dose increase, or reinitiation after a dose stop (see also dose adjustments based on serum calcium levels). Parsabiv should not be administered more frequently than 3 times per week. Dose titration Parsabiv should be titrated so that doses are individualised between 2.5 mg and 15 mg. -
Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products. -
Parsabiv® (Etelcalcetide) – Oxford Clinical Policy
UnitedHealthcare® Oxford Clinical Policy Parsabiv® (Etelcalcetide) Policy Number: PHARMACY 313.7 T2 Effective Date: April 1, 2021 Instructions for Use Table of Contents Page Related Policies Coverage Rationale ....................................................................... 1 • Drug Coverage Guidelines Prior Authorization Requirements ................................................ 2 Applicable Codes .......................................................................... 2 Background.................................................................................... 2 Clinical Evidence ........................................................................... 2 U.S. Food and Drug Administration ............................................. 3 References ..................................................................................... 3 Policy History/Revision Information ............................................. 3 Instructions for Use ....................................................................... 4 Coverage Rationale Initial Therapy Parsabiv (etelcalcetide) is proven for the treatment of secondary hyperparathyroidism with chronic kidney disease when the following criteria are met: Diagnosis of secondary hyperparathyroidism with chronic kidney disease; and Patient is on dialysis; and Patient is not receiving Parsabiv (etelcalcetide) in combination with Sensipar (cinacalcet hydrochloride); and Prescribed by or in consultation with an endocrinologist or nephrologist; and Dosing is in accordance with the United -
Health Status and Medical Treatment of the Future Elderly: Final Report
CHILD POLICY This PDF document was made available from www.rand.org as a public CIVIL JUSTICE service of the RAND Corporation. EDUCATION ENERGY AND ENVIRONMENT Jump down to document HEALTH AND HEALTH CARE 6 INTERNATIONAL AFFAIRS NATIONAL SECURITY The RAND Corporation is a nonprofit research POPULATION AND AGING PUBLIC SAFETY organization providing objective analysis and effective SCIENCE AND TECHNOLOGY solutions that address the challenges facing the public SUBSTANCE ABUSE and private sectors around the world. TERRORISM AND HOMELAND SECURITY TRANSPORTATION AND INFRASTRUCTURE Support RAND Purchase this document Browse Books & Publications Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Health View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. This product is part of the RAND Corporation technical report series. Reports may include research findings on a specific topic that is limited in scope; present discus- sions of the methodology employed in research; provide literature reviews, survey instruments, modeling exercises, guidelines for practitioners and research profes- sionals, and supporting documentation; or deliver preliminary findings. All RAND reports undergo rigorous peer review to ensure that they meet high standards for re- search quality and objectivity. Health Status and Medical Treatment of the Future Elderly Final Report Dana P. Goldman, Paul G. -
Stems for Nonproprietary Drug Names
USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol -
An Open0label, Single0dose Study to Evaluate the Safety, Tolerability
3URGXFW(WHOFDOFHWLGH 3URWRFRO1XPEHU 'DWH)HEUXDU\ 3DJHRI 7LWOH$Q2SHQODEHO6LQJOHGRVH6WXG\WR(YDOXDWHWKH6DIHW\7ROHUDELOLW\ 3KDUPDFRNLQHWLFVDQG3KDUPDFRG\QDPLFVRI(WHOFDOFHWLGH $0* LQ 3DHGLDWULF6XEMHFWV$JHGWROHVVWKDQ<HDUVZLWK6HFRQGDU\ +\SHUSDUDWK\URLGLVP V+37 5HFHLYLQJ0DLQWHQDQFH+DHPRGLDO\VLV $PJHQ3URWRFRO1XPEHU (WHOFDOFHWLGH (XGUD&7QXPEHU-- &OLQLFDO6WXG\6SRQVRU $PJHQ,QF 2QH$PJHQ&HQWHU'ULYH 7KRXVDQG2DNV&$ PPD .H\6SRQVRU&RQWDFW V 3K' &OLQLFDO3KDUPDFRORJ\DQG0HGLFDO6FLHQFHV 7HOPPD (PDLOPPD PPD 0'06F 0HGLFDO6FLHQFHV0HGLFDO'LUHFWRU 7HO PPD (PDLO PPD PPD 6WXG\0DQDJHU 7HOPPD (PDLOPPD 'DWH )HEUXDU\ &RQILGHQWLDOLW\1RWLFH 7KLVGRFXPHQWFRQWDLQVFRQILGHQWLDOLQIRUPDWLRQRI$PJHQ,QF 7KLVGRFXPHQWPXVWQRWEHGLVFORVHGWRDQ\RQHRWKHUWKDQWKHVLWHVWXG\VWDIIDQG PHPEHUVRIWKHLQVWLWXWLRQDOUHYLHZERDUGLQGHSHQGHQWHWKLFVFRPPLWWHHLQVWLWXWLRQDO VFLHQWLILFUHYLHZERDUGRUHTXLYDOHQW 7KHLQIRUPDWLRQLQWKLVGRFXPHQWFDQQRWEHXVHGIRUDQ\SXUSRVHRWKHUWKDQWKH HYDOXDWLRQRUFRQGXFWRIWKHFOLQLFDOLQYHVWLJDWLRQZLWKRXWWKHSULRUZULWWHQFRQVHQWRI $PJHQ,QF 1&71XPEHU 7KLV1&7QXPEHUKDVEHHQDSSOLHGWRWKHGRFXPHQW IRUSXUSRVHVRISRVWLQJRQFOLQLFDOWULDOVJRY &21),'(17,$/ 3URGXFW(WHOFDOFHWLGH 3URWRFRO1XPEHU 'DWH)HEUXDU\ 3DJHRI ,QYHVWLJDWRU¶V$JUHHPHQW ,KDYHUHDGWKHDWWDFKHGSURWRFROHQWLWOHG$Q2SHQODEHO6LQJOHGRVH6WXG\WR(YDOXDWH WKH6DIHW\7ROHUDELOLW\3KDUPDFRNLQHWLFVDQG3KDUPDFRG\QDPLFVRI(WHOFDOFHWLGH $0* LQ3DHGLDWULF6XEMHFWV$JHGWROHVVWKDQ<HDUVZLWK6HFRQGDU\ +\SHUSDUDWK\URLGLVP V+37 5HFHLYLQJ0DLQWHQDQFH+DHPRGLDO\VLVGDWHG )HEUXDU\DQGDJUHHWRDELGHE\DOOSURYLVLRQVVHWIRUWKWKHUHLQ ,DJUHHWRFRPSO\ZLWKWKH,QWHUQDWLRQDO&RQIHUHQFHRQ+DUPRQLVDWLRQ -
Efficacy and Safety of Elcatonin in Postmenopausal Women with Osteoporosis: a Systematic Review with Network Meta-Analysis of Randomized Clinical Trials
Osteoporosis International (2019) 30:1723–1732 https://doi.org/10.1007/s00198-019-04997-6 REVIEW Efficacy and safety of elcatonin in postmenopausal women with osteoporosis: a systematic review with network meta-analysis of randomized clinical trials W.-C. Chen1,2 & E.-Y. Lin3 & Y.-N. Kang1,4 Received: 20 November 2018 /Accepted: 21 April 2019 /Published online: 1 May 2019 # International Osteoporosis Foundation and National Osteoporosis Foundation 2019 Abstract Summary The present systematic review aimed to evaluate bone mineral density (BMD) change and complication rates of elcatonin on treating postmenopausal osteoporosis. The result confirmed efficacy of elcatonin and safety in combination thera- pies of elcatonin (C-E). Introduction Postmenopausal osteoporosis is an important issue in global aging trends. One treatment of osteoporosis is elcatonin, a kind of calcitonin. However, it has been challenged for long time because of safety. Many trials investigated on this topic, but they were designed differently. Those designs can be categorized in monotherapy of elcatonin (M-E) and C-E. Unfortunately, no synthesized evidence dealt this topic. Methods This study systematically identified target trials from six important databases and only included randomized controlled trial for synthesis. Two investigators assessed quality of eligible trials using the Cochrane Risk of Bias Tool, and they indepen- dently extracted data. Network meta-analysis performed Peto odds ratio (POR, used for dealing with zero cell) or weighted mean difference (WMD, for continuous data) with 95% confidence intervals (CI) and consistency H. Results Sixteen trials recruiting 2754 women with postmenopausal osteoporosis were included in our study. Elcatonin therapies and non-elcatonin medications had comparable fracture rates and bone mineral density change. -
2017 Fda Peptide Harvest
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2018 doi:10.20944/preprints201804.0126.v1 Peer-reviewed version available at Pharmaceuticals 2018, 11, 42; doi:10.3390/ph11020042 1 Review 2 2017 FDA PEPTIDE HARVEST 3 Othman Al Musaimi,1,2,# Danah Alshaer, 1,2,# Beatriz G. de la Torre,3,* Fernando Albericio,2,4,5.* 4 1 College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa 5 2 School of Chemistry, University of KwaZulu-Natal, Durban 4001, South Africa 6 3 KRISP, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa 7 4 CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of 8 Barcelona, 08028 Barcelona, Spain 9 5 Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain 10 * Correspondence: [email protected]; [email protected]; Tel.: +27-614009144 11 12 13 Abstract: 2017 was an excellent year in terms of new drugs (chemical entities and biologics) 14 approved by the FDA, with a total of forty-six. In turn, one of the highlights was the number of 15 peptides (six) included in this list. Here, the six peptides are analysed in terms of chemical structure, 16 synthetic strategy used for their production, source, biological target, and mode of action. 17 Keywords: pharmaceutical market; drugs; drug discovery; solid-phase peptide synthesis 18 Introduction 19 The financial investment associated with the pharmaceutical industry is one of the largest in the 20 industrial sector—surpassed only by the telecommunications sector. However, the number of new 21 products (drugs) entering the market each year is relatively low. -
1 Advances in Therapeutic Peptides Targeting G Protein-Coupled
Advances in therapeutic peptides targeting G protein-coupled receptors Anthony P. Davenport1Ϯ Conor C.G. Scully2Ϯ, Chris de Graaf2, Alastair J. H. Brown2 and Janet J. Maguire1 1Experimental Medicine and Immunotherapeutics, Addenbrooke’s Hospital, University of Cambridge, CB2 0QQ, UK 2Sosei Heptares, Granta Park, Cambridge, CB21 6DG, UK. Ϯ Contributed equally Correspondence to Anthony P. Davenport email: [email protected] Abstract Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) — nearly fifty GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first- in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, and both to introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to bias ligands to activate specific downstream signalling pathways in order to optimise efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma-half life have been revolutionary. Here, we discuss the current status of peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties. Introduction G protein-coupled receptors (GPCRs) mediate a wide range of signalling processes and are targeted by one third of drugs in clinical use1. Although most GPCR-targeting therapeutics are small molecules2, the endogenous ligands for many GPCRs are peptides (comprising 50 or fewer amino acids), which suggests that this class of molecule could be therapeutically useful.