Etelcalcetide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PARSABIV (Etelcalcetide) RATIONALE for INCLUSION IN
PARSABIV (etelcalcetide) RATIONALE FOR INCLUSION IN PA PROGRAM Background Parsabiv (etelcalcetide) is a calcimimetic agent that increases the sensitivity of the calcium-sensing receptor to activation by extracellular calcium. These calcium-sensing receptors are on the parathyroid hormone gland and are the principal regulators of PTH (parathyroid hormone) synthesis and secretion. By increasing the sensitivity of the calcium sensing receptors, a reduction in PTH secretion is achieved. Reductions in PTH are associated with a decrease in bone turnover and bone fibrosis in patients with CKD (chronic kidney disease) on hemodialysis and uncontrolled secondary hyperparathyroidism (HPT) (1). Regulatory Status FDA approved indication: Parsabiv is a calcium-sensing receptor agonist indicated for treatment of secondary hyperparathyroidism (HPT) in adult patients with chronic kidney disease (CKD) on hemodialysis (1). Limitation of Use: Parsabiv has not been studied in adult patients with parathyroid carcinoma, primary hyperparathyroidism, or with CKD who are not on hemodialysis and is not recommended for use in these populations (1). Initial treatment with Parsabiv is contraindicated if serum calcium is less than the lower limit of the normal range. Life threatening events and fatal outcomes were reported due to hypocalcemia. Hypocalcemia can prolong QT interval, lower the threshold for seizures, and cause hypotension, worsening heart failure, and/or arrhythmia. Monitor serum calcium carefully for the occurrence of hypocalcemia during treatment. Once the maintenance dose has been established, serum calcium should be measured monthly for patients with secondary hyperparathyroidism with CKD on hemodialysis (1). In patients with secondary hyperparathyroidism with chronic kidney disease who are on hemodialysis, serum calcium should be measured within 1 week of starting Parsabiv, and intact parathyroid hormone (iPTH) should be measured 4 weeks after initiation or dose adjustment of Parsabiv (1). -
Parsabiv, INN-Etelcalcetide
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Parsabiv 2.5 mg solution for injection Parsabiv 5 mg solution for injection Parsabiv 10 mg solution for injection 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Parsabiv 2.5 mg solution for injection Each vial contains 2.5 mg of etelcalcetide (as hydrochloride) in 0.5 mL of solution. Each mL contains 5 mg etelcalcetide. Parsabiv 5 mg solution for injection Each vial contains 5 mg of etelcalcetide (as hydrochloride) in 1 mL of solution. Each mL contains 5 mg etelcalcetide. Parsabiv 10 mg solution for injection Each vial contains 10 mg of etelcalcetide (as hydrochloride) in 2 mL of solution. Each mL contains 5 mg etelcalcetide. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Solution for injection. Clear colourless solution. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Parsabiv is indicated for the treatment of secondary hyperparathyroidism (SHPT) in adult patients with chronic kidney disease (CKD) on haemodialysis therapy. 4.2 Posology and method of administration Posology The recommended initial dose of etelcalcetide is 5 mg administered by bolus injection 3 times per week. Corrected serum calcium should be at or above the lower limit of the normal range prior to administration of first dose of Parsabiv, a dose increase, or reinitiation after a dose stop (see also dose adjustments based on serum calcium levels). Parsabiv should not be administered more frequently than 3 times per week. Dose titration Parsabiv should be titrated so that doses are individualised between 2.5 mg and 15 mg. -
Parsabiv® (Etelcalcetide) – Oxford Clinical Policy
UnitedHealthcare® Oxford Clinical Policy Parsabiv® (Etelcalcetide) Policy Number: PHARMACY 313.7 T2 Effective Date: April 1, 2021 Instructions for Use Table of Contents Page Related Policies Coverage Rationale ....................................................................... 1 • Drug Coverage Guidelines Prior Authorization Requirements ................................................ 2 Applicable Codes .......................................................................... 2 Background.................................................................................... 2 Clinical Evidence ........................................................................... 2 U.S. Food and Drug Administration ............................................. 3 References ..................................................................................... 3 Policy History/Revision Information ............................................. 3 Instructions for Use ....................................................................... 4 Coverage Rationale Initial Therapy Parsabiv (etelcalcetide) is proven for the treatment of secondary hyperparathyroidism with chronic kidney disease when the following criteria are met: Diagnosis of secondary hyperparathyroidism with chronic kidney disease; and Patient is on dialysis; and Patient is not receiving Parsabiv (etelcalcetide) in combination with Sensipar (cinacalcet hydrochloride); and Prescribed by or in consultation with an endocrinologist or nephrologist; and Dosing is in accordance with the United -
Clinical and Biochemical Outcomes of Cinacalcet Treatment of Familial
Rasmussen et al. Journal of Medical Case Reports 2011, 5:564 JOURNAL OF MEDICAL http://www.jmedicalcasereports.com/content/5/1/564 CASE REPORTS CASEREPORT Open Access Clinical and biochemical outcomes of cinacalcet treatment of familial hypocalciuric hypercalcemia: a case series Anne Qvist Rasmussen1*, Niklas Rye Jørgensen1,2 and Peter Schwarz1,3 Abstract Introduction: Familial hypocalciuric hypercalcemia is a rare benign autosomal-dominant genetic disease with high penetrance. In most cases, patients with familial hypocalciuric hypercalcemia experience unspecific physical discomfort or asymptomatic disease. These patients are typically characterized by mild to moderately increased blood ionized calcium and a normal to slightly elevated serum parathyroid hormone. Case presentation: Four female patients with familial hypocalciuric hypercalcemia with inactivating mutations in the CaSR gene were included in the treatment study. Three patients were related: two were siblings and one was the daughter of one of these. The ages of the related patients were 51 years, 57 years and 35 years. All three patients were carriers of the same mutation. The fourth patient, unrelated to the others, was 53 years old, and a carrier of a novel and previously unknown mutation leading to familial hypocalciuric hypercalcemia. All four patients were Caucasians of Danish nationality. Biochemically, all patients had elevated blood ionized calcium, serum parathyroid hormone, serum magnesium and total serum calcium, except one, whose serum parathyroid hormone was within the normal range prior to treatment. All patients were treated with cinacalcet in a dosage of 30 mg to 60 mg per day. Conclusion: Three months after the initiation of cinacalcet treatment, all our patients experiencing clinical signs of hypercalcemia had improved in self -reported well-being and in biochemical parameters. -
Mimpara, INN-Cinacalcet
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Mimpara 30 mg film-coated tablets Mimpara 60 mg film-coated tablets Mimpara 90 mg film-coated tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Mimpara 30 mg film-coated tablets Each tablet contains 30 mg cinacalcet (as hydrochloride). Excipient with known effect Each tablet contains 2.74 mg of lactose. Mimpara 60 mg film-coated tablets Each tablet contains 60 mg cinacalcet (as hydrochloride). Excipient with known effect Each tablet contains 5.47 mg of lactose. Mimpara 90 mg film-coated tablets Each tablet contains 90 mg cinacalcet (as hydrochloride). Excipient with known effect Each tablet contains 8.21 mg of lactose. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet (tablet). Mimpara 30 mg film-coated tablets Light green, oval (approximately 9.7 mm long and 6.0 mm wide), film-coated tablet marked “AMG” on one side and “30” on the other. Mimpara 60 mg film-coated tablets Light green, oval (approximately 12.2 mm long and 7.6 mm wide), film-coated tablet marked “AMG” on one side and “60” on the other. Mimpara 90 mg film-coated tablets Light green, oval (approximately 13.9 mm long and 8.7 mm wide), film-coated tablet marked “AMG” on one side and “90” on the other. 2 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Secondary hyperparathyroidism Adults Treatment of secondary hyperparathyroidism (HPT) in adult patients with end-stage renal disease (ESRD) on maintenance dialysis therapy. Paediatric population Treatment of secondary hyperparathyroidism (HPT) in children aged 3 years and older with end-stage renal disease (ESRD) on maintenance dialysis therapy in whom secondary HPT is not adequately controlled with standard of care therapy (see section 4.4). -
An Open0label, Single0dose Study to Evaluate the Safety, Tolerability
3URGXFW(WHOFDOFHWLGH 3URWRFRO1XPEHU 'DWH)HEUXDU\ 3DJHRI 7LWOH$Q2SHQODEHO6LQJOHGRVH6WXG\WR(YDOXDWHWKH6DIHW\7ROHUDELOLW\ 3KDUPDFRNLQHWLFVDQG3KDUPDFRG\QDPLFVRI(WHOFDOFHWLGH $0* LQ 3DHGLDWULF6XEMHFWV$JHGWROHVVWKDQ<HDUVZLWK6HFRQGDU\ +\SHUSDUDWK\URLGLVP V+37 5HFHLYLQJ0DLQWHQDQFH+DHPRGLDO\VLV $PJHQ3URWRFRO1XPEHU (WHOFDOFHWLGH (XGUD&7QXPEHU-- &OLQLFDO6WXG\6SRQVRU $PJHQ,QF 2QH$PJHQ&HQWHU'ULYH 7KRXVDQG2DNV&$ PPD .H\6SRQVRU&RQWDFW V 3K' &OLQLFDO3KDUPDFRORJ\DQG0HGLFDO6FLHQFHV 7HOPPD (PDLOPPD PPD 0'06F 0HGLFDO6FLHQFHV0HGLFDO'LUHFWRU 7HO PPD (PDLO PPD PPD 6WXG\0DQDJHU 7HOPPD (PDLOPPD 'DWH )HEUXDU\ &RQILGHQWLDOLW\1RWLFH 7KLVGRFXPHQWFRQWDLQVFRQILGHQWLDOLQIRUPDWLRQRI$PJHQ,QF 7KLVGRFXPHQWPXVWQRWEHGLVFORVHGWRDQ\RQHRWKHUWKDQWKHVLWHVWXG\VWDIIDQG PHPEHUVRIWKHLQVWLWXWLRQDOUHYLHZERDUGLQGHSHQGHQWHWKLFVFRPPLWWHHLQVWLWXWLRQDO VFLHQWLILFUHYLHZERDUGRUHTXLYDOHQW 7KHLQIRUPDWLRQLQWKLVGRFXPHQWFDQQRWEHXVHGIRUDQ\SXUSRVHRWKHUWKDQWKH HYDOXDWLRQRUFRQGXFWRIWKHFOLQLFDOLQYHVWLJDWLRQZLWKRXWWKHSULRUZULWWHQFRQVHQWRI $PJHQ,QF 1&71XPEHU 7KLV1&7QXPEHUKDVEHHQDSSOLHGWRWKHGRFXPHQW IRUSXUSRVHVRISRVWLQJRQFOLQLFDOWULDOVJRY &21),'(17,$/ 3URGXFW(WHOFDOFHWLGH 3URWRFRO1XPEHU 'DWH)HEUXDU\ 3DJHRI ,QYHVWLJDWRU¶V$JUHHPHQW ,KDYHUHDGWKHDWWDFKHGSURWRFROHQWLWOHG$Q2SHQODEHO6LQJOHGRVH6WXG\WR(YDOXDWH WKH6DIHW\7ROHUDELOLW\3KDUPDFRNLQHWLFVDQG3KDUPDFRG\QDPLFVRI(WHOFDOFHWLGH $0* LQ3DHGLDWULF6XEMHFWV$JHGWROHVVWKDQ<HDUVZLWK6HFRQGDU\ +\SHUSDUDWK\URLGLVP V+37 5HFHLYLQJ0DLQWHQDQFH+DHPRGLDO\VLVGDWHG )HEUXDU\DQGDJUHHWRDELGHE\DOOSURYLVLRQVVHWIRUWKWKHUHLQ ,DJUHHWRFRPSO\ZLWKWKH,QWHUQDWLRQDO&RQIHUHQFHRQ+DUPRQLVDWLRQ -
2017 Fda Peptide Harvest
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2018 doi:10.20944/preprints201804.0126.v1 Peer-reviewed version available at Pharmaceuticals 2018, 11, 42; doi:10.3390/ph11020042 1 Review 2 2017 FDA PEPTIDE HARVEST 3 Othman Al Musaimi,1,2,# Danah Alshaer, 1,2,# Beatriz G. de la Torre,3,* Fernando Albericio,2,4,5.* 4 1 College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa 5 2 School of Chemistry, University of KwaZulu-Natal, Durban 4001, South Africa 6 3 KRISP, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa 7 4 CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of 8 Barcelona, 08028 Barcelona, Spain 9 5 Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain 10 * Correspondence: [email protected]; [email protected]; Tel.: +27-614009144 11 12 13 Abstract: 2017 was an excellent year in terms of new drugs (chemical entities and biologics) 14 approved by the FDA, with a total of forty-six. In turn, one of the highlights was the number of 15 peptides (six) included in this list. Here, the six peptides are analysed in terms of chemical structure, 16 synthetic strategy used for their production, source, biological target, and mode of action. 17 Keywords: pharmaceutical market; drugs; drug discovery; solid-phase peptide synthesis 18 Introduction 19 The financial investment associated with the pharmaceutical industry is one of the largest in the 20 industrial sector—surpassed only by the telecommunications sector. However, the number of new 21 products (drugs) entering the market each year is relatively low. -
Paricalcitol Versus Cinacalcet Plus Low-Dose Vitamin D for the Treatment
Nephrol Dial Transplant (2012) 27: 1942–1949 doi: 10.1093/ndt/gfr531 Advance Access publication 19 September 2011 Paricalcitol versus cinacalcet plus low-dose vitamin D for the treatment of secondary hyperparathyroidism in patients receiving haemodialysis: study design and baseline characteristics of the IMPACT SHPT study Markus Ketteler1, Kevin J. Martin2, Mario Cozzolino3, David Goldsmith4, Amit Sharma5, Samina Khan6, Emily Dumas6, Michael Amdahl6, Steven Marx6 and Paul Audhya6 1Division of Nephrology, Klinikum Coburg, Coburg, Germany, 2Department of Internal Medicine, Division of Nephrology, Saint Louis University, St Louis, MO, USA, 3Department of Medicine, Surgery and Dentistry, University of Milan, Renal Division, Hospital San Paolo, Milan, Italy, 4Renal and Transplantation Department, Guy’s Hospital, London, UK, 5Boise Kidney and Hypertension Institute, Boise, ID, USA and 6Abbott Laboratories, Abbott Park, IL, USA Correspondence and offprint requests to: Markus Ketteler; E-mail: [email protected] Abstract Introduction Background. Paricalcitol and cinacalcet are common thera- pies for patients on haemodialysis with secondary Secondary hyperparathyroidism (SHPT) is a major compli- hyperparathyroidism (SHPT). We conducted a multi-centre cation of chronic kidney disease (CKD) [1] resulting from study in 12 countries to compare the safety and efficacy of impaired calcium and phosphate homeostasis and a lack of paricalcitol and cinacalcet for the treatment of SHPT. vitamin D receptor (VDR) activation secondary to active Methods. Patients aged 18 years with Stage 5 chronic kidney disease receiving maintenance haemodialysis and vitamin D deficiency [2, 3]. SHPT is characterized by with intact parathyroid hormone (iPTH) 300–800 pg/mL, increased parathyroid hormone (PTH) synthesis and secre- calcium 8.4–10.0 mg/dL (2.09–2.49 mmol/L) and phospho- tion and progressive parathyroid gland hyperplasia [2]. -
Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01 -
1 Advances in Therapeutic Peptides Targeting G Protein-Coupled
Advances in therapeutic peptides targeting G protein-coupled receptors Anthony P. Davenport1Ϯ Conor C.G. Scully2Ϯ, Chris de Graaf2, Alastair J. H. Brown2 and Janet J. Maguire1 1Experimental Medicine and Immunotherapeutics, Addenbrooke’s Hospital, University of Cambridge, CB2 0QQ, UK 2Sosei Heptares, Granta Park, Cambridge, CB21 6DG, UK. Ϯ Contributed equally Correspondence to Anthony P. Davenport email: [email protected] Abstract Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) — nearly fifty GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first- in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, and both to introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to bias ligands to activate specific downstream signalling pathways in order to optimise efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma-half life have been revolutionary. Here, we discuss the current status of peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties. Introduction G protein-coupled receptors (GPCRs) mediate a wide range of signalling processes and are targeted by one third of drugs in clinical use1. Although most GPCR-targeting therapeutics are small molecules2, the endogenous ligands for many GPCRs are peptides (comprising 50 or fewer amino acids), which suggests that this class of molecule could be therapeutically useful. -
Estonian Statistics on Medicines 2016 1/41
Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole -
Multi-Scale Ipsp Model of Physiologically-Based Representations to Describe Bone Mineral Homeostasis and Interrelated Effects
Page 1 Multi-scale iPSP Model of Physiologically-based Representations to Describe Bone Mineral Homeostasis and Interrelated Effects Matthew Riggs, Ph.D. Chief Science Officer Group Leader, Translational and Systems Pharmacology Metrum Research Group LLC Tariffville, CT USA ACoP9 Loews Coronado Bay Resort, CA Monday October 08, 2018 Session 1c: A Perspective on integrating Pharmacometrics and Quantitative Systems Pharmacology characteristics using examples Systems Pharmacology: Mineral and Bone Health Page 2 Peterson MC and Riggs MM (2010) A physiologically Based mathematical model of integrated calcium homeostasis and Bone remodeling. Bone 46:49-63 Research Integration with Pharmacometrics Question(s) How Does One Inform the Other? Physiology PMx 1 Represent physiology (signaling → organs → outcomes) Use SP and disease model to interpret and predict drug- 2 related effects Use drug-related effects to Better understand physiology 3 and disease Disease Provide a platform for evaluating longitudinal therapeutic 4 and disease state effects SP Development: Integrate Existing Data & Models Page 3 Decades of research available to inform model parameter and disease state effects Calcium Absorption PTH Secretion Calcium Excretion Bone Therapeutics Disease States Anabolic Hyper- and hypo-PTH (teriparatide, 2004) Catabolic CKD-MBD (Rix et al. 1999) (denosumab, 2006) e.g., Heaney et al. 1997 e.g., Ramirez et al. 1993 e.g., Peacock and Nordin 1968 Calcium Homeostasis Bone Remodeling Intracellular Signaling e.g., Raposo et al. 2002 e.g., LeMaire et al. 2004 e.g., Bellido et al. 2003 Multiscale Model Peterson MC and Riggs MM (2010) A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46:49-63.