Inner (West) Sister Island

Total Page:16

File Type:pdf, Size:1020Kb

Inner (West) Sister Island Inner (West) Sister Island Inner (West) Inner (West) Sister Island Scientific Expedition • 2010 Scientific Expedition • 2010 Scientific A partnership program between the Hamish Saunders Memorial Trust, New Zealand and the Resource Management and Conservation Division, DPIPWE, Tasmania Editors: Dr Stephen Harris and Dr Anthony Reid 10596BL Resource, Management and Conservation Division Department of Primary Industries, Parks, Water and Environment GPO Box 44 Hobart TAS 7001 Department of www.dpipwe.tas.gov.au Primary Industries, Parks, Water and Environment Inner (West) Sister Island Scientific Expedition 2010 A partnership program between the Hamish Saunders Memorial Trust, New Zealand and the Resource Management and Conservation Division, DPIPWE, Tasmania. © Department of Primary Industries, Parks, Water and Environment Book ISBN: 978-0-7246-6572-3 Title: Inner (West) Sister Island Scientific Expedition 2010 Author(s): Stephen Harris and Anthony Reid (editors) Publisher/Place: Department of Primary Industries, Parks, Water and Environment/Hobart PDF format for Web publication ISBN: 978-0-7246-6573-0 Title: Inner (West) Sister Island Scientific Expedition 2010 Author(s): Stephen Harris and Anthony Reid (editors) Publisher/Place: Department of Primary Industries, Parks, Water and Environment/Hobart Cite as: Harris, S. and Reid, A. (2011). Inner (West) Sister Island Scientific Expedition 2010. Hamish Saunders Memorial Trust, New Zealand and Resource Management and Conservation Division, DPIPWE, Hobart, Nature Conservation Report Series 11/2 Cover photo: Panoramic view across the Inner Sister Island (photo: M. Visoiu) Inside cover photos: Rolan Eberhard Design and layout by the ILS Design Unit, DPIPWE. This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgement of the sources and no commercial use or sale. Requests and enquiries concerning reproduction and rights should be addressed to the Branch Manager, Policy and Conservation Assessment Branch DPIPWE or the Hamish Saunders Memorial Trust, Auckland, New Zealand. Inner (West) Sister Island Scientific Expedition • 2010 A partnership program between the Hamish Saunders Memorial Trust, New Zealand and the Resource Management and Conservation Division, DPIPWE, Tasmania Editors: Dr Stephen Harris Dr Anthony Reid Inner (West) Sister Island • Scientific Expedition • 2010 2 House Bay. Photo by Asher Jones. Contents Foreword 5 6 Hamish Saunders 6 Acknowledgements 7 Summary of Results Introduction 11 A Speculative Pre-European Vegetation 13 of Inner Sister Island, Furneaux Group Geodiversity 19 Marine Habitats of Inner Sister Island 29 Present Vegetation of Inner Sister Island 41 with notes on Threatened and Biogeographically Significant Species Avifauna of Inner Sister Island, Furneaux Group 69 Seabirds 83 Terrestrial Mammals 93 Crickets, Grasshoppers and Stick Insects 103 of Inner Sister Island Reptiles 107 Freshwater Invertebrates of Inner Sister Island 111 Terrestrial Invertebrates of Inner Sister Island 117 Asher Jones Travel Award Recipient Report 131 Claire Taylor Travel Award Recipient Report 135 Inner (West) Sister Island • Scientific Expedition • 2010 3 Inner (West) Sister Island • Scientific Expedition • 2010 4 Phyllospora comosa. Photo by Rolan Eberhard. Foreword Ten years ago the then Department of At the present time islands are also being examined Primary Industries, Water and Environment as prospective locations for translocations for species conducted a land use study of leasehold threatened elsewhere by disease, and other threats, including climate change as mediated through islands in the Furneaux Group, in conjunction altered fire regimes and other habitat shifts. Islands with leaseholders, NRM and the Outer may indeed already provide refugia for biota that Island Association. The study was to assess may potentially be disadvantaged elsewhere by the sustainability of land use practices environmental change. and determine how leasehold conditions I welcome a further report in the series that records should be framed. This work depends the results of detailed scientific work on Tasmania’s on basic information about the natural offshore islands. This program, supported by the values of such islands, information which is Tasmanian Government is a joint initiative with the often incomplete as it was in the case of Hamish Saunders Memorial Trust in New Zealand Inner Sister Island, particularly in relation which once again selected and supported the travel to fauna. A decade later this has been of two young New Zealand students to Tasmania. The opportunity was provided them to work with largely remedied. The results presented experienced Tasmanian scientists in the field. Asher in this report not only generate a better Jones and Claire Taylor by all accounts gained a understanding of threatened plants, animals, great deal from their experience. They will now join and vegetation communities, but provide the expanding group of the nascent generation of knowledge that will contribute to good land natural history scientists who, benefitting from their management for conservation of natural experience with the Hamish Saunders Memorial values. Island Survey Program, will contribute to professional and personal connections between New Zealand and Tasmania in the coming years. Alistair Scott General Manager, Resource Management and Conservation Division. Inner (West) Sister Island • Scientific Expedition • 2010 5 Hamish Saunders Acknowledgements Hamish Saunders was a New Zealand volunteer who Thanks is again due to the Hamish Saunders died tragically in 2003 while conducting survey work Memorial Trust for participating in the program, on a Tasmanian endangered species program. Hamish particularly Alan and David Saunders, and the Trust’s graduated from Waikato University with a First Class travel award recipients Asher Jones and Claire Honours and Masters degree in marine geology. He Taylor. Sincere thanks to Kay and Robert Blyth of later completed a postgraduate GIS course with Flinders Island who were supportive of the study and distinction. He also achieved qualifications as a scuba provided background information as needed. James dive instructor, was a good sportsman and was Luddington provided transport between Flinders talented, not solely academically, but as an all round Island and Inner Sister Island and we are grateful for individual. his logistical support in this regard. Fionna Bourne and Mike Pemberton provided Agency support. We As an explorer, Hamish achieved in his 26 years also thank Wayne Dick, the Parks and Wildlife Service much of which most only dream. From Antarctica Ranger on Flinders Island, and his staff for assisting in to the Galapagos, Central America, South America, the logistical arrangements while the party were in South-East Asia, Europe and Australia, he combined the Furneaux Group. his passion for the natural world and conservation with that of an interest in local cultures and people. Dr Sylvia Singh and her family of Whitemark were Not only did he travel to these places, but he also very helpful to the party in enabling extra equipment took a great interest in the people around him. He to be taken to the island from Launceston. touched many lives. Hamish was a remarkable and We thank the many people who provided their time talented young man. The passion and enthusiasm he and expertise, some in a volunteer capacity, across the engendered in those whom he met and the gentle range of specialties dealt with in this report – they leadership he embodied is his legacy. are acknowledged separately in the individual reports This island survey program is dedicated to the herein. memory of Hamish Saunders and intended as a The editors especially thank participants for writing platform for emerging leaders in nature conservation. up the results of their work promptly following the The Tasmanian Government’s commitment and long- expedition. Thanks to Brett Littleton of Information term support for the program is reaffirmed in the and Land Services Division in the Department of publication of each of the expedition reports. Primary Industries, Parks, Water and Environment for his design and layout of the report. Inner (West) Sister Island • Scientific Expedition • 2010 6 Summary of Results 7. Considerable diversity was also witnessed in the intertidal zones of the island, with 1. At the time of initial European contact with the molluscan, cnidarian, crustacean and echinoderm island in the late eighteenth century, the island representatives, in addition to members from most likely supported a dense forest dominated the three main algal groups - Phaeophyta, in different places by Allocasuarina verticillata, Chlorophyta and Rhodophyta. (Reid) Eucalyptus globulus and Callitris rhomboidea. (Harris, Jones and Taylor) 8. Revised vegetation mapping includes an extensive area of previously unmapped Lowland 2. The bedrock geology is entirely granitic except Poa labillardierei (GPL) grassland. The extent and for minor igneous dykes of probable dolerite. type of other grasslands on the island has been The island is mantled by gravelly colluvium and refined. Four vegetation communities are listed aeolian sands which in some sites have lithified as threatened at the State level. (Visoiu) to form calcarenite. Soils are well drained gritty loams and sandy loams. (Eberhard) 9. Native vegetation has been increasing particularly the extent of scrub and forest types 3. Features worthy of listing on the Tasmanian over
Recommended publications
  • The Short-Tailed Shearwater: a Review of Its Biology
    Corella, 1991 , 15(2): 45-52 A11srralasia11 Hird l?<'l'iews - N11111ber 3 THE SHORT-TAILED SHEARWATER: A REVIEW OF ITS BIOLOGY IRYNEJ SKIRA Department of Parks. Wiltllifc and Heritage, 134 Macquarie St.. Hobart. Tas 7000 {<eceived I May /990 The life history of the Short-tailed Shearwater Puffinus tenuirostris has been well documented since it first came to the attention of naturalists. Approximately 23 million birds breed in about 250 colonies in southeastern Australia from September to April. The Short-tailed Shearwater commences to breed when 4 to 15 years. During their completed lifetimes 27 per cent of all individuals produce no young and 19 per cent only one chick. Mortality is age-related with the median survival time for breeding being 9.3 years after first breeding. Many areas remain open for study, with a particular need for interdisciplinary research that includes oceanography. INTRODUCTION The Short-tailed Shearwater was one of the first Australian birds to be banded in large numbers The Short-tailed Shearwater Puffinustenuirostris, (Serventy 1957, 1961) and to be subjected to a commonly known as the Tasmanian muttonbird, long-term scientific study (Guiler et al. 1958). This is one of about I 00 species in the Procellarii­ study was commenced on Fisher Island in the formes. The diagno�tic feature of the order is the Furneaux Group of Tasmania in March 1947 by external nostrils produced into tubes extending Dominic Serventy formerly of the CSIRO onto the bill. Other distinctive features are the (Scrventy 1977) and continues to the present. 42 hooked and plated bill.
    [Show full text]
  • Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
    Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000).
    [Show full text]
  • Rodondo Island
    BIODIVERSITY & OIL SPILL RESPONSE SURVEY January 2015 NATURE CONSERVATION REPORT SERIES 15/04 RODONDO ISLAND BASS STRAIT NATURAL AND CULTURAL HERITAGE DIVISION DEPARTMENT OF PRIMARY INDUSTRIES, PARKS, WATER AND ENVIRONMENT RODONDO ISLAND – Oil Spill & Biodiversity Survey, January 2015 RODONDO ISLAND BASS STRAIT Biodiversity & Oil Spill Response Survey, January 2015 NATURE CONSERVATION REPORT SERIES 15/04 Natural and Cultural Heritage Division, DPIPWE, Tasmania. © Department of Primary Industries, Parks, Water and Environment ISBN: 978-1-74380-006-5 (Electronic publication only) ISSN: 1838-7403 Cite as: Carlyon, K., Visoiu, M., Hawkins, C., Richards, K. and Alderman, R. (2015) Rodondo Island, Bass Strait: Biodiversity & Oil Spill Response Survey, January 2015. Natural and Cultural Heritage Division, DPIPWE, Hobart. Nature Conservation Report Series 15/04. Main cover photo: Micah Visoiu Inside cover: Clare Hawkins Unless otherwise credited, the copyright of all images remains with the Department of Primary Industries, Parks, Water and Environment. This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgement of the source and no commercial use or sale. Requests and enquiries concerning reproduction and rights should be addressed to the Branch Manager, Wildlife Management Branch, DPIPWE. Page | 2 RODONDO ISLAND – Oil Spill & Biodiversity Survey, January 2015 SUMMARY Rodondo Island was surveyed in January 2015 by staff from the Natural and Cultural Heritage Division of the Department of Primary Industries, Parks, Water and Environment (DPIPWE) to evaluate potential response and mitigation options should an oil spill occur in the region that had the potential to impact on the island’s natural values. Spatial information relevant to species that may be vulnerable in the event of an oil spill in the area has been added to the Australian Maritime Safety Authority’s Oil Spill Response Atlas and all species records added to the DPIPWE Natural Values Atlas.
    [Show full text]
  • WMSDB - Worldwide Mollusc Species Data Base
    WMSDB - Worldwide Mollusc Species Data Base Family: TURBINIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: VETIGASTROPODA-TROCHOIDEA ------ Family: TURBINIDAE Rafinesque, 1815 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=681, Genus=26, Subgenus=17, Species=203, Subspecies=23, Synonyms=411, Images=168 abyssorum , Bolma henica abyssorum M.M. Schepman, 1908 aculeata , Guildfordia aculeata S. Kosuge, 1979 aculeatus , Turbo aculeatus T. Allan, 1818 - syn of: Epitonium muricatum (A. Risso, 1826) acutangulus, Turbo acutangulus C. Linnaeus, 1758 acutus , Turbo acutus E. Donovan, 1804 - syn of: Turbonilla acuta (E. Donovan, 1804) aegyptius , Turbo aegyptius J.F. Gmelin, 1791 - syn of: Rubritrochus declivis (P. Forsskål in C. Niebuhr, 1775) aereus , Turbo aereus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) aethiops , Turbo aethiops J.F. Gmelin, 1791 - syn of: Diloma aethiops (J.F. Gmelin, 1791) agonistes , Turbo agonistes W.H. Dall & W.H. Ochsner, 1928 - syn of: Turbo scitulus (W.H. Dall, 1919) albidus , Turbo albidus F. Kanmacher, 1798 - syn of: Graphis albida (F. Kanmacher, 1798) albocinctus , Turbo albocinctus J.H.F. Link, 1807 - syn of: Littorina saxatilis (A.G. Olivi, 1792) albofasciatus , Turbo albofasciatus L. Bozzetti, 1994 albofasciatus , Marmarostoma albofasciatus L. Bozzetti, 1994 - syn of: Turbo albofasciatus L. Bozzetti, 1994 albulus , Turbo albulus O. Fabricius, 1780 - syn of: Menestho albula (O. Fabricius, 1780) albus , Turbo albus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) albus, Turbo albus T. Pennant, 1777 amabilis , Turbo amabilis H. Ozaki, 1954 - syn of: Bolma guttata (A. Adams, 1863) americanum , Lithopoma americanum (J.F.
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Neighbours at War : Aggressive Behaviour and Spatial
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. NEIGHBOURS AT WAR: AGGRESSIVE BEHAVIOUR AND SPATIAL RESPONSIVENESS IN THE ANEMONE, ACTINIA TENEBROSA. __________________________________________________________________________________ This thesis is completed in part of a Masters of Conservation Biology Degree. Georgia Balfour | Masters of Conservation Biology | July 27, 2017 1 | Page ACKNOWLEDGEMENTS “Ehara taku toa it te toa takitahi, engari he toa takimano. My success is not that of my own, but the success of many” Firstly, I would like to acknowledge my supervisors Dianne Brunton and David Aguirre. Thank you for all of your guidance, for taking an idea that I had and helping make a project out of it. Thank you for giving up your time to read and analyse my work and for always keeping me on point. For helping me to define what I really wanted to study and trekking all over Auckland to find these little blobs of jelly stuck to the rocks. David, your brilliant mathematical and analytical mind has enhanced my writing, so thank you, without you I would have been lost. This would never have been finished without both of your input! Secondly, I would like to acknowledge my parents, Georgina Tehei Pourau and Iain Balfour. Your endless support, strength and enormous belief in what I do and who I am has guided me to this point. Thank you for scouting prospective sites and getting up early to collect anemones with me.
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • Checklist of Marine Gastropods Around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1
    www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com ISSN Online: 2475-4706 Research Article International Journal of Marine Biology and Research Open Access Checklist of Marine Gastropods around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1 1ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai - 400061 2Center for Environmental Nuclear Research, Directorate of Research SRM Institute of Science and Technology, Kattankulathur-603 203 Received: July 30, 2018; Accepted: August 10, 2018; Published: September 04, 2018 *Corresponding author: Ambekar AA, Senior Research Fellow, ICAR-Central Institute of Fisheries Education, Off Yari Road, Versova, Andheri West, Mumbai-400061, Maharashtra, India, E-mail: [email protected] The change in spatial scale often supposed to alter the Abstract The present study was carried out to assess the marine gastropods checklist around ecologically importance area of Tarapur atomic diversity pattern, in the sense that an increased in scale could power station intertidal area. In three tidal zone areas, quadrate provide more resources to species and that promote an increased sampling method was adopted and the intertidal marine gastropods arein diversity interlinks [9]. for Inthe case study of invertebratesof morphological the secondand ecological largest group on earth is Mollusc [7]. Intertidal molluscan communities parameters of water and sediments are also done. A total of 51 were collected and identified up to species level. Physico chemical convergence between geographically and temporally isolated family dominant it composed 20% followed by Neritidae (12%), intertidal gastropods species were identified; among them Muricidae communities [13].
    [Show full text]
  • Squires Catalogue
    Type and Figured Palaeontological Specimens in the Tasmanian Museum and Art Gallery A CATALOGUE Compiled by Tasmanian Museum and Art Gallery Don Squires Hobart, Tasmania Honorary Curator of Palaeontology May, 2012 Type and Figured Palaeontological Specimens in the Tasmanian Museum and Art Gallery A CATALOGUE Compiled by Don Squires Honorary Curator of Palaeontology cover image: Trigonotreta stokesi Koenig 1825, the !rst described Australian fossil taxon occurs abundantly in its type locality in the Tamar Valley, Tasmania as external and internal moulds. The holotype, a wax cast, is housed at the British Museum (Natural History). (Clarke, 1979) Hobart, Tasmania May, 2012 Contents INTRODUCTION ..........................................1 VERTEBRATE PALAEONTOLOGY ...........122 PISCES .................................................. 122 INVERTEBRATE PALAEONTOLOGY ............9 AMPHIBIA .............................................. 123 NEOGENE ....................................................... 9 REPTILIA [SP?] ....................................... 126 MONOTREMATA .................................... 127 PLEISTOCENE ........................................... 9 MARSUPIALIA ........................................ 127 Gastropoda .......................................... 9 INCERTAE SEDIS ................................... 128 Ostracoda ........................................... 10 DESCRIBED AS A VERTEBRATE, MIOCENE ................................................. 14 PROBABLY A PLANT ............................. 129 bivalvia ...............................................
    [Show full text]
  • Tas Talk… the Movie the Cast, Their Stories and the Best Supporting Actress…Tasmania
    TAS TALK… THE MOVIE THE CAST, THEIR STORIES AND THE BEST SUPPORTING ACTRESS…TASMANIA Kayaking on the Pieman River © Michael Walters Photography Behind the Scenes, Hobart © HypeTV –––– A journey to Tasmania is a rare chance to disconnect from stress and reconnect with the things that matter. Geographic isolation has contributed to unique biodiversity, and it has also fostered a rare community of creative, down-to-earth, resourceful people with time to make you feel welcome. We are all working in unusual circumstances and although this year we were unable to deliver our much sought after TasTalk trade event in its standard format, we know you need to connect with Tasmanian tourism operators. So, we are bringing the TasTalk trade event experience to you! This is TasTalk...The Movie, an opportunity for you to listen and connect with Tasmanians over a live platform. Featuring the stars of our tourism industry, this is set to be a movie like you have never seen before. One of the joys of travelling in Tasmania is not just the chance to taste produce straight from the farm and ocean, but the ease of meeting the makers at cellar doors, farm gates and local markets. And with four distinct seasons, there’s always something new to see, taste and feel. TasTalk...The Movie will speak to all of this and more. Tasmania is a place for adventure, however, you define it. Whether the view is from the privacy of a hot tub in a forest, or from a kayak for two, or fireside with Tassie whisky and friends, the world looks different from Tasmania.
    [Show full text]
  • Impact of Sea Level Rise on Coastal Natural Values in Tasmania
    Impact of sea level rise on coastal natural values in Tasmania JUNE 2016 Department of Primary Industries, Parks, Water and Environment Acknowledgements Thanks to the support we received in particular from Clarissa Murphy who gave six months as a volunteer in the first phase of the sea level rise risk assessment work. We also had considerable technical input from a range of people on various aspects of the work, including Hans and Annie Wapstra, Richard Schahinger, Tim Rudman, John Church, and Anni McCuaig. We acknowledge the hard work over a number of years from the Sea Level Rise Impacts Working Group: Oberon Carter, Louise Gilfedder, Felicity Faulkner, Lynne Sparrow (DPIPWE), Eric Woehler (BirdLife Tasmania) and Chris Sharples (University of Tasmania). This report was compiled by Oberon Carter, Felicity Faulkner, Louise Gilfedder and Peter Voller from the Natural Values Conservation Branch. Citation DPIPWE (2016) Impact of sea level rise on coastal natural values in Tasmania. Natural and Cultural Heritage Division, Department of Primary Industries, Parks, Water and Environment, Hobart. www.dpipwe.tas.gov.au ISBN: 978-1-74380-009-6 Cover View to Mount Cameron West by Oberon Carter. Pied Oystercatcher by Mick Brown. The Pied Oystercatcher is considered to have a very high exposure to sea level rise under both a national assessment and Tasmanian assessment. Its preferred habitat is mudflats, sandbanks and sandy ocean beaches, all vulnerable to inundation and erosion. Round-leaved Pigface (Disphyma australe) in flower in saltmarsh at Lauderdale by Iona Mitchell. Three saltmarsh communities are associated with the coastal zone and are considered at risk from sea level rise.
    [Show full text]
  • Evolutionary Shifts in Fruit Dispersal Syndromes in Apiaceae Tribe Scandiceae
    Plant Systematics and Evolution (2019) 305:401–414 https://doi.org/10.1007/s00606-019-01579-1 ORIGINAL ARTICLE Evolutionary shifts in fruit dispersal syndromes in Apiaceae tribe Scandiceae Aneta Wojewódzka1,2 · Jakub Baczyński1 · Łukasz Banasiak1 · Stephen R. Downie3 · Agnieszka Czarnocka‑Cieciura1 · Michał Gierek1 · Kamil Frankiewicz1 · Krzysztof Spalik1 Received: 17 November 2018 / Accepted: 2 April 2019 / Published online: 2 May 2019 © The Author(s) 2019 Abstract Apiaceae tribe Scandiceae includes species with diverse fruits that depending upon their morphology are dispersed by gravity, carried away by wind, or transported attached to animal fur or feathers. This diversity is particularly evident in Scandiceae subtribe Daucinae, a group encompassing species with wings or spines developing on fruit secondary ribs. In this paper, we explore fruit evolution in 86 representatives of Scandiceae and outgroups to assess adaptive shifts related to the evolutionary switch between anemochory and epizoochory and to identify possible dispersal syndromes, i.e., patterns of covariation of morphological and life-history traits that are associated with a particular vector. We also assess the phylogenetic signal in fruit traits. Principal component analysis of 16 quantitative fruit characters and of plant height did not clearly separate spe- cies having diferent dispersal strategies as estimated based on fruit appendages. Only presumed anemochory was weakly associated with plant height and the fattening of mericarps with their accompanying anatomical changes. We conclude that in Scandiceae, there are no distinct dispersal syndromes, but a continuum of fruit morphologies relying on diferent dispersal vectors. Phylogenetic mapping of ten discrete fruit characters on trees inferred by nrDNA ITS and cpDNA sequence data revealed that all are homoplastic and of limited use for the delimitation of genera.
    [Show full text]