Quadratic matings and ray connections Wolf Jung Gesamtschule Brand, 52078 Aachen, Germany, and Jacobs University, 28759 Bremen, Germany. E-mail:
[email protected] Abstract A topological mating is a map defined by gluing together the filled Julia sets of two quadratic polynomials. The identifications are visualized and understood by pinching ray-equivalence classes of the formal mating. For postcritically finite polynomials in non-conjugate limbs of the Mandelbrot set, classical re- sults construct the geometric mating from the formal mating. Here families of examples are discussed, such that all ray-equivalence classes are uniformly bounded trees. Thus the topological mating is obtained directly in geomet- rically finite and infinite cases. On the other hand, renormalization provides examples of unbounded cyclic ray connections, such that the topological mat- ing is not defined on a Hausdorff space. There is an alternative construction of mating, when at least one polynomial is preperiodic: shift the infinite critical value of the other polynomial to a preperiodic point. Taking homotopic rays, it gives simple examples of shared matings. Sequences with unbounded multiplicity of sharing, and slowly grow- ing preperiod and period, are obtained both in the Chebychev family and for Airplane matings. Using preperiodic polynomials with identifications between the two critical orbits, an example of mating discontinuity is described as well. 1 Introduction Starting from two quadratic polynomials P (z)= z2 +p and Q(z)= z2 +q, construct arXiv:1707.00630v1 [math.DS] 3 Jul 2017 the topological mating P ` Q by gluing the filled Julia sets Kp and Kq . If there is a conjugate rational map f, this defines the geometric mating.