Journal of Advances in Applied Mathematics, Vol. 6, No. 2, April 2021 https://dx.doi.org/10.22606/jaam.2021.62001 27 On the Mandelbrot Set for i2 = ±1 and Imaginary Higgs Fields Jonathan Blackledge Stokes Professor, Science Foundation Ireland. Distinguished Professor, Centre for Advanced Studies, Warsaw University of Technology, Poland. Visiting Professor, Faculty of Arts, Science and Technology, Wrexham Glyndwr University of Wales, UK. Professor Extraordinaire, Faculty of Natural Sciences, University of Western Cape, South Africa. Honorary Professor, School of Electrical and Electronic Engineering, Technological University Dublin, Ireland. Honorary Professor, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, South Africa. Email:
[email protected] Abstract We consider the consequence√ of breaking with a fundamental result in complex analysis by letting i2 = ±1 where i = −1 is the basic unit of all imaginary numbers. An analysis of the Mandelbrot set for this case shows that a demarcation between a Fractal and a Euclidean object is possible based on i2 = −1 and i2 = +1, respectively. Further, we consider the transient behaviour associated with the two cases to produce a range of non-standard sets in which a Fractal geometric structure is transformed into a Euclidean object. In the case of the Mandelbrot set, the Euclidean object is a square whose properties are investigate. Coupled with the associated Julia sets and other complex plane mappings, this approach provides the potential to generate a wide range of new semi-fractal structures which are visually interesting and may be of artistic merit. In this context, we present a mathematical paradox which explores the idea that i2 = ±1.