Local Connectivity of the Mandelbrot Set at Certain Infinitely Renormalizable Points∗†

Total Page:16

File Type:pdf, Size:1020Kb

Local Connectivity of the Mandelbrot Set at Certain Infinitely Renormalizable Points∗† Local connectivity of the Mandelbrot set at certain infinitely renormalizable points¤y Yunping Jingz Abstract We construct a subset consisting of infinitely renormalizable points in the Mandelbrot set. We show that Mandelbrot set is locally connected at this subset and for every point in this sub- set, corresponding infinitely renormalizable quadratic Julia set is locally connected. Since the set of Misiurewicz points is in the closure of the subset we construct, therefore, the subset is dense in the boundary of the Mandelbrot set. Contents 1 Introduction, review, and statements of new results 237 1.1 Quadratic polynomials . 237 1.2 Local connectivity for quadratic Julia sets. 240 1.3 Some basic facts about the Mandelbrot set from Douady- Hubbard . 244 1.4 Constructions of three-dimensional partitions. 248 1.5 Statements of new results. 250 2 Basic idea in our construction 252 3 The proof of our main theorem 259 ¤2000 Mathematics Subject Classification. Primary 37F25 and 37F45, Secondary 37E20 yKeywords: infinitely renormalizable point, local connectivity, Yoccoz puzzle, the Mandelbrot set zPartially supported by NSF grants and PSC-CUNY awards and 100 men program of China 236 Complex Dynamics and Related Topics 237 1 Introduction, review, and statements of new results 1.1 Quadratic polynomials Let C and C be the complex plane and the extended complex plane (the Riemann sphere). Suppose f is a holomorphic map from a domain Ω ½ C into itself. A point z in Ω is called a periodic point of period k ¸ 1 if f ±k(z) = z but f ±i(z) 6= z for all 1 · i < k. The number ¸ = (f ±k)0(z) is called the multiplier of f at z. A periodic point of period 1 is also called a fixed point. A periodic point z of f is said to be super-attracting, attracting, neutral, or repelling if j¸j = 0, 0 < j¸j < 1, j¸j = 1, or j¸j > 1. The proof of the following theorem can be found in Milnor’s book [22, pp. 86-88]. Theorem 1.1 (Theorem of B¨ottcher). Suppose p is a super-attracting periodic point of period k of a holomorphic map f from a domain Ω into itself. There is a neighborhood W of p, a holomorphic diffeomorphism h : W ! h(W ) with h(p) = 0, and a unique integer n > 1 such that h ± f ±k ± h¡1(w) = wn for w 2 h(W ). Furthermore, h is unique up to multiplication by an (n ¡ 1)-st root of unity. Consider a quadratic polynomial f(z) = az2 + bz + d. Conjugating f by an appropriate linear map h(z) = ez +s, we get h±f ±h¡1(z) = z2 +c. So from dynamical systems point of view, quadratic polynomials form a 2 one-parameter family. We call qc(z) = z +c the Douady-Hubbard family of quadratic polynomials. When we study this family, we always deal with two kinds of sets, one is the class of sets in the phase space (the z-plane) and the other is the class of sets in the parameter space (the c-plane). In this paper, we use regular letters to denote sets in the phase space and curly letters to denote sets in the parameter space. Denote Dr = fz 2 C j jzj < rg the disk of radius r centered 0. Let 2 ¡1 qc(z) = z +c be a quadratic polynomial. For r large enough, U = qc (Dr) is a simply connected domain and its closure is relatively compact in Dr. Then qc : U ! V = Dr is a holomorphic, proper, degree two branched covering map. This is a model of quadratic-like maps defined by Douady and Hubbard [2] as follows: A quadratic-like map is a triple (f; U; V ) such that U and V are simply connected domains isomorphic to a disc Complex Dynamics and Related Topics 238 with U ½ V and such that f : U ! V is a holomorphic, proper, degree two branched covering mapping. For a quadratic-like map (f; U; V ), 1 ¡n Kf = \n=0f (U) is called the filled-in Julia set. The Julia set Jf is the boundary of Kf . Both Kf and Jf are compact. A quadratic-like map (f; U; V ) has only one critical point which we always denote as 0. Refer to [22, pp. 91-92] for a proof of the following theorem. Theorem 1.2. The set Kf (as well as Jf ) is connected if and only if 0 is in Kf . Moreover, if 0 is not in Kf , Kf = Jf is a Cantor set. Since qc : U ! V = Dr is a quadratic-like map, the filled-in Julia set of qc is the set of all points not going to infinity under forward iterates of qc. We use Kc and Jc to mean its filled-in Julia set and Julia set. For c = 0 and every r > 1, (q0;Dr;Dr2 ) is a quadratic-like map whose filled- in Julia set is K0 = D1. For any c, 1 is a super-attracting fixed point of qc, applying Theorem 1.1, there is a unique holomorphic diffeomorphism hc (called the B¨ottcher coordinate) defined on a neighborhood B0 about 0 1 with hc(1) = 1, hc(1) = 1 such that ¡1 2 hc ± qc ± hc (z) = z ; z 2 B0: Assume hc(B0) = C n Dr (for a fixed large number r > 1). Let Bn = ¡n qc (B0). If 0 62 Bn, then qc : Bn \ C ! Bn¡1 \ C; n ¸ 1; is unramified covering map of degree two. So we can inductively extend hc : Bn ! C n D 1 r 2n such that ¡1 2 hc ± qc ± hc (z) = z z 2 Bn: Let ±n Bc(1) = fz 2 C j qc (z) ! 1 as n ! 1g be the basin of 1. Then Kc = C n Bc(1). Let + ±n log jqc (z)j Gc(z) = lim ; n!1 2n Complex Dynamics and Related Topics 239 + where log x = supf0; log xg, be the Green function of Kc. It is a proper harmonic function whose zero set is Kc and whose critical points are bounded by Gc(0). So the B¨ottcher coordinate can be extended to hc : Uc = fz 2 C j Gc(z) > Gc(0)g ! fz 2 C j jzj > exp Gc(0)g: such that ¡1 2 hc ± qc ± hc (z) = z : ¡1 Moreover, Gc = log jhcj. The set Gc (log r), r > 1, is called an equipo- tential curve. If Kc is connected (equivalent to say 0 62 Bc(1)), then Uc = Bc(1) n f1g; if Kc is a Cantor set (equivalent to say 0 2 Bc(1)), then Uc is a punctured disk bounded by an 1 shape curve passing 0. By the definition, the Mandelbrot set M is defined as the set of parameters c such that Kc is connected. Suppose c 2 M. Let Sr = fz 2 C j jzj = rg be a circle of radius r > 1. Then ¡1 ¡1 sr = hc (Sr) = Gc (log r) is an equipotential curve. Note that qc(sr) = sr2 : ¡1 For every r > 1, let Ur = hc (Dr). Then Ur is a domain bounded by the equipotential curve sr. Furthermore, (qc;Ur;Ur2 ) is a quadratic-like map whose filled-in Julia set is Kc. In the rest of this paper, when we talk about a quadratic polynomial q(z) = z2 + c, it also mean a quadratic-like map (q; Ur;Ur2 ) for any r > 1. Take Eθ = fz 2 C j jzj > 1; arg(z) = 2¼θg for 0 · θ < 1. Let ¡1 eθ = hc (Eθ): Then eθ is called an external ray of angle θ and qc(eθ) = e2θ (mod 1): An external ray is an integral curve of the gradient vector field rG on Bc(1). An external ray eθ is said to land at Jc if eθ has only one limiting ±i point at Jc. It is periodic with period m if qc (eθ) \ eθ = ; for 1 · i < m ±m and if qc (eθ) = eθ. Refer to [9, 23] for the following theorem (the reader can also find a proof in [10, pp. 199]. Complex Dynamics and Related Topics 240 2 Theorem 1.3 (Douady and Yoccoz). Suppose qc(z) = z + c is a quadratic polynomial with a connected filled-in Julia set Kc. Every repelling periodic point of qc is a landing point of finitely many periodic external rays with the same period. Two quadratic-like maps (f; U; V ) and (g; U 0;V 0) are said to be topo- logically conjugate if there is a homeomorphism h from a neighborhood 0 Kf ½ X ½ U to a neighborhood Kg ½ Y ½ U such that h ± f(z) = g ± h(z); z 2 X: If h is quasiconformal (see [1]) (resp. holomorphic), then they are quasi- conformally (resp. holomorphically) conjugate. If h can be chosen such that hz = 0 a.e. on Kf , then they are hybrid equivalent. The reader can find the proof of the following theorem in [2]. Theorem 1.4 (Douady and Hubbard). Suppose (f; U; V ) is a quadratic- like map whose Julia set Jf is connected. Then there is a unique quadratic 2 polynomial qc(z) = z + c which is hybrid equivalent to f. The following basic facts about the Julia set of a quadratic-like map (f; U; V ) will be used in the paper but the reader can check them by himself by referring to [22]. The Julia set Jf is completely invariant, ¡1 i.e., f(Jf ) = Jf and f (Jf ) = Jf .
Recommended publications
  • On the Combinatorics of External Rays in the Dynamics of the Complex Henon
    ON THE COMBINATORICS OF EXTERNAL RAYS IN THE DYNAMICS OF THE COMPLEX HENON MAP. A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Ricardo Antonio Oliva May 1998 c Ricardo Antonio Oliva 1998 ALL RIGHTS RESERVED Addendum. This is a slightly revised version of my doctoral thesis: some typing and spelling mistakes have been corrected and a few sentences have been re-worded for better legibility (particularly in section 4.3). Also, to create a nicer pdf document with hyperref, the title of section 3.3.2 has been made shorter. The original title was A model for a map with an attracting fixed point as well as a period-3 sink: the (3-1)-graph. ON THE COMBINATORICS OF EXTERNAL RAYS IN THE DYNAMICS OF THE COMPLEX HENON MAP. Ricardo Antonio Oliva , Ph.D. Cornell University 1998 We present combinatorial models that describe quotients of the solenoid arising from the dynamics of the complex H´enon map 2 2 2 fa,c : C → C , (x, y) → (x + c − ay, x). These models encode identifications of external rays for specific mappings in the H´enon family. We investigate the structure of a region of parameter space in R2 empirically, using computational tools we developed for this study. We give a combi- natorial description of bifurcations arising from changes in the set of identifications of external rays. Our techniques enable us to detect, predict, and locate bifurca- tion curves in parameter space. We describe a specific family of bifurcations in a region of real parameter space for which the mappings were expected to have sim- ple dynamics.
    [Show full text]
  • ABSTRACT Chaos in Dendritic and Circular Julia Sets Nathan Averbeck, Ph.D. Advisor: Brian Raines, D.Phil. We Demonstrate The
    ABSTRACT Chaos in Dendritic and Circular Julia Sets Nathan Averbeck, Ph.D. Advisor: Brian Raines, D.Phil. We demonstrate the existence of various forms of chaos (including transitive distributional chaos, !-chaos, topological chaos, and exact Devaney chaos) on two families of abstract Julia sets: the dendritic Julia sets Dτ and the \circular" Julia sets Eτ , whose symbolic encoding was introduced by Stewart Baldwin. In particular, suppose one of the two following conditions hold: either fc has a Julia set which is a dendrite, or (provided that the kneading sequence of c is Γ-acceptable) that fc has an attracting or parabolic periodic point. Then, by way of a conjugacy which allows us to represent these Julia sets symbolically, we prove that fc exhibits various forms of chaos. Chaos in Dendritic and Circular Julia Sets by Nathan Averbeck, B.S., M.A. A Dissertation Approved by the Department of Mathematics Lance L. Littlejohn, Ph.D., Chairperson Submitted to the Graduate Faculty of Baylor University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved by the Dissertation Committee Brian Raines, D.Phil., Chairperson Will Brian, D.Phil. Markus Hunziker, Ph.D. Alexander Pruss, Ph.D. David Ryden, Ph.D. Accepted by the Graduate School August 2016 J. Larry Lyon, Ph.D., Dean Page bearing signatures is kept on file in the Graduate School. Copyright c 2016 by Nathan Averbeck All rights reserved TABLE OF CONTENTS LIST OF FIGURES vi ACKNOWLEDGMENTS vii DEDICATION viii 1 Preliminaries 1 1.1 Continuum Theory and Dynamical Systems . 1 1.2 Unimodal Maps .
    [Show full text]
  • Infinitely Renormalizable Quadratic Polynomials 1
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 352, Number 11, Pages 5077{5091 S 0002-9947(00)02514-9 Article electronically published on July 12, 2000 INFINITELY RENORMALIZABLE QUADRATIC POLYNOMIALS YUNPING JIANG Abstract. We prove that the Julia set of a quadratic polynomial which ad- mits an infinite sequence of unbranched, simple renormalizations with complex bounds is locally connected. The method in this study is three-dimensional puzzles. 1. Introduction Let P (z)=z2 + c be a quadratic polynomial where z is a complex variable and c is a complex parameter. The filled-in Julia set K of P is, by definition, the set of points z which remain bounded under iterations of P .TheJulia set J of P is the boundary of K. A central problem in the study of the dynamical system generated by P is to understand the topology of a Julia set J, in particular, the local connectivity for a connected Julia set. A connected set J in the complex plane is said to be locally connected if for every point p in J and every neighborhood U of p there is a neighborhood V ⊆ U such that V \ J is connected. We first give the definition of renormalizability. A quadratic-like map F : U ! V is a holomorphic, proper, degree two branched cover map, whereT U and V are ⊂ 1 −n two domains isomorphic to a disc and U V .ThenKF = n=0 F (U)and JF = @KF are the filled-in Julia set and the Julia set of F , respectively. We only consider those quadratic-like maps whose Julia sets are connected.
    [Show full text]
  • Geography of the Cubic Connectedness Locus : Intertwining Surgery
    ANNALES SCIENTIFIQUES DE L’É.N.S. ADAM EPSTEIN MICHAEL YAMPOLSKY Geography of the cubic connectedness locus : intertwining surgery Annales scientifiques de l’É.N.S. 4e série, tome 32, no 2 (1999), p. 151-185 <http://www.numdam.org/item?id=ASENS_1999_4_32_2_151_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1999, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. sclent. EC. Norm. Sup., 4e serie, t 32, 1999, p. 151 a 185. GEOGRAPHY OF THE CUBIC CONNECTEDNESS LOCUS: INTERTWINING SURGERY BY ADAM EPSTEIN AND MICHAEL YAMPOLSKY ABSTRACT. - We exhibit products of Mandelbrot sets in the two-dimensional complex parameter space of cubic polynomials. Cubic polynomials in such a product may be renormalized to produce a pair of quadratic maps. The inverse construction intertwining two quadratics is realized by means of quasiconformal surgery. The associated asymptotic geography of the cubic connectedness locus is discussed in the Appendix. © Elsevier, Paris RESUME. - Nous trouvons des produits de Fensemble de Mandelbrot dans 1'espace a deux variables complexes des polynomes cubiques. La renormalisation d'un polyn6me cubique appartenant a un tel produit donne deux polyn6mes quadratiques. Le precede inverse qui entrelace deux polynomes quadratiques est obtenu par chirurgie quasiconforme.
    [Show full text]
  • The External Boundary of the Bifurcation Locus M2 1
    THE EXTERNAL BOUNDARY OF THE BIFURCATION LOCUS M2 V. TIMORIN Abstract. Consider a quadratic rational self-map of the Riemann sphere such that one critical point is periodic of period 2, and the other critical point lies on the boundary of its immediate basin of attraction. We will give explicit topological models for all such maps. We also discuss the corresponding parameter picture. 1. Introduction 1.1. The family V2. Consider the set V2 of holomorphic conjugacy classes of qua- dratic rational maps that have a super-attracting periodic cycle of period 2 (we follow the notation of Mary Rees). The complement in V2 to the class of the single map z 1/z2 is denoted by V . The set V is parameterized by a single com- 7→ 2,0 2,0 plex number. Indeed, for any map f in V2,0, the critical point of period two can be mapped to , its f-image to 0, and the other critical point to 1. Then we obtain a map of the∞ form − a f (z)= , a = 0 a z2 + 2z 6 holomorphically conjugate to f. Thus the set V is identified with C 0. 2,0 − The family V2 is just the second term in the sequence V1, V2, V3,... , where, by def- inition, Vn consists of holomorphic conjugacy classes of quadratic rational maps with a periodic critical orbit of period n. Such maps have one “free” critical point, hence each family Vn has complex dimension 1. Note that V1 is the family of quadratic polynomials, i.e., holomorphic endomorphisms of the Riemann sphere of degree 2 with a fixed critical point at .
    [Show full text]
  • Bifurcation in Complex Quadrat Ic Polynomial and Some Folk Theorems Involving the Geometry of Bulbs of the Mandelbrot Set
    Bifurcation in Complex Quadrat ic Polynomial and Some Folk Theorems Involving the Geometry of Bulbs of the Mandelbrot Set Monzu Ara Begum A Thesis in The Department of Mat hemat ics and St at ist ics Presented in Partial F'uffilment of the Requirements for the Degree of Master of Science at Concordia University Montreal, Quebec, Canada May 2001 @Monzu Ara Begum, 2001 muisitions and Acquisitions et BiMiiriic Services senrices bibliographiques The author has granted a non- L'auteur a accordé une licence non exclusive licence aiiowing the exclusive permettant à la National Li'brary of Caoada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seiî reproduire, prêtex' distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de micmfiche/nlm. de reproduction sur papier ou sur format électronique. The auîhor retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni La îhèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Bifurcation in Complex Quadratic Polynomial and Some Folk Theorems Involving the Geometry of Bulbs of the Mandelbrot Set Monzu Ara Begum The Mandelbrot set M is a subset of the parameter plane for iteration of the complex quadratic polynomial Q,(z) = z2 +c. M consists of those c values for which the orbit of O is bounded.
    [Show full text]
  • Finite Subdivision Rules from Matings of Quadratic Functions: Existence and Constructions
    Finite Subdivision Rules from Matings of Quadratic Functions: Existence and Constructions Mary E. Wilkerson Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics William J. Floyd, Chair Peter E. Haskell Leslie D. Kay John F. Rossi April 24, 2012 Blacksburg, Virginia Keywords: Finite Subdivision Rules, Matings, Hubbard Trees, Combinatorial Dynamics Copyright 2012, Mary E. Wilkerson Finite Subdivision Rules from Matings of Quadratic Functions Mary E. Wilkerson (ABSTRACT) Combinatorial methods are utilized to examine preimage iterations of topologically glued polynomials. In particular, this paper addresses using finite subdivision rules and Hubbard trees as tools to model the dynamic behavior of mated quadratic functions. Several methods of construction of invariant structures on modified degenerate matings are detailed, and examples of parameter-based families of matings for which these methods succeed (and fail) are given. Acknowledgments There are several wonderful, caring, and helpful people who deserve the greatest of my appreciation for helping me through this document and for my last several years at Virginia Tech: • My family and friends, I owe you thanks for your love and support. • Robert and the Tolls of Madness, thank you for keeping me sane by providing an outlet to help me get away from grad school every now and then. • All of my previous mentors and professors in the VT Math Department, I can't express how far I feel that I've come thanks to the opportunities you've given me to learn and grow. Thank you all for giving me a chance and guiding me to where I am today.
    [Show full text]
  • Topological Entropy of Quadratic Polynomials and Dimension of Sections of the Mandelbrot Set
    TOPOLOGICAL ENTROPY OF QUADRATIC POLYNOMIALS AND DIMENSION OF SECTIONS OF THE MANDELBROT SET GIULIO TIOZZO Abstract. A fundamental theme in holomorphic dynamics is that the local geometry of parameter space (e.g. the Mandelbrot set) near a parameter re- flects the geometry of the Julia set, hence ultimately the dynamical properties, of the corresponding dynamical system. We establish a new instance of this phenomenon in terms of entropy. Indeed, we prove an \entropy formula" relating the entropy of a polynomial restricted to its Hubbard tree to the Hausdorff dimension of the set of rays landing on the corresponding vein in the Mandelbrot set. The results con- tribute to the recent program of W. Thurston of understanding the geometry of the Mandelbrot set via the core entropy. 1. Introduction Let us consider the family of quadratic polynomials 2 fc(z) := z + c; with c 2 C: The filled Julia set K(fc) of a quadratic polynomial fc is the set of points which do not escape to infinity under iteration, and the Julia set J(fc) is the boundary of K(fc). The Mandelbrot set M is the connectedness locus of the quadratic family, i.e. M := fc 2 C : the Julia set of fc is connectedg: A fundamental theme in the study of parameter spaces in holomorphic dynamics is that the local geometry of the Mandelbrot set near a parameter c reflects the geometry of the Julia set J(fc), hence it is related to dynamical properties of fc. In this paper we will establish a new instance of this principle, by comparing the topological entropy of quadratic polynomials to the Hausdorff dimension of certain sets of external rays.
    [Show full text]
  • Arxiv:2009.02788V1 [Math.DS] 6 Sep 2020 by 0 the Set of Angles for Which Θ Or One of Θ Lands at 0
    PERIODIC POINTS AND SMOOTH RAYS CARSTEN LUNDE PETERSEN AND SAEED ZAKERI Abstract. Let P : C ! C be a polynomial map with disconnected filled Julia set KP and let z0 be a repelling or parabolic periodic point of P . We show that if the connected component of KP containing z0 is non-degenerate, then z0 is the landing point of at least one smooth external ray. The statement is optimal in the sense that all but one ray landing at z0 may be broken. 1. Introduction It has been known since the pioneering work of Douady and Hubbard in the early 1980’s that a repelling or parabolic periodic point of a polynomial map with connected Julia set is the landing point of finitely many external rays of a common period and combinatorial rotation number [H, M, P]. When suitably formulated, this statement remains true for polynomials with disconnected Julia set although in this case one must also allow broken external rays that crash into the escaping (pre)critical points [LP]. To state this precisely, let P : C ! C be a polynomial of degree D ≥ 2 with disconnected filled Julia set KP . The external rays of P can be defined in terms of the gradient flow of the Green’s function G of P in C r KP . They consist of smooth field lines that descend from 1 and approach KP , as well as their limits which are broken rays that abruptly turn when they crash into a critical point of G . For each ± θ 2 T := R/Z the polynomial P has either a smooth ray Rθ or a pair Rθ of broken + − rays which descend from 1 at the normalized angle θ.
    [Show full text]
  • VMD User's Guide
    VMD User’s Guide Version 1.9.3 November 27, 2016 NIH Biomedical Research Center for Macromolecular Modeling and Bioinformatics Theoretical and Computational Biophysics Group1 Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign 405 N. Mathews Urbana, IL 61801 http://www.ks.uiuc.edu/Research/vmd/ Description The VMD User’s Guide describes how to run and use the molecular visualization and analysis program VMD. This guide documents the user interfaces displaying and grapically manipulating molecules, and describes how to use the scripting interfaces for analysis and to customize the be- havior of VMD. VMD development is supported by the National Institutes of Health grant numbers NIH 9P41GM104601 and 5R01GM098243-02. 1http://www.ks.uiuc.edu/ Contents 1 Introduction 10 1.1 Contactingtheauthors. ....... 11 1.2 RegisteringVMD.................................. 11 1.3 CitationReference ............................... ...... 11 1.4 Acknowledgments................................. ..... 12 1.5 Copyright and Disclaimer Notices . .......... 12 1.6 For information on our other software . .......... 14 2 Hardware and Software Requirements 16 2.1 Basic Hardware and Software Requirements . ........... 16 2.2 Multi-core CPUs and GPU Acceleration . ......... 16 2.3 Parallel Computing on Clusters and Supercomputers . .............. 17 3 Tutorials 18 3.1 RapidIntroductiontoVMD. ...... 18 3.2 Viewing a molecule: Myoglobin . ........ 18 3.3 RenderinganImage ................................ 20 3.4 AQuickAnimation................................. 20 3.5 An Introduction to Atom Selection . ......... 21 3.6 ComparingTwoStructures . ...... 21 3.7 SomeNiceRepresenations . ....... 22 3.8 Savingyourwork.................................. 23 3.9 Tracking Script Command Versions of the GUI Actions . ............ 23 4 Loading A Molecule 25 4.1 Notes on common molecular file formats . ......... 25 4.2 Whathappenswhenafileisloaded? . ....... 26 4.3 Babelinterface .................................
    [Show full text]
  • Drawing and Computing External Rays in the Multiple- Spiral Medallions of the Mandelbrot Set
    Drawing and computing external rays in the multiple- spiral medallions of the Mandelbrot set M. Romera *, G. Alvarez, D. Arroyo, A.B. Orue, V. Fernandez, G. Pastor Instituto de Física Aplicada, Consejo Superior de Investigaciones Científicas, Serrano 144, 28006 Madrid, Spain ___________________________________________________________________________ Abstract The multiple-spiral medallions are beautiful decorations of the Mandelbrot set. Computer graphics provide an invaluable tool to study the structure of these decorations with central symmetry, formed by an infinity of baby Mandelbrot sets that have high periods. Up to now, the external arguments of the external rays landing at the cusps of the cardioids of these baby Mandelbrot sets could not be calculated. Recently, a new algorithm has been proposed in order to calculate the external arguments in the Mandelbrot set. In this paper we use an extension of this algorithm for the calculation of the binary expansions of the external arguments of the baby Mandelbrot sets in the multiple-spiral medallions. PACS: 05.45.Df Keywords: Mandelbrot set; External arguments; Binary expansions ___________________________________________________________________________ 1. Introduction As is well known, the Mandelbrot set [1] can be defined by M =∈C k →∞/ →∞ k {c: fc (0) as k }, where fc (0) is the k-iteration of the parameter- =2 + = dependent quadratic function fzc ( ) z c ( z and c complex) for the initial value z0 0 (the critical point). Douady and Hubbard studied the Mandelbrot set by means of the external arguments theory [2-4] that was popularized as follows [5]. Imagine a capacitor made of an aluminum bar, shaped in such a way that its cross-section is M , placed along the axis of a hollow metallic cylinder (Fig.
    [Show full text]
  • A GENERALIZATION of DOUADY's FORMULA Gamaliel Blé Carlos Cabrera (Communicated by Enrique Pujals) 1. Introduction. in This Pa
    DISCRETE AND CONTINUOUS doi:10.3934/dcds.2017267 DYNAMICAL SYSTEMS Volume 37, Number 12, December 2017 pp. 6183{6188 A GENERALIZATION OF DOUADY'S FORMULA Gamaliel Ble´∗ Divisi´onAcad´emicade Ciencias B´asicas,UJAT Km. 1, Carretera Cunduac´an{Jalpade M´endez C.P. 86690, Cunduac´anTabasco, M´exico Carlos Cabrera Instituto de Matem´aticasde la UNAM, Unidad Cuernavaca Av. Universidad s/n. Col. Lomas de Chamilpa C.P. 62210, Cuernavaca, Morelos, M´exico (Communicated by Enrique Pujals) Abstract. The Douady's formula was defined for the external argument on the boundary points of the main hyperbolic component W0 of the Mandelbrot set M and it is given by the map T (θ) = 1=2 + θ=4. We extend this formula to the boundary of all hyperbolic components of M and we give a characterization of the parameter in M with these external arguments. 1. Introduction. In this paper we will restrict our attention to the dynamics of 2 complex quadratic polynomials Pc(z) = z +c: In this case, the dynamical plane can be decomposed into two complementary sets: The filled Julia set Kc which consists of all points with bounded orbit and the basin of infinity Ac(1). The boundary of Kc is called the Julia set Jc. ^ When we consider the polynomial Pc in the extended complex plane C = C [ f1g, the point at infinity is a super-attracting fixed point and hence there exists a neighborhood of infinity Uc and an analytic isomorphism, known as the B¨ottcher 0 map, φc : Uc ! fz 2 C : jzj > Rg; such that φc(1) = 1; φc(1) = 1 and 2 φc ◦Pc = [φc] .
    [Show full text]