Fractals and Chaos. an Understanding of These Basic Concepts Simplifies This Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Fractals and Chaos. an Understanding of These Basic Concepts Simplifies This Analysis Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1991-06 Fractals and chaos Beaver, Philip Frederick Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/28232 NAVAL POSTGRADUATE SCHOOL Monterey, California FRACTALS AND CHAOS by Philip Frederick Beaver June 1991 Thesis Advisor: Maurice D. Weir Co-Advisor: Ismor Fischer Approved for public release; distribution is unlimited. T256243 fnclassificd ecurity Qassification of this page REPORT DOCUMENTATION PAGE a Report Security Classification Unclassified lb Restrictive Markings a Security Classification Authority 3 Distribution Availability of Report b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited. Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s) a Name of Performing Organization 6b Office Symbol 7 a Name of Monitoring Organization Javal Postgraduate School (If Applicable) MA Naval Postgraduate School c Address (city, state, and ZIP code) 7 b Address (city, state, and ZIP code) fonterey, CA 93943-5000 Monterey, CA 93943-5000 a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number (If Applicable) c Address (city, state, and ZIP code) 1 Source of Funding Numbers Program Element Number | Project No | Talk No | Work Unit Accession No 1 Tide (Include Security Classification) FRACTALS AND CHAOS 2 Personal Authors) Beaver, Philip F. 3 a Type of Report 13b Time Covered 1 4 Date of Report (year, month/lay) 1 5 Page Count laster's Thesis I From To June 1991 179 6 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official olicy or position of the Department of Defense or the U.S. Government 7 Cosati Codes 1 8 Subject Terms (continue on reverse if necessary and identify by block number) ield Group Subgroup Fractal geometry and chaotic dynamical systems 9 Abstract (continue on reverse if necessary and identify by block number The study of fractal geometry and chaotic dynamical systems has received considerable attention in the past ecade. Motivated by the interesting computer graphics produced by these fields, mathematicians have attempted ) formalize the theoretical structure of the results, physicists have attempted to apply the theory to real world henomena, and laymen have enjoyed much of the popular literature and television programs the field has astered. Unfortunately, the mathematics associated with these subjects has made them inaccessible to most ndergraduates, even if they have a strong background in mathematics. This thesis presents the basic ideas of ractal geometry and chaotic dynamical systems in a setting that can be understood by undergraduate students who ave had a course in advanced calculus. We hope it will allow them to gain an appreciation of the fields and loti vate them to pursue further study. Distribution/Availability of Abstract 21 Abstract Security Classification unclassified/unlimited |X| | tame at report DTIC users Unclassified J 2a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol Maurice D. Weir (408) 646- 2608 MA/Wc D FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page All other editions are obsolete Unclassified Approved for public release; distribution is unlimited. Fractals and Chaos by Philip Frederick Beaver Captain, United States Army B.S., United States Military Academy, 1983 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN APPLIED MATHEMATICS from the NAVAL POSTGRADUATE SCIHnni ABSTRACT The study of fractal geometry and chaotic dynamical systems has received considerable attention in the past decade. Motivated by the interesting computer graphics produced by these fields, mathematicians have attempted to formalize the theoretical structure of the results, physicists have attempted to apply the theory to real world phenomena, and laymen have enjoyed much of the popular literature and television programs that the field has fostered. Unfortunately, the mathematics associated with these subjects has made them inaccessible to most undergraduates, even if they have a strong background in mathematics. This thesis presents the basic ideas of fractal geometry and chaotic dynamical systems in a setting that can be understood by undergraduate students who have had a course in advanced calculus . We hope it will allow them to gain an appreciation of the fields and motivate them to pursue further study. in &./ TABLE OF CONTENTS I. INTRODUCTION 1 IL BASIC CONCEPTS 4 A. INTRODUCTION 4 B. METRIC SPACES 4 C ITERATED FUNCTION SYSTEMS 6 D. CODE SPACE 13 E. THE CANTOR SET 15 m. FRACTALS 19 A. THE SETTING FOR FRACTALS 19 B. CONTRACTION MAPPINGS 22 C AFFINE TRANSFORMATIONS OF THE PLANE 25 D. CONTRACTION MAPPINGS OF THE SPACE Ji(X) 29 E. CREATING FRACTALS THROUGH ITERATED FUNCTION SYSTEMS 33 1. The Cantor Set 33 2. Fractals in Two Dimensions 36 3. Condensation Sets 42 4. A Fractal Tree 43 F. APPLICATIONS OF FRACTALS TO COMPUTER GRAPHICS 46 G. THE ADDRESSES OF POINTS ON FRACTALS 50 H. FRACTAL DIMENSION 60 I. EXPERIMENTAL DETERMINATION OF FRACTAL DIMENSION 69 J. THE KOCH SNOWFLAKE 73 K. APPLICATIONS OF FRACTAL GEOMETRY 75 IV IV. CHAOS 77 A. INTRODUCTION 77 B. GRAPHICAL ANALYSIS OF FIXED POINTS OF MAPS 79 C MAPS OF THE CIRCLE 82 D. CHAOTIC DYNAMICAL SYSTEMS 85 E. TOPOLOGICAL CONJUGACY 89 F. CHAOTIC DYNAMICS ON CODE SPACE 90 G. NEWTON'S METHOD FOR X2 = -1 92 H. THE QUADRATIC FAMILY OF MAPS 96 I. BIFURCATIONS 108 J. SARKOVSKITS THEOREM 118 K. THE QUADRATIC FAMILY REVISITED 123 L. JULIA SETS 131 M. THE MANDELBROT SET. 137 N. THE SMALE HORSESHOE 144 O. THE HENON MAP 149 P. THE LORENZ EQUATIONS 155 LIST OF REFERENCES 168 XlNl 1 1/\1_> L'lO X IvlD \J X XvJIN Lid X .......................<>..... ........................................ .......... X / J. ACKNOWLEDGMENT I would like to express my appreciation to a number of individuals who have played a role in the development of this thesis. I am particularly grateful to the following: Professor Maurice D. Weir, who first suggested the subject of this thesis, and who developed the curriculum that provided the necessary background for me to write it. He continued to guide me throughout the preparation of the thesis, and spent countless hours encouraging, proofreading, and mentoring. Professor Ismor Fischer, who led me through a course on chaotic dynamical systems, provided technical guidance and expertise during the preparation of this thesis, and who remained patient throughout the entire process. Professor Aaron Schusteff, who started me on these subjects by teaching a course on fractal geometry and topology, and who remained an essential source of technical information during my further study of chaotic dynamical systems and throughout the preparation of this thesis. Finally, Mr. David Beaver of The Automation Group, who introduced me to the idea of chaos by sending me James Gleick's book on the subject, and who volunteered numerous hours of word processing advice, without which I could not have prepared this document. As usual, however, I retain sole responsibility for all the errors, mistakes, and other deviations from the truth that may be contained within this thesis. Philip Beaver Monterey, California June 1991 VI I. INTRODUCTION The subjects of fractals and chaos have attracted considerable attention in the last decade. This interest ranges from a "cult following" of laymen who are intrigued by the intricate computer graphics associated with the fields, to a rigorous mathematical treatment of the subjects by topologists and experts in dynamical systems, and to applications of these results to the real world by engineers and physicists. However, these subjects have been almost wholly inaccessible to undergraduates because of the level of mathematics required to study them. This thesis presents the subjects of fractals and chaos in a setting that can be understood by a typical undergraduate student with a solid background in mathematics through advanced calculus. The subjects of fractals and chaos are not new. The German mathematician Georg Cantor (1845-1918) knew about fractals, and the French mathematician Jules Henri Poincare (1854-1912) knew about chaos in dynamical systems in the late nineteenth century. Additionally, the French mathematicians Pierre Fatou (1878-1929) and Gaston Julia (1893-1978) knew about Julia sets in the 1920s. However, it was not until the 1970s that high- speed computers allowed others to see what these men had discovered and to recognize the true potential of these fields. The growth of these fields has resulted in significant scientific advances in the past decade. While the discovery of quantum mechanics and relativity had a profound impact on very specialized areas of science, fractals and chaos have had a universal effect on the whole scientific community. Until recently, science had become so specialized that, not only were physicists and mathematicians not communicating with each other, but molecular biologists were not communicating with population biologists either. The science of chaos has served to bring together the entire scientific community, including physicists, electrical engineers, mechanical engineers, biologists, economists, astronomers, meteorologists, medical scientists, and of course, mathematicians. To explain briefly, fractals and chaos help to describe the universe. Natural objects, from crystals, plants and geological
Recommended publications
  • Dynamics Forced by Homoclinic Orbits
    DYNAMICS FORCED BY HOMOCLINIC ORBITS VALENT´IN MENDOZA Abstract. The complexity of a dynamical system exhibiting a homoclinic orbit is given by the orbits that it forces. In this work we present a method, based in pruning theory, to determine the dynamical core of a homoclinic orbit of a Smale diffeomorphism on the 2-disk. Due to Cantwell and Conlon, this set is uniquely determined in the isotopy class of the orbit, up a topological conjugacy, so it contains the dynamics forced by the homoclinic orbit. Moreover we apply the method for finding the orbits forced by certain infinite families of homoclinic horseshoe orbits and propose its generalization to an arbitrary Smale map. 1. Introduction Since the Poincar´e'sdiscovery of homoclinic orbits, it is known that dynamical systems with one of these orbits have a very complex behaviour. Such a feature was explained by Smale in terms of his celebrated horseshoe map [40]; more precisely, if a surface diffeomorphism f has a homoclinic point then, there exists an invariant set Λ where a power of f is conjugated to the shift σ defined on the compact space Σ2 = f0; 1gZ of symbol sequences. To understand how complex is a diffeomorphism having a periodic or homoclinic orbit, we need the notion of forcing. First we will define it for periodic orbits. 1.1. Braid types of periodic orbits. Let P and Q be two periodic orbits of homeomorphisms f and g of the closed disk D2, respectively. We say that (P; f) and (Q; g) are equivalent if there is an orientation-preserving homeomorphism h : D2 ! D2 with h(P ) = Q such that f is isotopic to h−1 ◦ g ◦ h relative to P .
    [Show full text]
  • The Topological Entropy Conjecture
    mathematics Article The Topological Entropy Conjecture Lvlin Luo 1,2,3,4 1 Arts and Sciences Teaching Department, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; [email protected] or [email protected] 2 School of Mathematical Sciences, Fudan University, Shanghai 200433, China 3 School of Mathematics, Jilin University, Changchun 130012, China 4 School of Mathematics and Statistics, Xidian University, Xi’an 710071, China Abstract: For a compact Hausdorff space X, let J be the ordered set associated with the set of all finite open covers of X such that there exists nJ, where nJ is the dimension of X associated with ¶. Therefore, we have Hˇ p(X; Z), where 0 ≤ p ≤ n = nJ. For a continuous self-map f on X, let a 2 J be f an open cover of X and L f (a) = fL f (U)jU 2 ag. Then, there exists an open fiber cover L˙ f (a) of X induced by L f (a). In this paper, we define a topological fiber entropy entL( f ) as the supremum of f ent( f , L˙ f (a)) through all finite open covers of X = fL f (U); U ⊂ Xg, where L f (U) is the f-fiber of − U, that is the set of images f n(U) and preimages f n(U) for n 2 N. Then, we prove the conjecture log r ≤ entL( f ) for f being a continuous self-map on a given compact Hausdorff space X, where r is the maximum absolute eigenvalue of f∗, which is the linear transformation associated with f on the n L Cechˇ homology group Hˇ ∗(X; Z) = Hˇ i(X; Z).
    [Show full text]
  • Computing Complex Horseshoes by Means of Piecewise Maps
    November 26, 2018 3:54 ws-ijbc International Journal of Bifurcation and Chaos c World Scientific Publishing Company Computing complex horseshoes by means of piecewise maps Alvaro´ G. L´opez, Alvar´ Daza, Jes´us M. Seoane Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de F´ısica, Universidad Rey Juan Carlos, Tulip´an s/n, 28933 M´ostoles, Madrid, Spain [email protected] Miguel A. F. Sanju´an Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de F´ısica, Universidad Rey Juan Carlos, Tulip´an s/n, 28933 M´ostoles, Madrid, Spain Department of Applied Informatics, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania Received (to be inserted by publisher) A systematic procedure to numerically compute a horseshoe map is presented. This new method uses piecewise functions and expresses the required operations by means of elementary transfor- mations, such as translations, scalings, projections and rotations. By repeatedly combining such transformations, arbitrarily complex folding structures can be created. We show the potential of these horseshoe piecewise maps to illustrate several central concepts of nonlinear dynamical systems, as for example the Wada property. Keywords: Chaos, Nonlinear Dynamics, Computational Modelling, Horseshoe map 1. Introduction The Smale horseshoe map is one of the hallmarks of chaos. It was devised in the 1960’s by Stephen Smale arXiv:1806.06748v2 [nlin.CD] 23 Nov 2018 [Smale, 1967] to reproduce the dynamics of a chaotic flow in the neighborhood of a given periodic orbit. It describes in the simplest way the dynamics of homoclinic tangles, which were encountered by Henri Poincar´e[Poincar´e, 1890] and were intensively studied by George Birkhoff [Birkhoff, 1927], and later on by Mary Catwright and John Littlewood, among others [Catwright & Littlewood, 1945, 1947; Levinson, 1949].
    [Show full text]
  • Topological Invariance of the Sign of the Lyapunov Exponents in One-Dimensional Maps
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 1, Pages 265–272 S 0002-9939(05)08040-8 Article electronically published on August 19, 2005 TOPOLOGICAL INVARIANCE OF THE SIGN OF THE LYAPUNOV EXPONENTS IN ONE-DIMENSIONAL MAPS HENK BRUIN AND STEFANO LUZZATTO (Communicated by Michael Handel) Abstract. We explore some properties of Lyapunov exponents of measures preserved by smooth maps of the interval, and study the behaviour of the Lyapunov exponents under topological conjugacy. 1. Statement of results In this paper we consider C3 interval maps f : I → I,whereI is a compact interval. We let C denote the set of critical points of f: c ∈C⇔Df(c)=0.We shall always suppose that C is finite and that each critical point is non-flat: for each ∈C ∈ ∞ 1 ≤ |f(x)−f(c)| ≤ c ,thereexist = (c) [2, )andK such that K |x−c| K for all x = c.LetM be the set of ergodic Borel f-invariant probability measures. For every µ ∈M, we define the Lyapunov exponent λ(µ)by λ(µ)= log |Df|dµ. Note that log |Df|dµ < +∞ is automatic since Df is bounded. However we can have log |Df|dµ = −∞ if c ∈Cis a fixed point and µ is the Dirac-δ measure on c. It follows from [15, 1] that this is essentially the only way in which log |Df| can be non-integrable: if µ(C)=0,then log |Df|dµ > −∞. The sign, more than the actual value, of the Lyapunov exponent can have signif- icant implications for the dynamics. A positive Lyapunov exponent, for example, indicates sensitivity to initial conditions and thus “chaotic” dynamics of some kind.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Hyperbolic Dynamical Systems, Chaos, and Smale's
    Hyperbolic dynamical systems, chaos, and Smale's horseshoe: a guided tour∗ Yuxi Liu Abstract This document gives an illustrated overview of several areas in dynamical systems, at the level of beginning graduate students in mathematics. We start with Poincar´e's discovery of chaos in the three-body problem, and define the Poincar´esection method for studying dynamical systems. Then we discuss the long-term behavior of iterating a n diffeomorphism in R around a fixed point, and obtain the concept of hyperbolicity. As an example, we prove that Arnold's cat map is hyperbolic. Around hyperbolic fixed points, we discover chaotic homoclinic tangles, from which we extract a source of the chaos: Smale's horseshoe. Then we prove that the behavior of the Smale horseshoe is the same as the binary shift, reducing the problem to symbolic dynamics. We conclude with applications to physics. 1 The three-body problem 1.1 A brief history The first thing Newton did, after proposing his law of gravity, is to calculate the orbits of two mass points, M1;M2 moving under the gravity of each other. It is a basic exercise in mechanics to show that, relative to one of the bodies M1, the orbit of M2 is a conic section (line, ellipse, parabola, or hyperbola). The second thing he did was to calculate the orbit of three mass points, in order to study the sun-earth-moon system. Here immediately he encountered difficulty. And indeed, the three body problem is extremely difficult, and the n-body problem is even more so.
    [Show full text]
  • Escape and Metastability in Deterministic and Random Dynamical Systems
    ESCAPE AND METASTABILITY IN DETERMINISTIC AND RANDOM DYNAMICAL SYSTEMS by Ognjen Stanˇcevi´c a thesis submitted for the degree of Doctor of Philosophy at the University of New South Wales, July 2011 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Stancevic First name: Ognjen Other name/s: Abbreviation for degree as given in the University calendar: PhD School: Mathematics and Statistics Faculty: Science Title: Escape and Metastability in Deterministic and Random Dynamical Systems Abstract 350 words maximum: (PLEASE TYPE) Dynamical systems that are close to non-ergodic are characterised by the existence of subdomains or regions whose trajectories remain confined for long periods of time. A well-known technique for detecting such metastable subdomains is by considering eigenfunctions corresponding to large real eigenvalues of the Perron-Frobenius transfer operator. The focus of this thesis is to investigate the asymptotic behaviour of trajectories exiting regions obtained using such techniques. We regard the complement of the metastable region to be a hole , and show in Chapter 2 that an upper bound on the escape rate into the hole is determined by the corresponding eigenvalue of the Perron-Frobenius operator. The results are illustrated via examples by showing applications to uniformly expanding maps of the unit interval. In Chapter 3 we investigate a non-uniformly expanding map of the interval to show the existence of a conditionally invariant measure, and determine asymptotic behaviour of the corresponding escape rate. Furthermore, perturbing the map slightly in the slowly expanding region creates a spectral gap. This is often observed numerically when approximating the operator with schemes such as Ulam s method.
    [Show full text]
  • ABSTRACT Chaos in Dendritic and Circular Julia Sets Nathan Averbeck, Ph.D. Advisor: Brian Raines, D.Phil. We Demonstrate The
    ABSTRACT Chaos in Dendritic and Circular Julia Sets Nathan Averbeck, Ph.D. Advisor: Brian Raines, D.Phil. We demonstrate the existence of various forms of chaos (including transitive distributional chaos, !-chaos, topological chaos, and exact Devaney chaos) on two families of abstract Julia sets: the dendritic Julia sets Dτ and the \circular" Julia sets Eτ , whose symbolic encoding was introduced by Stewart Baldwin. In particular, suppose one of the two following conditions hold: either fc has a Julia set which is a dendrite, or (provided that the kneading sequence of c is Γ-acceptable) that fc has an attracting or parabolic periodic point. Then, by way of a conjugacy which allows us to represent these Julia sets symbolically, we prove that fc exhibits various forms of chaos. Chaos in Dendritic and Circular Julia Sets by Nathan Averbeck, B.S., M.A. A Dissertation Approved by the Department of Mathematics Lance L. Littlejohn, Ph.D., Chairperson Submitted to the Graduate Faculty of Baylor University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved by the Dissertation Committee Brian Raines, D.Phil., Chairperson Will Brian, D.Phil. Markus Hunziker, Ph.D. Alexander Pruss, Ph.D. David Ryden, Ph.D. Accepted by the Graduate School August 2016 J. Larry Lyon, Ph.D., Dean Page bearing signatures is kept on file in the Graduate School. Copyright c 2016 by Nathan Averbeck All rights reserved TABLE OF CONTENTS LIST OF FIGURES vi ACKNOWLEDGMENTS vii DEDICATION viii 1 Preliminaries 1 1.1 Continuum Theory and Dynamical Systems . 1 1.2 Unimodal Maps .
    [Show full text]
  • Multiple Periodic Solutions and Fractal Attractors of Differential Equations with N-Valued Impulses
    mathematics Article Multiple Periodic Solutions and Fractal Attractors of Differential Equations with n-Valued Impulses Jan Andres Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; [email protected] Received: 10 September 2020; Accepted: 30 September 2020; Published: 3 October 2020 Abstract: Ordinary differential equations with n-valued impulses are examined via the associated Poincaré translation operators from three perspectives: (i) the lower estimate of the number of periodic solutions on the compact subsets of Euclidean spaces and, in particular, on tori; (ii) weakly locally stable (i.e., non-ejective in the sense of Browder) invariant sets; (iii) fractal attractors determined implicitly by the generating vector fields, jointly with Devaney’s chaos on these attractors of the related shift dynamical systems. For (i), the multiplicity criteria can be effectively expressed in terms of the Nielsen numbers of the impulsive maps. For (ii) and (iii), the invariant sets and attractors can be obtained as the fixed points of topologically conjugated operators to induced impulsive maps in the hyperspaces of the compact subsets of the original basic spaces, endowed with the Hausdorff metric. Five illustrative examples of the main theorems are supplied about multiple periodic solutions (Examples 1–3) and fractal attractors (Examples 4 and 5). Keywords: impulsive differential equations; n-valued maps; Hutchinson-Barnsley operators; multiple periodic solutions; topological fractals; Devaney’s chaos on attractors; Poincaré operators; Nielsen number MSC: 28A20; 34B37; 34C28; Secondary 34C25; 37C25; 58C06 1. Introduction The theory of impulsive differential equations and inclusions has been systematically developed (see e.g., the monographs [1–4], and the references therein), among other things, especially because of many practical applications (see e.g., References [1,4–11]).
    [Show full text]
  • Finite Subdivision Rules from Matings of Quadratic Functions: Existence and Constructions
    Finite Subdivision Rules from Matings of Quadratic Functions: Existence and Constructions Mary E. Wilkerson Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics William J. Floyd, Chair Peter E. Haskell Leslie D. Kay John F. Rossi April 24, 2012 Blacksburg, Virginia Keywords: Finite Subdivision Rules, Matings, Hubbard Trees, Combinatorial Dynamics Copyright 2012, Mary E. Wilkerson Finite Subdivision Rules from Matings of Quadratic Functions Mary E. Wilkerson (ABSTRACT) Combinatorial methods are utilized to examine preimage iterations of topologically glued polynomials. In particular, this paper addresses using finite subdivision rules and Hubbard trees as tools to model the dynamic behavior of mated quadratic functions. Several methods of construction of invariant structures on modified degenerate matings are detailed, and examples of parameter-based families of matings for which these methods succeed (and fail) are given. Acknowledgments There are several wonderful, caring, and helpful people who deserve the greatest of my appreciation for helping me through this document and for my last several years at Virginia Tech: • My family and friends, I owe you thanks for your love and support. • Robert and the Tolls of Madness, thank you for keeping me sane by providing an outlet to help me get away from grad school every now and then. • All of my previous mentors and professors in the VT Math Department, I can't express how far I feel that I've come thanks to the opportunities you've given me to learn and grow. Thank you all for giving me a chance and guiding me to where I am today.
    [Show full text]
  • Arxiv:1812.04689V1 [Math.DS] 11 Dec 2018 Fasltigipisteeitneo W Oitos Into Foliations, Two Years
    FOLIATIONS AND CONJUGACY, II: THE MENDES CONJECTURE FOR TIME-ONE MAPS OF FLOWS JORGE GROISMAN AND ZBIGNIEW NITECKI Abstract. A diffeomorphism f: R2 →R2 in the plane is Anosov if it has a hyperbolic splitting at every point of the plane. The two known topo- logical conjugacy classes of such diffeomorphisms are linear hyperbolic automorphisms and translations (the existence of Anosov structures for plane translations was originally shown by W. White). P. Mendes con- jectured that these are the only topological conjugacy classes for Anosov diffeomorphisms in the plane. We prove that this claim holds when the Anosov diffeomorphism is the time-one map of a flow, via a theorem about foliations invariant under a time one map. 1. Introduction A diffeomorphism f: M →M of a compact manifold M is called Anosov if it has a global hyperbolic splitting of the tangent bundle. Such diffeomor- phisms have been studied extensively in the past fifty years. The existence of a splitting implies the existence of two foliations, into stable (resp. unsta- ble) manifolds, preserved by the diffeomorphism, such that the map shrinks distances along the stable leaves, while its inverse does so for the unstable ones. Anosov diffeomorphisms of compact manifolds have strong recurrence properties. The existence of an Anosov structure when M is compact is independent of the Riemann metric used to define it, and the foliations are invariants of topological conjugacy. By contrast, an Anosov structure on a non-compact manifold is highly dependent on the Riemann metric, and the recurrence arXiv:1812.04689v1 [math.DS] 11 Dec 2018 properties observed in the compact case do not hold in general.
    [Show full text]
  • Quasiconformal Homeomorphisms in Dynamics, Topology, and Geometry
    Proceedings of the International Congress of Mathematicians Berkeley, California, USA, 1986 Quasiconformal Homeomorphisms in Dynamics, Topology, and Geometry DENNIS SULLIVAN Dedicated to R. H. Bing This paper has four parts. Each part involves quasiconformal homeomor­ phisms. These can be defined between arbitrary metric spaces: <p: X —* Y is Ä'-quasiconformal (or K qc) if zjf \ _ r SUP 1^0*0 ~ Piv) wnere \x - y\ = r and x is fixed r_>o inf \<p(x) — <p(y)\ where \x — y\ = r and x is fixed is at most K where | | means distance. Between open sets in Euclidean space, H(x) < K implies <p has many interesting analytic properties. (See Gehring's lecture at this congress.) In the first part we discuss Feigenbaum's numerical discoveries in one-dimen­ sional iteration problems. Quasiconformal conjugacies can be used to define a useful coordinate independent distance between real analytic dynamical systems which is decreased by Feigenbaum's renormalization operator. In the second part we discuss de Rham, Atiyah-Singer, and Yang-Mills the­ ory in its foundational aspect on quasiconformal manifolds. The discussion (which is joint work with Simon Donaldson) connects with Donaldson's work and Freedman's work to complete a nice picture in the structure of manifolds— each topological manifold has an essentially unique quasiconformal structure in all dimensions—except four (Sullivan [21]). In dimension 4 both parts of the statement are false (Donaldson and Sullivan [3]). In the third part we discuss the C-analytic classification of expanding analytic transformations near fractal invariant sets. The infinite dimensional Teichmüller ^spare-ofnsuch=systemrìs^embedded=in^ for the transformation on the fractal.
    [Show full text]