Real and Complex Dynamical Systems Edited by Bodil Branner and Poul Hjorth Mathematical Institute, the Technical University of Denmark, Lyngby, Denmark

Total Page:16

File Type:pdf, Size:1020Kb

Real and Complex Dynamical Systems Edited by Bodil Branner and Poul Hjorth Mathematical Institute, the Technical University of Denmark, Lyngby, Denmark Real and Complex Dynamical Systems edited by Bodil Branner and Poul Hjorth Mathematical Institute, The Technical University of Denmark, Lyngby, Denmark Springer-Science+Business Media, BV. NATO ASI Series Advanced Science Institutes Series A Series presenting the results of activities sponsored by the NA TO Science Committee, which aims at the dissemination of advanced scientific and technological knowledge, with a view to strengthening links between scientific communities. The Series is published by an international board of publishers in conjunction with the NATO Scientific Affairs Division A Life Sciences Plenum Publishing Corporation B Physics London and New York C Mathematical and Physical Sciences Kluwer Academic Publishers D Behavioural and Social Sciences Dordrecht, Boston and London E Applied Sciences F Computer and Systems Sciences Springer·Verlag G Ecological Sciences Berlin, Heidelberg, New York, London, H Cell Biology Paris and Tokyo I Global Environmental Change PARTNERSHIP SUB·SERIES 1. Disarmament Technologies Kluwer Academic Publishers 2. Environment Springer-Verlag / Kluwer Academic Publishers 3. High Technology Kluwer Academic Publishers 4. Science and Technology Policy Kluwer Academic Publishers 5. Computer Networking Kluwer Academic Publishers The Partnership Sub-Series incorporates activities undertaken in collaboration with NA TO's Cooperation Partners, the countries of the CIS and Central and Eastern Europe, in Priority Areas of concern to those countries. NATO-PCO·DATA BASE The electronic index to the NATO ASI Series provides full bibliographical references (with keywords and/or abstracts) to more than 50000 contributions from international scientists published in all sections of the NATO ASI Series. Access to the NATO-PCO-DATA BASE is possible in two ways: - via online FILE 128 (NATO-PCG-DATA BASE) hosted by ESRIN, Via Galileo Galilei, 1-00044 Frascati, Italy. - via CD-ROM "NATO-PCG-DATA BASE" with user-friendly retrieval software in English, French and German (© WTV GmbH and DATAWARE Technologies Inc. 1989). The CD-ROM can be ordered through any member of the Board of Publishers or through NATO- PCO, Overijse, Belgium. Series C: Mathematical and Physical Sciences - Vol. 464 Proceedings of the NATO Advanced Study Institute on Real and Complex Dynamical Systems Hiller/IJd, Denmark June 2o-July 2, 1993 A C.I.P. Catalogue record for this book is available from the Library of Congress ISBN 978-90-481-4565-2 ISBN 978-94-015-8439-5 (eBook) DOI 10.1007/978-94-015-8439-5 AII Rights Reserved @ 1995 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1995 Softcover reprint of the hardcover 1st edition 1995 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, includ ing photo- copying, recording or by any information storage and retrieval system, without written permission from the copyright owner. TABLE OF CONTENTS Preface vii List of participants ix Viviane BALADI: Dynamical Zeta Functions 1 Chris BUDD: The Global Dynamics of Impact Oscillators ............... 27 Chris BUDD: Grazing in Impact Oscillators ..................... 47 Adrien DOUADY: Topological Entropy of Unimodal Maps .......... 65 John H. HUBBARD and Ralph W. OBERSTE-VORTH: H enon Mappings in the Complex Domain . 89 Bruce KITCHENS: Symbolic Dynamics, Group Automorphisms and Markov Partitions 133 Silvina P. DAWSON, Roza GALEEVA, John MILNOR and Charles TRESSER: A Monotonicity Conjecture for Real Cubic Maps 165 Colin SPARROW: Dynamics of Ordinary Differential Equations 185 Sebastian van STRIEN: Real Bounds in Complex Dynamics 211 Marcelo VIANA: Homoclinic Bifurcations and Strange Attractors 231 Jean-Christophe YOCCOZ: Introduction to Hyperbolic Dynamics 265 Lai-Sang YOUNG: Ergodic Theory of Differentiable Dynamical Systems 293 Index ................... 337 PREFACE This volume contains edited versions of 11 contributions given by main speakers at the NATO Advanced Study Institute on lReal and Complex Dynamical Systems in Hiller0d, Denmark, June 20th - July 2nd, 1993. The vision of the institute was to illustrate the interplay between two important fields of Mathematics: Real Dynamical Systems and Complex Dynamical Systems. The interaction between these two fields has been growing over the years. Problems in Real Dynamical Systems have recently been solved using complex tools in the real or by extension to the complex. In return, problems in Complex Dynamical Systems have been settled using results from Real Dynamical Systems. The programme of the institute was to examine the state of the art of central parts of both Real and Complex Dynamical Systems, to reinforce contact between the two aspects of the theory and to make recent progress in each accessible to a larger group of mathematicians. We wish to express our sincere thanks to all lecturers and participants for having helped to make this ASI a success. We acknowledge the extensive amount of time the invited main speakers had to spend to prepare the expository lectures, and to prepare their manuscripts for publication. Special thanks go to Adrien Douady, Se- bastian van Strien and Lai-Sang Young for their efforts as members of the Scientific Organizing Committee; moreover, to the conference secretaries Lone Aagesen and Tove Densted for their competent management of all matters great & small during the conference; to the very professional staff at the Apotekerforeningens Kursuse- jendom (where the Institute was held); and to two local participants, Pia Willumsen and Dan S0rensen for assistance above and beyond the call of mere participation. We would also like to thank Jacob Dylander and acknowledge his patient and carefull work of formatting and assembling the manuscripts of this book. The ASI was funded principally by NATO, with additional support from MIDIT (Modelling, Non-linear Dynamics and Irreversible Thermodynamics) at The Tech- nical University of Denmark, the Danish Natural Science Research Council, the Carlsberg Foundation, the Thomas B. Thrige Foundation, the Otto B. M0nsted Foundation, the Mathematical Institute at The Technical University of Denmark and the Danish Mathematical Society. We would like to thank all these organiza- tions for their support. For its efforts on behalf of this ASI we are most grateful to the Scientific Affairs Division of NATO, particularly to Dr. Luis V. da Cunha, the Director of the ASI programme. Bodil Branner, Scientific Director Poul Hjorth vii LIST OF PARTICIPANTS Simonette ABENDA Viviane BALADI S.I.S.S.A. Laboratoire de Mathematiques Via Beiruth, 4 Ecole Normale Superieure de Lyon 1-34014 Trieste 46, Allee d'Italie ITALY F -69364 Lyon Cedex 17 e-mail abenda<iltsmi19.sissa.it FRANCE and Raphael ALBRECHT Math. Department - ETH Ziirich Inst. fiir Theor. Physik, Lehrstuhl E ETH Zentrum Physikalische Inst. der RWTH Aachen Ramistrasse 101 Sommerfeldstrasse CH-S092 Ziirich D-52056 Aachen SWITZERLAND GERMANY e-mail baIadi<ilmath.ethz.eh e-mail raphael<il thphys.physik.rwth-aaehen.de Krzysztof BARANSKI Institute of Mathematics Ana Isabel ALONSO DE MENA Warsaw University E.T.S. Ingenieros Industriales ul. Banacha 2 Dept. Matematica AplicadaF a la In- PL-02-097 Warsaw genieria POLAND Paseo del Cauce In e-mail baranski<ilmimuw.edu.pl E-47011 Valladolid SPAIN Julia A. BARNES e-mail etmat3<i1epd.uva.es Math. Dept. CB # 3250 University of North Carolina at Chapel Jose FERREIRA ALVES Hill Faculdade de Ciencias Chapel Hill, NC 27599 Grupo de Matematica Pura UNITED STATES Praca Gomes Teixeira e-mail barnes <ilmath . une . edu P-4000 Porto PORTUGAL Bodil BRANNER e-mail jfaIves<ilfel.fe.up.pt Mathematical Institute The Technical University of Denmark Pau ATELA Building 303 Department of Mathematics DK-2S00 Lyngby Smith College DENMARK Northhampton, MA 01063 e-mail branner<ilmat.dtu.dk UNITED STATES e-mail pateIa<ilsophia.smith . edu ix x Jean-Yves BRIEND Amy CHIU Ecole Normale Superieure de Lyon Department of Mathematics 46, Allee d'Italie Boston University F -69364 Lyon Cedex 07 111, Cummington St. FRANCE Boston, MA 02215 e-mail ens-Iyon.:fr UNITED STATES e-mail olympiadIDmath. bu. edu Henk BRUIN Delft University of Technology Adrien DOUADY TWI General Mathematics Universite de Paris-Sud Mekelweg 4 Departement de Mathematiques NL-2600 GA Delft Batiment 425 NETHERLANDS F-91405 Orsay e-mail FRANCE e-mail adrien.douadylDens.fr Morten BR0NS Mathematical Institute Jakob DYLANDER The Technical University of Denmark Mathematical Institute Building 303 University of Copenhagen DK-2800 Lyngby Universitetsparken 5 DENMARK DK-2100 Copenhagen 0 e-mail bronsCOmat. dtu. elk DENMARK e-mail dylanderCOmath.ku.elk Chris BUDD School of Mathematics Adam EPSTEIN University of Bristol Department of Mathematics University Walk Cal. Tech. GB-Bristol, BS8 1TW Pasadena , CA UNITED KINGDOM UNITED STATES e-mail . uk e-mail elagolDcunyvm . bitnet Xavier BUFF Juan Francisco ESTRADA GARCIA Ecole Normale Superieure Universite de Paris-Sud 45 rue d'Ulm Departement de Mathematiques F-75005 Paris Cedex Batiment 425 FRANCE F-91405 Orsay Cedex e-mail bu:f:fIDens. ens.:fr FRANCE Manuel CHAVES Nuria FAGELLA Grupo de Matematica Pura Department of Mathematics Faculdade de Ciencias Boston University Praca Gomes Teixeira 111, Cummington St. P-4000 Porto Boston, MA 02215 PORTUGAL UNITED STATES e-mail machavesID:fc.up.pt e-mail nuria<Dmath. bu. edu xi FANG Jinqing Coby GEYSEL China Institute of Atomic Energy University of Amsterdam P.O. Box 275-27 Faculty of Math.F and Computer
Recommended publications
  • ABSTRACT Chaos in Dendritic and Circular Julia Sets Nathan Averbeck, Ph.D. Advisor: Brian Raines, D.Phil. We Demonstrate The
    ABSTRACT Chaos in Dendritic and Circular Julia Sets Nathan Averbeck, Ph.D. Advisor: Brian Raines, D.Phil. We demonstrate the existence of various forms of chaos (including transitive distributional chaos, !-chaos, topological chaos, and exact Devaney chaos) on two families of abstract Julia sets: the dendritic Julia sets Dτ and the \circular" Julia sets Eτ , whose symbolic encoding was introduced by Stewart Baldwin. In particular, suppose one of the two following conditions hold: either fc has a Julia set which is a dendrite, or (provided that the kneading sequence of c is Γ-acceptable) that fc has an attracting or parabolic periodic point. Then, by way of a conjugacy which allows us to represent these Julia sets symbolically, we prove that fc exhibits various forms of chaos. Chaos in Dendritic and Circular Julia Sets by Nathan Averbeck, B.S., M.A. A Dissertation Approved by the Department of Mathematics Lance L. Littlejohn, Ph.D., Chairperson Submitted to the Graduate Faculty of Baylor University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved by the Dissertation Committee Brian Raines, D.Phil., Chairperson Will Brian, D.Phil. Markus Hunziker, Ph.D. Alexander Pruss, Ph.D. David Ryden, Ph.D. Accepted by the Graduate School August 2016 J. Larry Lyon, Ph.D., Dean Page bearing signatures is kept on file in the Graduate School. Copyright c 2016 by Nathan Averbeck All rights reserved TABLE OF CONTENTS LIST OF FIGURES vi ACKNOWLEDGMENTS vii DEDICATION viii 1 Preliminaries 1 1.1 Continuum Theory and Dynamical Systems . 1 1.2 Unimodal Maps .
    [Show full text]
  • Finite Subdivision Rules from Matings of Quadratic Functions: Existence and Constructions
    Finite Subdivision Rules from Matings of Quadratic Functions: Existence and Constructions Mary E. Wilkerson Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics William J. Floyd, Chair Peter E. Haskell Leslie D. Kay John F. Rossi April 24, 2012 Blacksburg, Virginia Keywords: Finite Subdivision Rules, Matings, Hubbard Trees, Combinatorial Dynamics Copyright 2012, Mary E. Wilkerson Finite Subdivision Rules from Matings of Quadratic Functions Mary E. Wilkerson (ABSTRACT) Combinatorial methods are utilized to examine preimage iterations of topologically glued polynomials. In particular, this paper addresses using finite subdivision rules and Hubbard trees as tools to model the dynamic behavior of mated quadratic functions. Several methods of construction of invariant structures on modified degenerate matings are detailed, and examples of parameter-based families of matings for which these methods succeed (and fail) are given. Acknowledgments There are several wonderful, caring, and helpful people who deserve the greatest of my appreciation for helping me through this document and for my last several years at Virginia Tech: • My family and friends, I owe you thanks for your love and support. • Robert and the Tolls of Madness, thank you for keeping me sane by providing an outlet to help me get away from grad school every now and then. • All of my previous mentors and professors in the VT Math Department, I can't express how far I feel that I've come thanks to the opportunities you've given me to learn and grow. Thank you all for giving me a chance and guiding me to where I am today.
    [Show full text]
  • Can Two Chaotic Systems Give Rise to Order? J
    Can two chaotic systems give rise to order? 1 2* 3 J. Almeida , D. Peralta-Salas , and M. Romera 1Departamento de Física Teórica I, Facultad de Ciencias Físicas, Universidad Complutense, 28040 Madrid (Spain). 2Departamento de Física Teórica II, Facultad de Ciencias Físicas, Universidad Complutense, 28040 Madrid (Spain). 3Instituto de Física Aplicada, Consejo Superior de Investigaciones Científicas, Serrano 144, 28006 Madrid (Spain). The recently discovered Parrondo’s paradox claims that two losing games can result, under random or periodic alternation of their dynamics, in a winning game: “losing+ losing= winning”. In this paper we follow Parrondo’s philosophy of combining different dynamics and we apply it to the case of one-dimensional quadratic maps. We prove that the periodic mixing of two chaotic dynamics originates an ordered dynamics in certain cases. This provides an explicit example (theoretically and numerically tested) of a different Parrondian paradoxical phenomenon: “chaos + chaos = order”. 1. Introduction One of the most extended ways to model the evolution of a natural process (physical, biological or even economical) is by employing discrete dynamics, that is, maps which apply one point to another point of certain variables space. Deterministic or random laws are allowed, and in this last case the term game is commonly used instead of map (physicists also use the term discrete random process). Let us assume that we have two different discrete dynamics A1 and A2. In the last decades a great effort has been done in understanding at least the most significant qualitative aspects of each dynamics separately. A different (but related) topic of research which has arisen in the last years consists in studying the dynamics obtained by combination of the dynamics A1 and A2: AH 0 AAHH12 xxxx0123¾¾¾®¾¾¾®¾¾¾® ..
    [Show full text]
  • Arxiv:1808.10408V1 [Math.DS] 30 Aug 2018 Set Md ⊂ C Is Defined As the Set of C Such That the Julia Set J(Fc) Is Con- Nected
    ON THE INHOMOGENEITY OF THE MANDELBROT SET YUSHENG LUO Abstract. We will show the Mandelbrot set M is locally conformally inhomogeneous: the only conformal map f defined in an open set U intersecting @M and satisfying f(U \ @M) ⊂ @M is the identity map. The proof uses the study of local conformal symmetries of the Julia sets of polynomials: we will show in many cases, the dynamics can be recovered from the local conformal structure of the Julia sets. 1. Introduction Given a monic polynomial f(z), the filled Julia set is n K = K(f) = fz 2 C :(f (z))n2N is boundedg 2 and the Julia set is J = @K. For quadratic family fc(z) = z + c, the Mandelbrot set M can be defined as the subset in the parameter plane such that the Julia set Jc is connected, M = fc 2 C : Jc is connectedg Let A be a compact subset of C. We call an orientation preserving home- omorphism H : U −! V a local conformal symmetry of A if H is conformal, U is connected and H sends U \ A onto V \ A. We say a local conformal symmetry is trivial if it is the identity map or U \ A = ;. In this paper, we will show Theorem 1.1. The boundary of the Mandelbrot set @M admits no non- trivial local conformal symmetries. d Remark 1.2. For a fixed d ≥ 2, and let fc(z) = z + c. The Multibrot arXiv:1808.10408v1 [math.DS] 30 Aug 2018 set Md ⊂ C is defined as the set of c such that the Julia set J(fc) is con- nected.
    [Show full text]
  • Quasisymmetric Conjugacy Between Quadratic Dynamics and Iterated
    QUASISYMMETRIC CONJUGACY BETWEEN QUADRATIC DYNAMICS AND ITERATED FUNCTION SYSTEMS KEMAL ILGAR EROGLU,˘ STEFFEN ROHDE, AND BORIS SOLOMYAK Abstract. We consider linear iterated function systems (IFS) with a constant contraction ratio in the plane for which the “overlap set” O is finite, and which are “invertible” on the attractor A, in the sense that there is a continuous surjection q : A → A whose inverse branches are the contractions of the IFS. The overlap set is the critical set in the sense that q is not a local homeomorphism precisely at O. We suppose also that there is a rational function p with the Julia set J such that (A, q) and (J, p) are conjugate. We prove that if A has bounded turning and p has no parabolic cycles, then the conjugacy is quasisymmetric. This result is applied to some specific examples including an uncountable family. Our main focus is on the family of IFS {λz,λz + 1} where λ is a complex parameter in the unit disk, such that its attractor Aλ is a dendrite, which happens whenever O is a singleton. C. Bandt observed that a simple modification of such an IFS (without changing the attractor) is invertible and gives rise to a quadratic-like map qλ on Aλ. If the IFS is post-critically finite, 2 then a result of A. Kameyama shows that there is a quadratic map pc(z)= z + c, with the Julia set Jc such that (Aλ, qλ) and (Jc,pc) are conjugate. We prove that this conjugacy is quasisymmetric and obtain partial results in the general (not post-critically finite) case.
    [Show full text]
  • Local Connectivity of the Mandelbrot Set at Certain Infinitely Renormalizable Points∗†
    Local connectivity of the Mandelbrot set at certain infinitely renormalizable points¤y Yunping Jingz Abstract We construct a subset consisting of infinitely renormalizable points in the Mandelbrot set. We show that Mandelbrot set is locally connected at this subset and for every point in this sub- set, corresponding infinitely renormalizable quadratic Julia set is locally connected. Since the set of Misiurewicz points is in the closure of the subset we construct, therefore, the subset is dense in the boundary of the Mandelbrot set. Contents 1 Introduction, review, and statements of new results 237 1.1 Quadratic polynomials . 237 1.2 Local connectivity for quadratic Julia sets. 240 1.3 Some basic facts about the Mandelbrot set from Douady- Hubbard . 244 1.4 Constructions of three-dimensional partitions. 248 1.5 Statements of new results. 250 2 Basic idea in our construction 252 3 The proof of our main theorem 259 ¤2000 Mathematics Subject Classification. Primary 37F25 and 37F45, Secondary 37E20 yKeywords: infinitely renormalizable point, local connectivity, Yoccoz puzzle, the Mandelbrot set zPartially supported by NSF grants and PSC-CUNY awards and 100 men program of China 236 Complex Dynamics and Related Topics 237 1 Introduction, review, and statements of new results 1.1 Quadratic polynomials Let C and C be the complex plane and the extended complex plane (the Riemann sphere). Suppose f is a holomorphic map from a domain Ω ½ C into itself. A point z in Ω is called a periodic point of period k ¸ 1 if f ±k(z) = z but f ±i(z) 6= z for all 1 · i < k.
    [Show full text]
  • Self-Similarity of the Mandelbrot Set
    Self-similarity of the Mandelbrot set Wolf Jung, Gesamtschule Aachen-Brand, Aachen, Germany. 1. Introduction 2. Asymptotic similarity 3. Homeomorphisms 4. Quasi-conformal surgery The images are made with Mandel, a program available from www.mndynamics.com. Talk given at Perspectives of modern complex analysis, Bedlewo, July 2014. 1a Dynamics and Julia sets 2 n Iteration of fc(z) = z + c . Filled Julia set Kc = fz 2 C j fc (z) 6! 1g . Kc is invariant under fc(z) . n fc (z) is asymptotically linear at repelling n-periodic points. 1b The Mandelbrot set Parameter plane of quadratic polynomials 2 fc(z) = z + c . Mandelbrot set M = fc 2 C j c 2 Kcg . Two kinds of self-similarity: • Convergence of rescaled subsets: geometry is asymptotically linear. • Homeomorphisms between subsets: non-linear, maybe quasiconformal. 2. Asymptotic similarity 134 Subsets M ⊃ Mn ! fag ⊂ @M with 2a Misiurewicz points asymptotic model: 'n(Mn) ! Y in 2b Multiple scales Hausdorff-Chabauty distance. 2c The Fibonacci parameter 2d Elephant and dragon Or convergence of subsets of different 2e Siegel parameters Julia sets: c 2 M , K ⊂ K with n n n cn 2f Feigenbaum doubling asymptotics n(Kn) ! Z. 2g Local similarity 2h Embedded Julia sets Maybe Z = λY . 2a Misiurewicz points n Misiurewicz point a with multiplier %a. Blowing up both planes with %a gives λ(M − a) ≈ (Ka − a) asymptotically. Classical result by Tan Lei. Error bound by Rivera-Letelier. Generalization to non-hyperbolic semi-hyperbolic a. Proof by Kawahira with Zalcman Lemma. - 2b Multiple scales (1) −n Centers cn ! a with cn ∼ a + K%a and small Mandelbrot sets of diameter −2n j%aj .
    [Show full text]
  • At the Helm of the Burning Ship
    http://dx.doi.org/10.14236/ewic/EVA2019.74 At the Helm of the Burning Ship Claude Heiland-Allen unaffiliated London, UK [email protected] The Burning Ship fractal is a non-analytic variation of the Mandelbrot set, formed by taking absolute values in the recurrence. Iterating its Jacobian can identify the period of attracting orbits; Newton’s root-finding method locates their mini-ships. Size estimates tell how deep to zoom to find the mini-ship or its embedded quasi-Julia set. Pre-periodic Misiurewicz points with repelling dynamics are located by Newton’s method. Stretched regions are automatically unskewed by the Jacobian, which is also good for colouring images using distance estimation. Perturbation techniques cheapen deep zooming. The mathematics can be generalised to other fractal formulas. Some artistic zooming techniques and domain colouring methods are also described. Burning Ship. Dynamical systems. Fractal art. Numerical algorithms. Perturbation theory. 1. IMAGING THE BURNING SHIP 1.1 ESCAPE-TIME FRACTALS Fractals are mathematical objects exhibiting detail at all scales. Escape-time fractals are plotted by iterating recurrence relations parameterised by pixel coordinates from a seed value until the values exceed an escape radius or until an arbitrary limit on iteration count is reached (this is to ensure termination, as some pixels may not escape at all). The colour of each pixel is determined by how quickly the iterates took to escape. Define the integer pixel coordinates by , , with the centre of the image at ,, then the
    [Show full text]
  • Misiurewicz Points in One-Dimensional Quadratic Maps
    Misiurewicz points in one-dimensional quadratic maps M. Romera, G. Pastor and F. Montoya Instituto de Física Aplicada, Consejo Superior de Investigaciones Científicas. Serrano 144, 28006 Madrid, Spain. Telefax: (34) 1 4117651, Email: gerardo@ iec.csic.es Misiurewicz points are constituted by the set of unstable or repellent points, sometimes called the set of exceptional points. These points, which are preperiodic and eventually periodic, play an important role in the ordering of hyperbolic components of one-dimensional quadratic maps. In this work we use graphic tools to analyse these points, by measuring their preperiods and periods, and by ordering and classifying them. 1. Introduction To study one dimensional quadratic maps, we propose to use the real axis neighbourhood (antenna) of the Mandelbrot-like set of the corresponding complex quadratic form, that offers graphic advantages. However, we must take into account that only the intersection of the complex form and the real axis have a sense in one- dimensional quadratic maps. All the one-dimensional quadratic maps are equivalent because they are topologically conjugate [1]. This means that any one-dimensional = 2 + quadratic map can be used to study the others. W e chose the map xn+1 xn c, due to = 2 + the historical importance of its complex form, the Mandelbrot map zn+1 zn c [2,3]. As is well known, the Mandelbrot set can be defined by = ∈ ak →/ ∞ → ∞ M Yc C: fc (0) as k ^ (1) 2 ak where fc (0) is the k-iteration of the c parameter-dependent quadratic function = 2 + = fc (z) z c (z and c complex) for the initial value z0 0.
    [Show full text]
  • The Mandelbrot and Julia Sets
    Self‐Squared Dragons: The Mandelbrot and Julia Sets Timothy Song CS702 Spring 2010 Advisor: Bob Martin TABLE OF CONTENTS Section 0 Abstract……………………………………………………………………………………………………………….2 Section I Introduction…………………………………………………………………………………………………….…3 Section II Benoît Mandelbrot…………………………………………………………………..…………………………4 Section III Definition of a Fractal………………………………………………………………..……………………….6 Section IV Elementary Fractals………………………………………………………………..………………………….8 a) Von Koch………………………………………………………………..…………………………..8 b) Cantor Dusts………………………………………………………………..……………………..9 1. Disconnected Dusts……………………………………………………………….11 2. Self‐similarity in the Dusts……………………………………………………..12 3. Invariance amongst the Dusts………………………………………………..12 Section V Julia Sets………………………………………………………………..…………………………………………13 a) Invariance of Julia sets………………………………………………………………..…….17 b) Self‐Similarity of Julia sets…………………………………………………………………18 c) Connectedness of Julia Sets……………………………………………………………….19 Section VI The Mandelbrot Set………………………………………………………………..………………………..22 a) Connectedness of the Mandelbrot Set………………………………………………24 b) Self‐Similarity within the Mandelbrot Set………………………………………....25 Section VII Julia vs. Mandelbrot………………………………………………………………..……………………….28 a) Asymptotic Self‐similarity between the sets……………………………………..30 b) Peitgen’s Observation……………………………………………………………..…….…33 Section VIII Conclusion………………………………………………………………..………………………………………34 Section IX Acknowledgements……………………………………………………..……………………………………35 Section X Bibliography………………………………………………………………..……………………………………36 1 Section I: Abstract
    [Show full text]
  • Self-Similarity of the Mandelbrot Set
    Self-similarity of the Mandelbrot set Wolf Jung, Gesamtschule Aachen-Brand, Aachen, Germany. 1. Introduction 2. Asymptotic similarity 3. Homeomorphisms 4. Quasi-conformal surgery The images are made with Mandel, a program available from www.mndynamics.com. Talk given at Perspectives of modern complex analysis, Bedlewo, July 2014. 1a Dynamics and Julia sets 2 n Iteration of fc(z) = z + c . Filled Julia set Kc = fz 2 C j fc (z) 6! 1g . Kc is invariant under fc(z) . n fc (z) is asymptotically linear at repelling n-periodic points. 1b The Mandelbrot set Parameter plane of quadratic polynomials 2 fc(z) = z + c . Mandelbrot set M = fc 2 C j c 2 Kcg . Two kinds of self-similarity: • Convergence of rescaled subsets: geometry is asymptotically linear. • Homeomorphisms between subsets: non-linear, maybe quasiconformal. 2. Asymptotic similarity 134 Subsets M ⊃ Mn ! fag ⊂ @M with 2a Misiurewicz points asymptotic model: 'n(Mn) ! Y in 2b Multiple scales Hausdorff-Chabauty distance. 2c The Fibonacci parameter 2d Elephant and dragon Or convergence of subsets of different 2e Siegel parameters Julia sets: c 2 M , K ⊂ K with n n n cn 2f Feigenbaum doubling asymptotics n(Kn) ! Z. 2g Local similarity 2h Embedded Julia sets Maybe Z = λY . 2a Misiurewicz points n Misiurewicz point a with multiplier %a. Blowing up both planes with %a gives λ(M − a) ≈ (Ka − a) asymptotically. Classical result by Tan Lei. Error bound by Rivera-Letelier. Generalization to non-hyperbolic semi-hyperbolic a. Proof by Kawahira with Zalcman Lemma. - 2b Multiple scales (1) −n Centers cn ! a with cn ∼ a + K%a and small Mandelbrot sets of diameter −2n j%aj .
    [Show full text]
  • Quadratic Matings and Ray Connections [The Present Paper]
    Quadratic matings and ray connections Wolf Jung Gesamtschule Brand, 52078 Aachen, Germany, and Jacobs University, 28759 Bremen, Germany. E-mail: [email protected] Abstract A topological mating is a map defined by gluing together the filled Julia sets of two quadratic polynomials. The identifications are visualized and understood by pinching ray-equivalence classes of the formal mating. For postcritically finite polynomials in non-conjugate limbs of the Mandelbrot set, classical re- sults construct the geometric mating from the formal mating. Here families of examples are discussed, such that all ray-equivalence classes are uniformly bounded trees. Thus the topological mating is obtained directly in geomet- rically finite and infinite cases. On the other hand, renormalization provides examples of unbounded cyclic ray connections, such that the topological mat- ing is not defined on a Hausdorff space. There is an alternative construction of mating, when at least one polynomial is preperiodic: shift the infinite critical value of the other polynomial to a preperiodic point. Taking homotopic rays, it gives simple examples of shared matings. Sequences with unbounded multiplicity of sharing, and slowly grow- ing preperiod and period, are obtained both in the Chebychev family and for Airplane matings. Using preperiodic polynomials with identifications between the two critical orbits, an example of mating discontinuity is described as well. 1 Introduction Starting from two quadratic polynomials P (z)= z2 +p and Q(z)= z2 +q, construct arXiv:1707.00630v1 [math.DS] 3 Jul 2017 the topological mating P ` Q by gluing the filled Julia sets Kp and Kq . If there is a conjugate rational map f, this defines the geometric mating.
    [Show full text]