Toxic Picoplanktonic Cyanobacteria—Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cyanobacterial Bioactive Compounds: Biosynthesis, Evolution, Structure and Bioactivity
Cyanobacterial bioactive compounds: biosynthesis, evolution, structure and bioactivity Tânia Keiko Shishido Joutsen Division of Microbiology and Biotechnology Department of Food and Environmental Sciences Faculty of Agriculture and Forestry University of Helsinki, Finland and Integrative Life Science Doctoral Program University of Helsinki, Finland ACADEMIC DISSERTATION To be presented, with permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in auditorium B2 (A109), at Viikki B- Building, Latokartanonkaari 7, on May 22nd 2015, at 12 o’clock noon. Helsinki 2015 1 Supervisors Professor Kaarina Sivonen Department of Food and Environmental Sciences University of Helsinki, Finland Docent David P. Fewer Department of Food and Environmental Sciences University of Helsinki, Finland Docent Jouni Jokela Department of Food and Environmental Sciences University of Helsinki, Finland Reviewers Professor Elke Dittmann Institute of Biochemistry and Biology University of Potsdam, Germany Professor Pia Vuorela Pharmaceutical Biology, Faculty of Pharmacy University of Helsinki, Finland Thesis committee Professor Mirja Salkinoja-Salonen Department of Food and Environmental Sciences University of Helsinki, Finland Docent Päivi Tammela Centre for drug research, Faculty of Pharmacy University of Helsinki, Finland Opponent Professor Vitor Vasconcelos Interdisciplinary Centre of Marine and Environmental Research University of Porto, Portugal Custos Professor Kaarina Sivonen Department of Food and Environmental -
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: a Review
toxins Review Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review Georg G¨аrtner 1, Maya Stoyneva-G¨аrtner 2 and Blagoy Uzunov 2,* 1 Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria; [email protected] 2 Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 blvd. Dragan Tsankov, 1164 Sofia, Bulgaria; mstoyneva@uni-sofia.bg * Correspondence: buzunov@uni-sofia.bg Abstract: The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, Citation: G¨аrtner, G.; the health risk from phycotoxins on the background of the global warming and eutrophication and, ¨а Stoyneva-G rtner, M.; Uzunov, B. -
Investigations on the Impact of Toxic Cyanobacteria on Fish : As
INVESTIGATIONS ON THE IMPACT OF TOXIC CYANOBACTERIA ON FISH - AS EXEMPLIFIED BY THE COREGONIDS IN LAKE AMMERSEE - DISSERTATION Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften an der Universität Konstanz Fachbereich Biologie Vorgelegt von BERNHARD ERNST Tag der mündlichen Prüfung: 05. Nov. 2008 Referent: Prof. Dr. Daniel Dietrich Referent: Prof. Dr. Karl-Otto Rothhaupt Referent: Prof. Dr. Alexander Bürkle 2 »Erst seit gestern und nur für einen Tag auf diesem Planeten weilend, können wir nur hoffen, einen Blick auf das Wissen zu erhaschen, das wir vermutlich nie erlangen werden« Horace-Bénédict de Saussure (1740-1799) Pionier der modernen Alpenforschung & Wegbereiter des Alpinismus 3 ZUSAMMENFASSUNG Giftige Cyanobakterien beeinträchtigen Organismen verschiedenster Entwicklungsstufen und trophischer Ebenen. Besonders bedroht sind aquatische Organismen, weil sie von Cyanobakterien sehr vielfältig beeinflussbar sind und ihnen zudem oft nur sehr begrenzt ausweichen können. Zu den toxinreichsten Cyanobakterien gehören Arten der Gattung Planktothrix. Hierzu zählt auch die Burgunderblutalge Planktothrix rubescens, eine Cyanobakterienart die über die letzten Jahrzehnte im Besonderen in den Seen der Voralpenregionen zunehmend an Bedeutung gewonnen hat. An einigen dieser Voralpenseen treten seit dem Erstarken von P. rubescens existenzielle, fischereiwirtschaftliche Probleme auf, die wesentlich auf markante Wachstumseinbrüche bei den Coregonenbeständen (Coregonus sp.; i.e. Renken, Felchen, etc.) zurückzuführen sind. So auch -
Degradation of Microcystins in a Gravity-Driven Ultra-Low Pressure
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 Structural characterization, bioactivity and biodegradation of cyanobacterial toxins Kohler, Esther Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-105523 Dissertation Published Version Originally published at: Kohler, Esther. Structural characterization, bioactivity and biodegradation of cyanobacterial toxins. 2014, University of Zurich, Faculty of Science. STRUCTURAL CHARACTERIZATION, BIOACTIVITY AND BIODEGRADATION OF CYANOBACTERIAL TOXINS Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Esther Kohler von Schwaderloch AG Promotionskomitee Prof. Dr. Jakob Pernthaler (Vorsitz) Prof. Dr. Leo Eberl PD Dr. Judith F. Blom Zürich, 2015 Meiner Familie GLOSSARY Adda (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid AG 828A Aeruginosin 828A Ahp 3-amino-6-hydroxy-2-piperidone BMAA β-methyl-amino-L-alanine Choi 2-carboxy-6-hydroxyoctahydroindole CP 1020 Cyanopeptolin 1020 DNA Deoxyribonucleic acid DOPA Dihydroxyphenylalanine GC-MS Gas chromatography-mass spectrometry GDM Gravity-driven membrane filtration GSH Glutathione GST Glutathione-s-transferase (H)PLA (Hydroxyl)phenyllactic acid HPLC High-performance liquid chromatography IC50 Half maximal inhibitory concentration i.p. Intraperitoneal (injection) LC50 Median -
Mass-Spectrometry Based Metabolomics to Decipher Strain Specific Microcystis Cyanopeptide Profiles
MASS-SPECTROMETRY BASED METABOLOMICS TO DECIPHER STRAIN SPECIFIC MICROCYSTIS CYANOPEPTIDE PROFILES by Kimberlynn Pearl McDonald A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Chemistry with Specialization in Chemical and Environmental Toxicology Carleton University Ottawa, Ontario © 2020, Kimberlynn Pearl McDonald i. Abstract Over the last one hundred years, ecosystem changes have occurred as a result of human population growth, pollution, increased temperatures, and habitat degradation. A visible change is the increase in frequency and magnitude of toxic cyanobacterial blooms. Cyanobacterial blooms release mixtures of biologically active compounds into freshwater that negatively impact human and ecosystem health as well as having socioeconomic consequences. The factors that influence cyanobacterial growth and toxin production are broadly understood. However, cyanobacteria are a prolific source of structurally diverse and strain specific mixtures of biologically active compounds. Currently, the chemistry, toxicology, environmental concentrations, and risks posed to human and ecosystem health by most cyanobacterial secondary metabolites are unknown. Advances in mass spectrometry and metabolomic techniques can aid in comprehension of complex metabolomes. Here, the use of untargeted and semi-targeted mass spectrometry-based metabolomics is used to decipher the non-ribosomal peptide natural products (cyanopeptides) from five Microcystis strains. Cyanopeptides are grouped based on shared structural features, such as the incorporation of non-proteogenic amino acids or partial amino acid sequences that generate diagnostic product ions with the MS/MS of metabolites within the same cyanopeptide group. Global natural product society (GNPS) molecular networking and diagnostic fragmentation filtering (DFF) techniques utilize the similarity in product ion spectra to visualize all variants in the different cyanopeptide groups and the production by Microcystis strains. -
Cyanobacteria and Cyanotoxins: from Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects
Toxins 2013, 5, 1896-1917; doi:10.3390/toxins5101896 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Cyanobacteria and Cyanotoxins: From Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects Giliane Zanchett and Eduardo C. Oliveira-Filho * Universitary Center of Brasilia—UniCEUB—SEPN 707/907, Asa Norte, Brasília, CEP 70790-075, Brasília, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-61-3388-9894. Received: 11 August 2013; in revised form: 15 October 2013 / Accepted: 17 October 2013 / Published: 23 October 2013 Abstract: Cyanobacteria or blue-green algae are among the pioneer organisms of planet Earth. They developed an efficient photosynthetic capacity and played a significant role in the evolution of the early atmosphere. Essential for the development and evolution of species, they proliferate easily in aquatic environments, primarily due to human activities. Eutrophic environments are conducive to the appearance of cyanobacterial blooms that not only affect water quality, but also produce highly toxic metabolites. Poisoning and serious chronic effects in humans, such as cancer, have been described. On the other hand, many cyanobacterial genera have been studied for their toxins with anticancer potential in human cell lines, generating promising results for future research toward controlling human adenocarcinomas. This review presents the knowledge that has evolved on the topic of toxins produced by cyanobacteria, ranging from their negative impacts to their benefits. Keywords: cyanobacteria; proliferation; cyanotoxins; toxicity; cancer 1. Introduction Cyanobacteria or blue green algae are prokaryote photosynthetic organisms and feature among the pioneering organisms of planet Earth. -
Skin,Mucosal and Blood-Brain Barrier Kinetics
FACULTY OF PHARMACEUTICAL SCIENCES DRUG Quality & Registration (DRUQUAR) Lab SKIN, MUCOSAL AND BLOOD-BRAIN BARRIER KINETICS OF MODEL CYCLIC DEPSIPEPTIDES: THE MYCOTOXINS BEAUVERICIN AND ENNIATINS Thesis submitted to obtain the degree of Doctor in Pharmaceutical Sciences Lien TAEVERNIER Promoter Prof. Dr. Bart DE SPIEGELEER FACULTY OF PHARMACEUTICAL SCIENCES Drug Quality & Registration (DruQuaR) Lab SKIN, MUCOSAL AND BLOOD-BRAIN BARRIER KINETICS OF MODEL CYCLIC DEPSIPEPTIDES: THE MYCOTOXINS BEAUVERICIN AND ENNIATINS Lien TAEVERNIER Master of Science in Drug Development Promoter Prof. Dr. Bart DE SPIEGELEER 2016 Thesis submitted to obtain the degree of Doctor in Pharmaceutical Sciences COPYRIGHT COPYRIGHT The author and the promotor give the authorization to consult and to copy parts of this thesis for personal use only. Any other use is limited by the Laws of Copyright, especially the obligation to refer to the source whenever results from this thesis are cited. Ghent, 9th of September 2016 The promoter The author Prof. Dr. Bart De Spiegeleer Lien Taevernier 3 ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS I never could have achieved this work on my own, therefore I wish to thank some very important people and address a few words to them. I consider myself fortunate to know you and I was honoured to be able to work together with you and learn a great deal from all of you. First of all, a special thank you to my promoter Prof. Dr. Bart De Spiegeleer. I am grateful that you gave me the opportunity to pursue my Ph.D. at DruQuaR. Your door was always open for me, even if it did not consider work. -
Cyanobacteria and Their Toxins – for Public Consultation 2020
Guidelines for Canadian Recreational Water Quality Cyanobacteria and their Toxins Guideline Technical Document For Public Consultation Consultation period ends November 20, 2020 Purpose of consultation This guideline technical document evaluated the available information on cyanobacteria and their toxins with the intent of updating/recommending guideline value(s) for cyanobacteria toxins, total cyanobacteria cell counts, total cyanobacteria biovolume, and chlorophyll-a in recreational water. The purpose of this consultation is to solicit comments on the proposed guideline values, on the approach used for their development, and on the potential economic costs of implementing the guidelines. The document was reviewed by external experts and subsequently revised. We now seek comments from the public. This document is available for a 90-day public consultation period. Please send comments (with rationale, where required) to Health Canada via email at HC.water- [email protected]. If this is not feasible, comments may be sent by mail to: Water and Air Quality Bureau, Health Canada, 269 Laurier Avenue West, A.L. 4903D, Ottawa, Ontario K1A 0K9. All comments must be received before November 20, 2020. Comments received as part ofthis consultation will be shared with the recreational water quality working group members, along with the name and affiliation of their author. Authors who do not want their name and affiliation shared with recreational water quality working group members should provide a statement to this effect along with their comments. It should be noted that this guideline technical document will be revised following the evaluation of comments received, and the recreational water quality guideline will be updated, if required. -
Cloning and Biochemical Characterization of the Hectochlorin Biosynthetic Gene Cluster from the Marine Cyanobacteriumlyngbya Majuscula
AN ABSTRACT OF THE DISSERTATION OF Aishwarya V. Ramaswamy for the degree of Doctor of Philosophy in Microbiology presented on June 02, 2005. Title: Cloning and Biochemical Characterization of the Hectochiorin Biosynthetic Gene Cluster from the Marine Cyanobacterium Lyngbya maluscula Abstract approved: Redacted for privacy William H. Gerwick Cyanobacteria are rich in biologically active secondary metabolites, many of which have potential application as anticancer or antimicrobial drugs or as useful probes in cell biology studies. A Jamaican isolate of the marine cyanobacterium, Lyngbya majuscula was the source of a novel antifungal and cytotoxic secondary metabolite, hectochlorin. The structure of hectochiorin suggested that it was derived from a hybid PKS/NIRPS system. Unique features of hectochlorin such as the presence of a gem dichloro functionality and two 2,3-dihydroxy isovaleric acid prompted efforts to clone and characterize the gene cluster involved in hectochiorin biosynthesis. Initial attempts to isolate the hectochlorin biosynthetic gene cluster led to the identification of a mixed PKS/NRPS gene cluster, LMcryl,whose genetic architecture did not substantiate its involvement in the biosynthesis of hectochlorin. This gene cluster was designated as a cryptic gene cluster because a corresponding metabolite remains as yet unidentified. The expression of thisgene cluster was successfully demonstrated using RT-PCR and these results form the basis for characterizing the metabolite using a novel interdisciplinary approach. A 38 kb region -
Hepatotoxic Cyanobacterial Blooms in Louisiana's Estuaries
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2010 Hepatotoxic Cyanobacterial Blooms in Louisiana's Estuaries: Analysis of Risk to Blue Crab (Callinectes sapidus) Following Exposure to Microcystins Ana Cristina Garcia Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Garcia, Ana Cristina, "Hepatotoxic Cyanobacterial Blooms in Louisiana's Estuaries: Analysis of Risk to Blue Crab (Callinectes sapidus) Following Exposure to Microcystins" (2010). LSU Master's Theses. 1132. https://digitalcommons.lsu.edu/gradschool_theses/1132 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. HEPATOTOXIC CYANOBACTERIAL BLOOMS IN LOUISIANA’S ESTUARIES: ANALYSIS OF RISK TO BLUE CRAB (CALLINECTES SAPIDUS) FOLLOWING EXPOSURE TO MICROCYSTINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Oceanography and Coastal Sciences By Ana Cristina Garcia B.S. Louisiana State University, 2006 May 2010 ACKNOWLEDGEMENTS I would like to thank my major advisor Dr. Sibel Bargu. My experience at LSU as a graduate student has been invaluable under her guidance and support. Thanks to Dr. Bargu I have been provided with endless opportunities to explore the field of oceanography and limnology, for which I am forever grateful. -
Bioassay Methods to Identify the Presence of Cyanotoxins in Drinking Water Supplies and Their Removal Strategies
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library European Journal of Experimental Biology, 2012, 2 (2):321-336 ISSN: 2248 –9215 CODEN (USA): EJEBAU Bioassay methods to identify the presence of cyanotoxins in drinking water supplies and their removal strategies Monica Agrawal 1, Sulekha Yadav 1,2 , Chanda Patel 1,2 , Neelima Raipuria 1 and Manish K. Agrawal 2* 1M. H. College of Home Science and Science for Women, Napier Town, Jabalpur, India 2Daksh Laboratories, 1370, Home Science College Road, Napier Town, Jabalpur, India ______________________________________________________________________________ ABSTRACT A diversified group of toxins produced by freshwater cyanobacteria pose threat to human health as they frequently occur in drinking water sources. Though numerous qualitative as well as quantitative chemical analytical methods are now available, relatively simple low cost methods that are able to evaluate the potential health hazard and allow management decisions to be taken, are more useful to agencies that monitor drinking water supplies. Given that there is no single method that can provide adequate monitoring for all freshwater cyanotoxins in the increasing range of sample types, bioassays that can detect the toxic effects and safe levels of cyanobacterial toxins in drinking water supplies are discussed. Methods for removal of cyanobacterial cells as well as dissolved toxins in drinking waters prior to supply are also discussed. Key Words: Freshwater cyanobacteria, toxins, microcystins, bioassay, removal of toxins, waterworks. ______________________________________________________________________________ INTRODUCTION Most, though not all, cyanobacterial blooms and scums produce secondary metabolites that are toxic to aquatic animals, fishes, cattle and even human [1, 2, 3]. The most frequently found toxin producing cyanobacterial species in freshwaters are Microcystis, Anabaena, Nodularia, Planktothrix, Aphanizomenon, Cylindrospermopsin and Lyngbya etc. -
Secondary Metabolites in Cyanobacteria
Chapter 2 Secondary Metabolites in Cyanobacteria BethanBethan Kultschar Kultschar and Carole LlewellynCarole Llewellyn Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.75648 Abstract Cyanobacteria are a diverse group of photosynthetic bacteria found in marine, fresh- water and terrestrial habitats. Secondary metabolites are produced by cyanobacteria enabling them to survive in a wide range of environments including those which are extreme. Often production of secondary metabolites is enhanced in response to abiotic or biotic stress factors. The structural diversity of secondary metabolites in cyanobacteria ranges from low molecular weight, for example, with the photoprotective mycosporine- like amino acids to more complex molecular structures found, for example, with cyano- toxins. Here a short overview on the main groups of secondary metabolites according to chemical structure and according to functionality. Secondary metabolites are intro- duced covering non-ribosomal peptides, polyketides, ribosomal peptides, alkaloids and isoprenoids. Functionality covers production of cyanotoxins, photoprotection and anti- oxidant activity. We conclude with a short introduction on how secondary metabolites from cyanobacteria are increasingly being sought by industry including their value for the pharmaceutical and cosmetics industries. Keywords: cyanobacteria, secondary metabolites, nonribosomal peptides, polyketides, alkaloids, isoprenoids, cyanotoxins, mycosporine-like amino acids, scytonemin, phycobiliproteins, biotechnology, pharmaceuticals, cosmetics 1. Introduction 1.1. Cyanobacteria Cyanobacteria are a diverse group of gram-negative photosynthetic prokaryotes. They are thought to be one of the oldest photosynthetic organisms creating the conditions that resulted in the evolution of aerobic metabolism and eukaryotic photosynthesis [1, 2]. They © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons © 2018 The Author(s).