Characterization of Cyanobacteria Isolated from the Portuguese Coast

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Cyanobacteria Isolated from the Portuguese Coast Characterization of cyanobacteria isolated from the Portuguese coast: diversity and potential to produce D bioactive compounds Ângela Marisa Oliveira Brito Programa Doutoral em Biologia de Plantas Departamento de Biologia 2015 Orientador Paula Tamagnini, Professora Associada Faculdade de Ciências, Universidade do Porto Coorientador Vitor M. Vasconcelos, Professor Catedrático Faculdade de Ciências, Universidade do Porto Coorientador Marta Vaz Mendes, Investigadora Auxiliar IBMC - Instituto de Biologia Molecular e Celular Aos meus pais One should not pursue goals that are easily achieved. One must develop an instinct for what one can just barely achieve through one’s greatest efforts. Albert Einstein FCUP vii Characterization of cyanobacteria isolated from the Portuguese coast Acknowledgments The work presented here is the result of a close collaboration of several people (involved directly or indirectly) to whom I would like to express my gratitude. First, I want to acknowledge my supervisor, Prof. Paula Tamagnini, for this opportunity and for the extraordinary support, guidance and patience (especially during the thesis writing) always expressed over all these years (not only during the PhD). Thank you for sharing your knowledge, for always keeping your door open and for the encouragement throughout this work (not always an easy path). I would like to acknowledge my co-supervisor Marta Vaz Mendes, for all the help, support, and valuable teachings. Thank you for spending time to teaching and helping me with the “PKS and NRPS world”. I would also like to thank my co-supervisor Prof. Vitor Vasconcelos for the opportunity. Thank you for the valuable advices, support and availability always expressed. I want to express my gratitude to Professor William H. Gerwick at the Scripps Institution of Oceanography, University of California San Diego, for giving me the opportunity to spend some time in his lab. It was a pleasure to work and learn so much on cyanobacteria secondary metabolites. Thank you so much for welcoming me in your lab and for showing me the wonderful world of marine natural products. A huge thank you to Vitor Ramos for the precious help and advices that were crucial for the achievement of the results presented in this thesis. Thank you for your support and friendship. I am particularly grateful to all co-authors that contributed to this work. Without you this work would not be possible. Prof. Arlete Santos, as well as Rui Fernandes and Francisco Figueiredo (Histology and Electron Microscopy facility, IBMC), for all the help with the transmission electron microscopy. I would like to thank Cristina Vieira and Jorge Vieira for assistance with the phylogenetic analysis. To all present and former members of the Bioengineering and Synthetic Microbiology (BSM) Group, a big thank you for the wonderful work environment, the viii FCUP Characterization of cyanobacteria isolated from the Portuguese coast sharing of ideas, help, support, friendship, tips and laughs. Sharing my lab time with you all was a fun and constructive experience. Special thanks to Rita Mota. Thanks for all the help (not only in the work), patience, and for constantly showing me the things in a different way. Thanks for your friendship, and for being with me in all moments (good and bad ones). Everything would be harder without you! To Sara Pereira. Thank you for your help, support and friendship. Thanks for being always there. I will never forget that my “first steps” in the lab were with you! Thanks for everything! To Meritxell Notari. Thanks for your good mood and help either in the lab and at home. I think that you deserve the award for “best housemate”, because I know that it was not easy to share almost 24h per day with me. Thanks for your patience, friendship and all good moments shared. To Filipe Pinto. Thank you for your support and for being always available to help me (and anyone who asks). Thank you for helping me with images, computer problems and I could continue... (quem tem um Filipe tem tudo!). To Catarina Pacheco (thanks for the help and support over all these years), Paulo Oliveira (thanks for constructive discussions about the work and for your help with the GC), Steeve Lima, Eunice Ferreira, Carlos Flores, Marina Santos and José Pereira for the good work environment, the sharing of ideas and help. Thank you all. To the present and former members of the MCA and RCS groups. Thank you for your support and friendship. To all members of the Gerwick Laboratory, especially Evgenia Glukhov, Ozlem Demirkiran, Karin Kleigrewe and Enora Briand. Thank you for your precious help. To all members of LEGE, CIIMAR. Thank you for all the help, support and advices. To all my friends, especially Juliana Oliveira (thank you for being by my side and for your support that encouraged me to never look back) and all members of the “team”: Rita Mota, Meritxell Notari, Sara Pereira, Filipe Pinto, Ricardo Celestino (thanks for your help with the thesis, thank you for everything…except the spiders!), Joana Gaifem, Sérgio Ferreira, Nádia Gonçalves and Nelson Ferreira. Thank you for all the good moments spent together, dinners, parties, laughs. Thank you for being always there (in the good and bad times). Special thanks to Goody and Brian. Thank you for welcoming me in your house during my stay in San Diego, for your care and for all the good moments. You made everything easier; all the words won’t be enough to thank you. I would also like to acknowledge the Fundação para a Ciência e Tecnologia (FCT) for the PhD. Grant SFRH/BD/70284/2010. FCUP ix Characterization of cyanobacteria isolated from the Portuguese coast And for last, but for sure not least… Quero agradecer à minha família, em especial aos meus pais (os meus pilares), pois sem eles nada disto teria sido possível. Não há palavras que descrevam tudo o que são para mim. Muito obrigada por estarem sempre comigo e apoiarem sempre as minhas decisões (mesmo por vezes não estarem totalmente de acordo). Obrigada pelo amor, compreensão, dedicação e pelos valores transmitidos. À minha irmã Sónia (desde sempre a minha melhor amiga) e ao meu cunhado Filipe. Obrigada pelo vosso apoio incondicional, por toda ajuda e por estarem sempre comigo. Vocês foram e são fundamentais para aquilo que sou hoje. Finalmente, como não poderia deixar de ser, aos meus sobrinhos Tiago Filipe e Ana Carolina (que nasceu mesmo na fase final de escrita da tese) que são sem dúvida o melhor do Mundo, são o meu orgulho. x FCUP Characterization of cyanobacteria isolated from the Portuguese coast This work was funded by FEDER funds through the Operational Competitiveness Programme - COMPETE and by national funds through FCT - Fundação para a Ciência e a Tecnologia under the projects FCOMP-01-0124-FEDER-010600 (PTDC/MAR/102258/2008), FCOMP-01-0124-FEDER-010568 (PTDC/MAR/099642/2008), FCOMP-01-0124-FEDER- 028314 (PTDC/BIA-MIC/2889/2012) and the PhD grant SFRH/BD/70284/2010 (POPH-QREN). FCUP xi Characterization of cyanobacteria isolated from the Portuguese coast List of publications (Ao abrigo do disposto no número 2 do Artigo 8º do decreto-Lei nº 388/70) This dissertation is based on the following publications and some unpublished results: I - Brito Â., Ramos V., Seabra R., Santos A., Santos C.L., Lopo M., Ferreira S., Martins A., Mota R., Frazão B., Martins R., Vasconcelos V., Tamagnini P. 2012. Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: a polyphasic study. Systematic and Applied Microbiology 35: 110-119. II - Brito Â., Mota R., Ramos V., Lima S., Santos A., Vieira J., Vieira C.P., Vasconcelos V.M., Tamagnini P. 2015. Isolation of cyanobacterial strains from the Portuguese Atlantic coast disclosures novel diversity. (Manuscript). III - Brito Â., Gaifem J., Ramos V., Glukhov E., Dorrestein P.C., Gerwick W.H., Vasconcelos V.M., Mendes M.V., Tamagnini P. 2015. Bioprospecting Atlantic cyanobacteria for bioactive secondary metabolites reveals untapped chemodiversity. Algal Research 9: 218-226. Other publications: Pinho L.X., Azevedo J., Brito Â., Santos A., Tamagnini P., Vilar V.J.P., Vasconcelos V. M., Boaventura R.A.R. 2015. Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin. Chemical Engineering Journal 268: 144-152. Publications (Chapter II and IV) are reproduced with the permission from the copyright holders. FCUP xiii Characterization of cyanobacteria isolated from the Portuguese coast Abstract Cyanobacteria are photosynthetic prokaryotes with a wide geographical distribution and are present in a broad spectrum of environments, including extreme ones. They play an important role in the global carbon cycle as primary producers and some strains are able to fix atmospheric nitrogen, characteristic that confers them an advantage in nutrient-poor and nitrogen-depleted environments like the marine ones. Cyanobacteria are also recognized as a prolific source of secondary metabolites with biological activities. Some of these compounds are toxic to a wide array of organisms, including humans, but others exhibit promising activities with interest in biotechnological applications, namely in the pharmacological, cosmetic and agricultural fields. Despite the ecological importance of cyanobacteria and their biotechnological potential, little is known about the diversity of these organisms on the Portuguese continental coast. In this work, the diversity of cyanobacteria on the intertidal zones of the Portuguese coast was assessed. For this purpose nine beaches were sampled and 60 of the retrieved isolates were characterized using a polyphasic approach. Based on morphology, 35 morphotypes were identified being the most representative group the non-heterocystous forms, with a predominance of the filamentous Oscillatoriales/Subsection III. The 16S rRNA gene was partially sequenced for all the isolates and phylogenetic analyses were performed. For the majority of the isolates there was a broad congruence between the phenotypic and genotypic based identifications.
Recommended publications
  • Guidelines for Design and Sampling for Cyanobacterial Toxin and Taste-And-Odor Studies in Lakes and Reservoirs
    Guidelines for Design and Sampling for Cyanobacterial Toxin and Taste-and-Odor Studies in Lakes and Reservoirs Scientific Investigations Report 2008–5038 U.S. Department of the Interior U.S. Geological Survey Photo 1 Photo 3 Photo 2 Front cover. Photograph 1: Beach sign warning of the presence of a cyanobacterial bloom, June 29, 2006 (photograph taken by Jennifer L. Graham, U.S. Geological Survey). Photograph 2: Sampling a near-shore accumulation of Microcystis, August 8, 2006 (photograph taken by Jennifer L. Graham, U.S. Geological Survey). Photograph 3: Mixed bloom of Anabaena, Aphanizomenon, and Microcystis, August 10, 2006 (photograph taken by Jennifer L. Graham, U.S. Geological Survey). Background photograph: Near-shore accumulation of Microcystis, August 8, 2006 (photograph taken by Jennifer L. Graham, U.S. Geological Survey). Guidelines for Design and Sampling for Cyanobacterial Toxin and Taste-and-Odor Studies in Lakes and Reservoirs By Jennifer L. Graham, Keith A. Loftin, Andrew C. Ziegler, and Michael T. Meyer Scientific Investigations Report 2008–5038 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Cyanobacterial Toxins: Saxitoxins
    WHO/SDE/WSH/xxxxx English only Cyanobacterial toxins: Saxitoxins Background document for development of WHO Guidelines for Drinking-water Quality and Guidelines for Safe Recreational Water Environments Version for Public Review Nov 2019 © World Health Organization 20XX Preface Information on cyanobacterial toxins, including saxitoxins, is comprehensively reviewed in a recent volume to be published by the World Health Organization, “Toxic Cyanobacteria in Water” (TCiW; Chorus & Welker, in press). This covers chemical properties of the toxins and information on the cyanobacteria producing them as well as guidance on assessing the risks of their occurrence, monitoring and management. In contrast, this background document focuses on reviewing the toxicological information available for guideline value derivation and the considerations for deriving the guideline values for saxitoxin in water. Sections 1-3 and 8 are largely summaries of respective chapters in TCiW and references to original studies can be found therein. To be written by WHO Secretariat Acknowledgements To be written by WHO Secretariat 5 Abbreviations used in text ARfD Acute Reference Dose bw body weight C Volume of drinking water assumed to be consumed daily by an adult GTX Gonyautoxin i.p. intraperitoneal i.v. intravenous LOAEL Lowest Observed Adverse Effect Level neoSTX Neosaxitoxin NOAEL No Observed Adverse Effect Level P Proportion of exposure assumed to be due to drinking water PSP Paralytic Shellfish Poisoning PST paralytic shellfish toxin STX saxitoxin STXOL saxitoxinol
    [Show full text]
  • Harmful Algal Blooms (Habs) Program Guide
    HARMFUL ALGAL BLOOMS (HABS) PROGRAM GUIDE www.dec.ny.gov Contents List of Tables ....................................................................................................................ii List of Figures ...................................................................................................................ii Abbreviations and Acronyms ........................................................................................... iii 1. Executive Summary ................................................................................................. 1 2. Introduction .............................................................................................................. 2 2.1. Purpose of this Document ............................................................................... 2 2.2. Scope, Jurisdiction and Audience ................................................................... 2 2.3. Background ..................................................................................................... 2 2.4. Agency Responsibilities .................................................................................. 4 3. DEC Bloom Status Designation in New York ........................................................... 8 3.1. Bloom Status Criteria ...................................................................................... 8 3.2. Threshold Development ................................................................................ 12 3.3. Cyanotoxins and Other Harmful Compounds ..............................................
    [Show full text]
  • The Neurotoxin Β-N-Methylamino-L-Alanine (BMAA)
    The neurotoxin β-N-methylamino-L-alanine (BMAA) Sources, bioaccumulation and extraction procedures Sandra Ferreira Lage ©Sandra Ferreira Lage, Stockholm University 2016 Cover image: Cyanobacteria, diatoms and dinoflagellates microscopic pictures taken by Sandra Ferreira Lage ISBN 978-91-7649-455-4 Printed in Sweden by Holmbergs, Malmö 2016 Distributor: Department of Ecology, Environment and Plant Sciences, Stockholm University “Sinto mais longe o passado, sinto a saudade mais perto.” Fernando Pessoa, 1914. Abstract β-methylamino-L-alanine (BMAA) is a neurotoxin linked to neurodegeneration, which is manifested in the devastating human diseases amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s disease. This neurotoxin is known to be produced by almost all tested species within the cyanobacterial phylum including free living as well as the symbiotic strains. The global distribution of the BMAA producers ranges from a terrestrial ecosystem on the Island of Guam in the Pacific Ocean to an aquatic ecosystem in Northern Europe, the Baltic Sea, where annually massive surface blooms occur. BMAA had been shown to accumulate in the Baltic Sea food web, with highest levels in the bottom dwelling fish-species as well as in mollusks. One of the aims of this thesis was to test the bottom-dwelling bioaccumulation hy- pothesis by using a larger number of samples allowing a statistical evaluation. Hence, a large set of fish individuals from the lake Finjasjön, were caught and the BMAA concentrations in different tissues were related to the season of catching, fish gender, total weight and species. The results reveal that fish total weight and fish species were positively correlated with BMAA concentration in the fish brain.
    [Show full text]
  • Eukaryote Cell Biology - Michelle Gehringer
    FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. II - Eukaryote Cell Biology - Michelle Gehringer EUKARYOTE CELL BIOLOGY Michelle Gehringer Department of Biochemistry and Microbiology, University of Port Elizabeth, South Africa Keywords: cell theory, cell diversity, eukaryote cell structure, nucleus, chromatin, DNA, organelles, mitochondria, chloroplasts, transcription, RNA, translation, ribosomes, cell cycle, interphase, mitosis, meiosis, signal transduction, growth regulation, cancer, oncogenesis. Contents 1. Introduction 1.1. The first cell 2. Origin of Eukaryotes 3. Cellular differentiation in multicellular organisms 3.1. Plants 3.2. Animals 4. Eukaryotic cell structure 5. Organization of eukaryotic cells 5.1. Plasma membrane 5.2. Extracellular matrices 5.3. Protein synthesis and transport 5.4. Cytoskeleton and movement 5.5. Nucleus 5.5.1 Genomes 5.5.2 Gene expression 5.5.3 Maintaining the genome 5.6. Organelles 6. The cell cycle 6.1. Mitosis 6.2. Meiosis 7. Regulation of cell growth 7.1. Signal transduction 7.2. Programmed cell death 7.3. CancerUNESCO – EOLSS 8. Experimental Models 8.1. Yeast SAMPLE CHAPTERS 8.2. Arabidopsis 8.3. Drosophila 8.4. The mouse 8.5. Cell culture 8.6. Separation of cellular contents 8.7. Tracing biochemical pathways 9. Future Investigations Glossary Bibliography ©Encyclopedia of Life Support Systems (EOLSS) FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. II - Eukaryote Cell Biology - Michelle Gehringer Biographical Sketch Summary Cells form the basic unit of life on our planet. They are well organized systems which perform all the essential tasks of eating, respiring, replicating and excreting waste products. The first cells, which are thought to have evolved about 3.8 billion years ago, much resembled present day prokaryotes.
    [Show full text]
  • EPA's Drinking Water Health Advisories and Recreational
    EPA’s Drinking Water Health Advisories and Recreational Criteria for Cyanotoxins Lesley V. D’Anglada, Dr.PH US Environmental Protection Agency Office of Water/Office of Science and Technology EPA’s Region 5 HABs Workshop April 27-28 th , 2016 Chicago, IL Presentation Overview • Describe public health guidelines in place • Discuss the toxicity assessment done for the three cyanotoxins listed in CCL • Discuss the development of the Health Advisories • Discuss current efforts to develop Ambient Water Quality Criteria for Recreational Exposures Disclaimer • The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. 2 Why cyanobacterial HABs are important? • The prevalence of HABs in freshwater is increasingly reported in the U.S. and worldwide • Algal blooms can cause: • Hypoxia, leading to fish kills • Taste and odor problems in treated drinking water • Toxins at levels that may be of concern for human health • HABs may contribute to economic losses to the fishing and recreation industries and increase costs for managing and treating potable water supplies • Presence in finished drinking water • 2014: > 1 µg/L total microcystins detected in finished water in a drinking water system on western Lake Erie • City of Toledo, OH (population ~500,000) issued a “do not drink” advisory. 3 Guidelines and Regulations for Drinking Water • No federal regulations for cyanobacteria or cyanotoxins in drinking water in the U.S. • Safe Drinking Water Act Requirements (SDWA Section 1412(b)(1)) • Contaminant Candidate List • List of unregulated contaminants that are known or anticipated to occur in public water systems and may require a drinking water regulation.
    [Show full text]
  • Oxidation of Microcystin-LR and Cylindrospermopsin by Heterogeneous Photocatalysis Using a Tubular Photoreactor Packed with Different Tio2 Coated Supports Lívia X
    This article was published in Chemical Engineering Journal, 266, 100-111, 2015 http://dx.doi.org/10.1016/j.cej.2014.12.023 Oxidation of microcystin-LR and cylindrospermopsin by heterogeneous photocatalysis using a tubular photoreactor packed with different TiO2 coated supports Lívia X. Pinho a, Joana Azevedo b, Sandra M. Miranda a, Joana Ângelo c, Adélio Mendes c, Vítor J.P. Vilar a,⇑,Vítor Vasconcelos b,d, Rui A.R. Boaventura a a LSRE – Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal b Group of Blue Biotechnology and Ecotoxicology, Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal c LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal d Department of Biology, Faculty of Sciences University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal Abstract The photocatalytic degradation of cyanotoxins in aqueous solutions using slurry suspensions of TiO2 implies a post-filtration step to retain the photocatalyst. In this work, 2D and 3D TiO2 thin films sup- ported in inert surfaces was proposed for the solar photocatalytic removal of cyanotoxins microcystin- LR (MC-LR) or cylindrospermopsin (CYN) in distilled and natural water under neutral pH conditions. The photocatalytic experiments were performed in a lab-scale tubular photoreactor with a compound parabolic collector (CPC) using simulated and natural solar radiation. The tubular photoreactor was packed with transparent cellulose acetate monoliths (CAM) coated with a P25 paste or sol–gel 2D TiO2 film or with a photocatalytic 3D TiO2-loaded exterior paint (PC500, VLP7000 and P25).
    [Show full text]
  • Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: a Review
    toxins Review Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review Georg G¨аrtner 1, Maya Stoyneva-G¨аrtner 2 and Blagoy Uzunov 2,* 1 Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria; [email protected] 2 Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 blvd. Dragan Tsankov, 1164 Sofia, Bulgaria; mstoyneva@uni-sofia.bg * Correspondence: buzunov@uni-sofia.bg Abstract: The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, Citation: G¨аrtner, G.; the health risk from phycotoxins on the background of the global warming and eutrophication and, ¨а Stoyneva-G rtner, M.; Uzunov, B.
    [Show full text]
  • Investigations on the Impact of Toxic Cyanobacteria on Fish : As
    INVESTIGATIONS ON THE IMPACT OF TOXIC CYANOBACTERIA ON FISH - AS EXEMPLIFIED BY THE COREGONIDS IN LAKE AMMERSEE - DISSERTATION Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften an der Universität Konstanz Fachbereich Biologie Vorgelegt von BERNHARD ERNST Tag der mündlichen Prüfung: 05. Nov. 2008 Referent: Prof. Dr. Daniel Dietrich Referent: Prof. Dr. Karl-Otto Rothhaupt Referent: Prof. Dr. Alexander Bürkle 2 »Erst seit gestern und nur für einen Tag auf diesem Planeten weilend, können wir nur hoffen, einen Blick auf das Wissen zu erhaschen, das wir vermutlich nie erlangen werden« Horace-Bénédict de Saussure (1740-1799) Pionier der modernen Alpenforschung & Wegbereiter des Alpinismus 3 ZUSAMMENFASSUNG Giftige Cyanobakterien beeinträchtigen Organismen verschiedenster Entwicklungsstufen und trophischer Ebenen. Besonders bedroht sind aquatische Organismen, weil sie von Cyanobakterien sehr vielfältig beeinflussbar sind und ihnen zudem oft nur sehr begrenzt ausweichen können. Zu den toxinreichsten Cyanobakterien gehören Arten der Gattung Planktothrix. Hierzu zählt auch die Burgunderblutalge Planktothrix rubescens, eine Cyanobakterienart die über die letzten Jahrzehnte im Besonderen in den Seen der Voralpenregionen zunehmend an Bedeutung gewonnen hat. An einigen dieser Voralpenseen treten seit dem Erstarken von P. rubescens existenzielle, fischereiwirtschaftliche Probleme auf, die wesentlich auf markante Wachstumseinbrüche bei den Coregonenbeständen (Coregonus sp.; i.e. Renken, Felchen, etc.) zurückzuführen sind. So auch
    [Show full text]
  • Degradation of Microcystins in a Gravity-Driven Ultra-Low Pressure
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 Structural characterization, bioactivity and biodegradation of cyanobacterial toxins Kohler, Esther Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-105523 Dissertation Published Version Originally published at: Kohler, Esther. Structural characterization, bioactivity and biodegradation of cyanobacterial toxins. 2014, University of Zurich, Faculty of Science. STRUCTURAL CHARACTERIZATION, BIOACTIVITY AND BIODEGRADATION OF CYANOBACTERIAL TOXINS Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Esther Kohler von Schwaderloch AG Promotionskomitee Prof. Dr. Jakob Pernthaler (Vorsitz) Prof. Dr. Leo Eberl PD Dr. Judith F. Blom Zürich, 2015 Meiner Familie GLOSSARY Adda (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid AG 828A Aeruginosin 828A Ahp 3-amino-6-hydroxy-2-piperidone BMAA β-methyl-amino-L-alanine Choi 2-carboxy-6-hydroxyoctahydroindole CP 1020 Cyanopeptolin 1020 DNA Deoxyribonucleic acid DOPA Dihydroxyphenylalanine GC-MS Gas chromatography-mass spectrometry GDM Gravity-driven membrane filtration GSH Glutathione GST Glutathione-s-transferase (H)PLA (Hydroxyl)phenyllactic acid HPLC High-performance liquid chromatography IC50 Half maximal inhibitory concentration i.p. Intraperitoneal (injection) LC50 Median
    [Show full text]
  • Mass-Spectrometry Based Metabolomics to Decipher Strain Specific Microcystis Cyanopeptide Profiles
    MASS-SPECTROMETRY BASED METABOLOMICS TO DECIPHER STRAIN SPECIFIC MICROCYSTIS CYANOPEPTIDE PROFILES by Kimberlynn Pearl McDonald A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Chemistry with Specialization in Chemical and Environmental Toxicology Carleton University Ottawa, Ontario © 2020, Kimberlynn Pearl McDonald i. Abstract Over the last one hundred years, ecosystem changes have occurred as a result of human population growth, pollution, increased temperatures, and habitat degradation. A visible change is the increase in frequency and magnitude of toxic cyanobacterial blooms. Cyanobacterial blooms release mixtures of biologically active compounds into freshwater that negatively impact human and ecosystem health as well as having socioeconomic consequences. The factors that influence cyanobacterial growth and toxin production are broadly understood. However, cyanobacteria are a prolific source of structurally diverse and strain specific mixtures of biologically active compounds. Currently, the chemistry, toxicology, environmental concentrations, and risks posed to human and ecosystem health by most cyanobacterial secondary metabolites are unknown. Advances in mass spectrometry and metabolomic techniques can aid in comprehension of complex metabolomes. Here, the use of untargeted and semi-targeted mass spectrometry-based metabolomics is used to decipher the non-ribosomal peptide natural products (cyanopeptides) from five Microcystis strains. Cyanopeptides are grouped based on shared structural features, such as the incorporation of non-proteogenic amino acids or partial amino acid sequences that generate diagnostic product ions with the MS/MS of metabolites within the same cyanopeptide group. Global natural product society (GNPS) molecular networking and diagnostic fragmentation filtering (DFF) techniques utilize the similarity in product ion spectra to visualize all variants in the different cyanopeptide groups and the production by Microcystis strains.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Novel
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Novel Biodiversity of Natural Products-producing Tropical Marine Cyanobacteria A Dissertation submitted in partial satisfaction of the requirement for the degree Doctor of Philosophy in Oceanography by Niclas Engene Committee in Charge: Professor William H. Gerwick, Chair Professor James W. Golden Professor Paul R. Jensen Professor Brian Palenik Professor Gregory W. Rouse Professor Jennifer E. Smith 2011 Copyright Niclas Engene, 2011 All rights reserved. The Dissertation of Niclas Engene is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii DEDICATION This dissertation is dedicated to everyone that has been there when I have needed them the most. iv TABLE OF CONTENTS Signature Page …………………………………………………..……………………... iii Dedication ……………...………………………………………………………..….….. iv Table of Contents ………...…………………………………………………..…………. v List of Figures ……………………………………………………………………..…… ix List of Tables …………………………………………………………..…………..….. xii List of Abbreviations ………......……………………………………..………….…… xiv Acknowledgments ...…………………………………….……………………..…..… xvii Vita …………………………………………………………………………..……........ xx Abstract …………………………………………………………………………..….. xxiv Chapter I.Introduction ……………………..……………………………………..……… 1 Natural Products as Ancient Medicine ……….….…………………….…….……. 2 Marine Natural Products …………………….….………………….……….…….. 3 Cyanobacterial Natural Products …………………….….………………….……. 10 Current Perspective of the Taxonomic Distribution of
    [Show full text]