Extracellular Matrix Heparan Sulfate Macrophages Regulates

Total Page:16

File Type:pdf, Size:1020Kb

Extracellular Matrix Heparan Sulfate Macrophages Regulates Cell Surface Localization of Heparanase on Macrophages Regulates Degradation of Extracellular Matrix Heparan Sulfate This information is current as Norihiko Sasaki, Nobuaki Higashi, Tomohiro Taka, Motowo of September 23, 2021. Nakajima and Tatsuro Irimura J Immunol 2004; 172:3830-3835; ; doi: 10.4049/jimmunol.172.6.3830 http://www.jimmunol.org/content/172/6/3830 Downloaded from References This article cites 39 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/172/6/3830.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Cell Surface Localization of Heparanase on Macrophages Regulates Degradation of Extracellular Matrix Heparan Sulfate1 Norihiko Sasaki,2* Nobuaki Higashi,* Tomohiro Taka,* Motowo Nakajima,† and Tatsuro Irimura3* Extravasation of peripheral blood monocytes through vascular basement membranes requires degradation of extracellular matrix components including heparan sulfate proteoglycans (HSPGs). Heparanase, the heparan sulfate-specific endo-␤-glucuronidase, has previously been shown to be a key enzyme in melanoma invasion, yet its involvement in monocyte extravasation has not been elucidated. We examined a potential regulatory mechanism of heparanase in HSPG degradation and transmigration through basement membranes in leukocyte trafficking using human promonocytic leukemia U937 and THP-1 cells. PMA-treated cells were shown to degrade 35S-sulfated HSPG in endothelial extracellular matrix into fragments of an approximate molecular mass of 5 kDa. This was not found with untreated cells. The gene expression levels of heparanase or the enzyme activity of the amount of Downloaded from cell lysates were no different between untreated and treated cells. Immunocytochemical staining with anti-heparanase mAb revealed pericellular distribution of heparanase in PMA-treated cells but not in untreated cells. Cell surface heparanase capped into a restricted area on PMA-treated cells when they were allowed to adhere. Addition of a chemoattractant fMLP induced polarization of the PMA-treated cells and heparanase redistribution at the leading edge of migration. Therefore a major regu- latory process of heparanase activity in the cells seems to be surface expression and capping of the enzyme. Addition of the anti-heparanase Ab significantly inhibited enzymatic activity and transmigration of the PMA-treated cells, suggesting that the cell http://www.jimmunol.org/ surface redistribution of heparanase is involved in monocyte extravasation through basement membranes. The Journal of Im- munology, 2004, 172: 3830–3835. acrophages and related cells play essential roles in the HS. The HS moieties play essential roles in the interaction of immune system, such as inflammation, defense against HSPG with a wide range of molecules including ECM components M microbial infection, immunity to foreign substances, (collagen, laminin, fibronectin, and others), cytokines (basic fibro- wound healing, and angiogenesis. Monocytes circulate throughout blast growth factor, platelet-derived growth factor, hepatocyte the body, extravasate through the endothelial lining of the blood growth factor, and others), and enzymes (lipoprotein lipase and vessel wall, and enter the underlying tissue in response to local others) (1–3). Degradation of HS causes loss of mechanical integ- by guest on September 23, 2021 inflammation. During the process, monocytes should pass through rity of basement membrane and release of soluble mediators. the vascular basement membrane that supports the structure and The first indication that HS maintains the mechanical integrity survival of endothelial cells and also prevents the vessels from of basement membrane came from a work in which heparitinase mechanical destruction. The basement membrane mainly consists 4 digestion of glomerular basement membranes resulted in a loss of of type IV collagen, laminin, and heparan sulfate (HS) proteo- function (4). The ability of tumor cells to degrade basement mem- glycans (HSPGs). Degradation of these basement membrane com- brane was shown to be due to a HS-specific endo-␤-glucuronidase ponents results in disintegration of the structure and it is conceiv- (5, 6). cDNA cloning and expression of human heparanase have able that such processes are a regulatory step for the extravasation. recently been reported by four groups (7–10). The cDNA encodes HSPGs are ubiquitous in extracellular matrices (ECMs) including a unique protein of 543 amino acids that contains a potential signal basement membranes, and consist of diverse core polypeptides and peptide sequence and six putative N-linked glycosylation sites. It was predicted that the 543-aa polypeptide formed a proenzyme *Laboratory of Cancer Biology and Molecular Immunology, Graduate School of that was processed to be a mature 50 kDa active enzyme after Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan; and †Tsukuba Research removal of 157 N-terminal amino acids. The active enzyme has Institute, Novartis Pharma, Tsukuba, Japan been claimed to be a heterodimer that comprises the 50-kDa Received for publication August 26, 2003. Accepted for publication January 7, 2004. polypeptide and a short fragment of 8-kDa peptide derived from The costs of publication of this article were defrayed in part by the payment of page the N terminus of heparanase proenzyme (11). The active enzyme charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. shows at least 100-fold HS degradation activity in comparison to 1 This work was supported by Grants-in-Aid from the Ministry of Education, Science, the proenzyme (8), therefore this processing could be one of the Sports and Culture of Japan (11557180, 11672162, and 12307054), and from the critical regulatory steps of heparanase. Although it was assumed Program for Promotion of Basic Research Activities for Innovative Biosciences. that secreted or membrane-associated heparanase is responsible for 2 Current address: Division of Cell Biology, Institute of Life Science, Soka Univer- the degradation of ECM, the mechanisms involved in translocation sity, Tokyo 192-8577, Japan. of the enzyme have not been elucidated. 3 Address correspondence and reprint requests to Dr. Tatsuro Irimura, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Heparanase activity was reported in platelets, neutrophils, Tokyo 113-0033, Japan. E-mail address: [email protected] monocytes, macrophages, Langerhans cells, astrocytes, activated 4 Abbreviations used in this paper: HS, heparan sulfate; HSPG, HS proteoglycan; (but not resting) rat T lymphocytes, and umbilical vein endothelial ECM, extracellular matrix; FL-HS, fluoresceinamine-labeled HS; SVBCE, simian virus bovine corneal endothelial cell; EDC, 1-ethyl-3-(3-dimethylaminopropyl)car- cells or smooth-muscle cells (12–19). It is likely that heparanase is bodiimide hydrochloride; MMP, matrix metalloproteinase. required for extravasation of the cells in the immune system, and Copyright © 2004 by The American Association of Immunologists, Inc. 0022-1767/04/$02.00 The Journal of Immunology 3831 the activity should be under tight regulation to avoid tissue dam- X-100, 1 mM PMSF, 0.2 mM AEBSF, 10 ␮g/ml leupeptin, 10 ␮g/ml age. In the present study, we asked whether the heparanase is in- pepstatin A, 1 ␮g/ml aprotinin, pH 7.5) on ice for 30 min, followed by volved in macrophage extravasation by use of macrophage-like centrifugation at 15,000 rpm for 10 min. Protein concentrations of the supernatants were determined with bicinchoninic acid protein assay using cell lines. Regulation of heparanase activity during macrophage BSA as a standard (Pierce). For preparation of fluoresceinated HS as the differentiation and attachment to basement membranes was also heparanase substrate, HS (sodium salt, 1 mg), EDC (0.2 mg), and fluores- investigated. A major regulatory process seems to be its unique ceinamine (FL; Fluka, Tokyo, Japan) (5 ␮g) were dissolved in water, and spatial distribution. stirred for1hatroom temperature, followed by dialysis overnight with water. The solution was then concentrated with a Centricon 30 concentrator (Amicon, Bedford, MA). The ratio of attached fluorescein to unmodified Materials and Methods carboxyl group was determined using the carbazole-sulfuric acid method. Chemicals An enzymatic reaction was conducted in a 100 ␮l mixture containing 25 mM sodium acetate buffer (pH 5.5), 5 ␮g of FL-HS, 20 mM D-saccharic RPMI 1640 medium was purchased from Nissui Pharmaceuticals (Tokyo, acid 1,4-lactone (Sigma-Aldrich), and cell lysates at 37°C for 24 h. The
Recommended publications
  • Emerging Views of Heparan Sulfate Glycosaminoglycan Structure
    chain contains a b-D-glucosamine linked to an uronic acid, which can be one of two C5 epimers, either a-L-iduronic or b-D-glucuronic acid. Other than the C5 Emerging Views of Heparan Sulfate position of the uronic acid, HLGAGs Glycosaminoglycan Structure/Activity vary in their chain length, that is, the number of disaccharide repeat units, and Relationships Modulating Dynamic degree of sulfation and acetylation of each disaccharide unit. O-sulfation of the Biological Functions disaccharide repeat can occur at the 2-O Zachary Shriver, Dongfang Liu, and Ram Sasisekharan* position of the uronic acid and the 6-O and 3-O positions of the glucosamine. Thus, for a given disaccharide unit within an HSGAG structure, each site is Heparan sulfate glycosaminoglycans (HSGAGs) are an important subset either sulfated or unsubstituted, creat- of complex polysaccharides that represent the third major class of biopoly- ing eight possible combinations. In ad- mer, along with polynucleic acids and polypeptides. However, the impor- dition, as mentioned above, there are two possibilities for the uronic acid com- tance of HSGAGs in biological processes is underappreciated because of a ponent of each disaccharide unit, that lack of effective molecular tools to correlate specific structures with func- is, either iduronic acid or glucuronic tions. Only recently have significant strides been made in understanding acid, giving rise to a total of 16 different the steps of HSGAG biosynthesis that lead to the formation of unique possible disaccharide combinations. Fi- nally, the N-position of the glucosamine structures of functional importance. Such advances now create possibili- can be sulfated, acetylated, or unsubsti- ties for intervening in numerous clinical situations, creating much-needed tuted (three possible states).
    [Show full text]
  • Demystifying Heparan Sulfate–Protein Interactions
    UC San Diego UC San Diego Previously Published Works Title Demystifying heparan sulfate-protein interactions. Permalink https://escholarship.org/uc/item/0wj6876w Journal Annual review of biochemistry, 83(1) ISSN 0066-4154 Authors Xu, Ding Esko, Jeffrey D Publication Date 2014 DOI 10.1146/annurev-biochem-060713-035314 Peer reviewed eScholarship.org Powered by the California Digital Library University of California BI83CH06-Esko ARI 3 May 2014 10:35 Demystifying Heparan Sulfate–Protein Interactions Ding Xu and Jeffrey D. Esko Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093; email: [email protected], [email protected] Annu. Rev. Biochem. 2014. 83:129–57 Keywords First published online as a Review in Advance on heparin-binding protein, glycosaminoglycan, proteoglycan, March 6, 2014 glycan–protein interaction, heparan sulfate–binding domain, The Annual Review of Biochemistry is online at oligomerization biochem.annualreviews.org Annu. Rev. Biochem. 2014.83:129-157. Downloaded from www.annualreviews.org This article’s doi: Abstract 10.1146/annurev-biochem-060713-035314 Access provided by University of California - San Diego on 06/23/20. For personal use only. Numerous proteins, including cytokines and chemokines, enzymes and Copyright c 2014 by Annual Reviews. enzyme inhibitors, extracellular matrix proteins, and membrane recep- All rights reserved tors, bind heparin. Although they are traditionally classified as heparin- binding proteins, under normal physiological conditions these proteins actually interact with the heparan sulfate chains of one or more mem- brane or extracellular proteoglycans. Thus, they are more appropriately classified as heparan sulfate–binding proteins (HSBPs).
    [Show full text]
  • Glypican (Heparan Sulfate Proteoglycan) Is Palmitoylated, Deglycanated and Reglycanated During Recycling in Skin Fibroblasts
    Glycobiology vol. 7 no. 1 pp. 103-112, 1997 Glypican (heparan sulfate proteoglycan) is palmitoylated, deglycanated and reglycanated during recycling in skin fibroblasts Gudrun Edgren1, Birgitta Havsmark, Mats Jonsson and granules (for reviews, see Kjell6n and Lindahl, 1991; Bernfield Lars-Ake Fransson et al., 1992; David, 1993; Heinegard and Oldberg, 1993). Pro- teoglycans are classified according to the characteristic fea- Department of Cell and Molecular Biology, Faculty of Medicine, Lund University, Lund, Sweden tures or properties of the core protein and can appear in many 'To whom correspondence should be addressed at: Department of Cell and glycoforms giving rise to considerable structural variation and Downloaded from https://academic.oup.com/glycob/article/7/1/103/725516 by guest on 30 September 2021 Molecular Biology 1, POB 94, S-221 00, Lund, Sweden functional diversity. In general, the protein part determines the destination of the proteoglycan and interacts with other mol- Skin fibroblasts treated with brefeldin A produce a recy- ecules at the final location. The glycan part provides the overall cling variant of glypican (a glycosylphosphatidylinositol- bulk properties as well as binding sites for other gly- anchored heparan-sulfate proteoglycan) that is resistant to cosaminoglycans and many types of proteins, including matrix inositol-specific phospholipase C and incorporates sulfate proteins, plasma proteins, enzymes, anti-proteinases, growth and glucosamine into heparan sulfate chains (Fransson, factors, and cytokines. L.-A. et aL, Glycobiology, 5, 407-415, 1995). We have now Cultured human fibroblasts synthesize, deposit, and secrete investigated structural modifications of recycling glypican, 3 a variety of proteoglycans and have been used extensively to such as fatty acylation from [ H]palmitate, and degrada- investigate both their biosynthesis and functional properties tion and assembly of heparan sulfate side chains.
    [Show full text]
  • Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use
    Molecules 2015, 20, 6342-6388; doi:10.3390/molecules20046342 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use Paola Chiodelli, Antonella Bugatti, Chiara Urbinati and Marco Rusnati * Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy; E-Mails: [email protected] (P.C.); [email protected] (A.B.); [email protected] (C.U.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-030-371-7315; Fax: +39-030-371-7747. Academic Editor: Els Van Damme Received: 26 February 2015 / Accepted: 1 April 2015 / Published: 10 April 2015 Abstract: Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called “angiogenesis glycomic interactome”.
    [Show full text]
  • Binding of Heparin and of the Small Proteoglycan Decorin to the Same
    Binding of Heparin and of the Small Proteoglycan Decorin to the Same Endocytosis Receptor Proteins Leads to Different Metabolic Consequences Heinz Hausser and Hans Kresse Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, D-4400 Münster, Germany Abstract. Decorin, a small interstitial dermatan sul- there was competition for binding to the 51- and 26- fate proteoglycan, is turned over in cultured cells of kD proteins between heparin and decorin. In spite of mesenchymal origin by receptor-mediated endocytosis its high-affinity binding, heparin was poorly cleared followed by intralysosomal degradation. Two en- from the medium of cultured cells and then catabo- dosomal proteins of 51 and 26 kD have been impli- lized in lysosomes. In contrast to decorin, binding of cated in the endocytotic process because of their inter- heparin to the 51- and MAD proteins was insensitive action with decorin core protein. However, heparin to acidic pH, thus presumably preventing its dissocia- and protein-free dermatan sulfate were able to inhibit tion from the receptor in the endosome. Recycling of endocytosis of decorin in a concentration-dependent heparin to the cell surface after internalization could manner. After Western blotting of endosomal proteins, indeed be demonstrated. DCORIN (small dermatan sulfate proteoglycan II) is a tosis (27, 40) . Lysine and arginine residues have been shown member of the family of small interstitial proteo- to be important for the uptake properties (8), although the j/J) glycans (14, 28). It has been found in all tissues so structure of the receptor-binding domain of the core protein far investigated (43) . The mature molecule consists of a core is not yet known.
    [Show full text]
  • Cartilage Proteoglycans
    seminars in CELL & DEVELOPMENTAL BIOLOGY, Vol. 12, 2001: pp. 69–78 doi:10.1006/scdb.2000.0243, available online at http://www.idealibrary.com on Cartilage proteoglycans Cheryl B. Knudson∗ and Warren Knudson The predominant proteoglycan present in cartilage is the tural analysis. The predominate glycosaminoglycan large chondroitin sulfate proteoglycan ‘aggrecan’. Following present in cartilage has long been known to be its secretion, aggrecan self-assembles into a supramolecular chondroitin sulfate. 2 However, extraction of the structure with as many as 50 monomers bound to a filament chondroitin sulfate in a more native form, as a of hyaluronan. Aggrecan serves a direct, primary role pro- proteoglycan, proved to be a daunting task. The viding the osmotic resistance necessary for cartilage to resist revolution in the field came about through the compressive loads. Other proteoglycans expressed during work of Hascall and Sajdera. 3 With the use of the chondrogenesis and in cartilage include the cell surface strong chaotropic agent guanidinium hydrochlo- syndecans and glypican, the small leucine-rich proteoglycans ride, the proteoglycans of cartilage could now be decorin, biglycan, fibromodulin, lumican and epiphycan readily extracted and separated into relatively pure and the basement membrane proteoglycan, perlecan. The monomers through the use of CsCl density gradient emerging functions of these proteoglycans in cartilage will centrifugation. This provided the means to identify enhance our understanding of chondrogenesis and cartilage and characterize the major chondroitin sulfate pro- degeneration. teoglycan of cartilage, later to be termed ‘aggrecan’ following the cloning and sequencing of its core Key words: aggrecan / cartilage / CD44 / chondrocytes / protein. 4 From this start, aggrecan has gone on to hyaluronan serve as the paradigm for much of proteoglycan c 2001 Academic Press research.
    [Show full text]
  • Part II—Chapter 5: the Biological Activity of Chondroitin Sulfate
    98 Part II—Chapter 5: The Biological Activity of Chondroitin Sulfate Glycosaminoglycans ∗ General functions of glycosaminoglycans Proteoglycans are a diverse class of proteins that carry long chains of carbohydrate polymers termed glycosaminoglycans.1, 2 Glycosaminoglycans (GAGs) are chains of repeating disaccharide units that show tremendous structural diversity with complex patterns of deacetylation, sulfation, length, and epimerization.3, 4 The GAG chains are covalently bound to proteins via the hydroxyl group of specific serine residues found in the protein core.5, 6 Proteoglycans are found in the extracellular matrix of all tissues, including cartilage, basement membranes, and connective tissue, as well as on the surface of most cells. The diversity seen among the different proteoglycan families arises from the variety of protein cores available as well as from variations in the length and type of attached GAG chains. Proteoglycans found in the brain are expressed under strict control throughout nervous system development, and they act as regulators of axonal pathfinding, cell migration, and synaptogenesis.1, 7 -- 9 Proteoglycans act as scaffold structures constructed to interact with other proteins through noncovalent binding to their GAG chains. In the brain, a variety of proteoglycan families are involved in binding growth factors, cell adhesion molecules, enzymes, and enzyme inhibitors.1 Both the syndecan and glypican proteoglycan families bind to the neural cell adhesion molecule (NCAM), slit-1 and slit-2, which are involved in the development of midline glia and axon pathways, different members of the fibroblast ∗ Portions of this chapter were taken from C. I. Gama and L. C. Hsieh-Wilson (2005) Curr.
    [Show full text]
  • SPARC Preserves Endothelial Glycocalyx Integrity, and Protects
    University of Birmingham SPARC preserves endothelial glycocalyx integrity, and protects against adverse cardiac inflammation and injury during viral myocarditis Rienks, Marieke; Carai, Paolo; Teeffelen, Jurgen van; Eskens, Bart; Verhesen, Wouter; Hemmeryckx, Bianca; Johnson, Daniel M.; Leeuwen, Rick van; Jones, Elizabeth A.; Heymans, Stephane; Papageorgiou, Anna-Pia DOI: 10.1016/j.matbio.2018.04.015 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Rienks, M, Carai, P, Teeffelen, JV, Eskens, B, Verhesen, W, Hemmeryckx, B, Johnson, DM, Leeuwen, RV, Jones, EA, Heymans, S & Papageorgiou, A-P 2018, 'SPARC preserves endothelial glycocalyx integrity, and protects against adverse cardiac inflammation and injury during viral myocarditis', Matrix Biology, pp. 21-34. https://doi.org/10.1016/j.matbio.2018.04.015 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • Glycosaminoglycans and Proteoglycans
    pharmaceuticals Editorial Glycosaminoglycans and Proteoglycans Vitor H. Pomin 1 and Barbara Mulloy 2,* 1 Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil; [email protected] 2 Glycosciences Laboratory, Department of Medicine, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, UK * Correspondence: [email protected] Received: 19 February 2018; Accepted: 26 February 2018; Published: 27 February 2018 Abstract: In this editorial to MDPI Pharmaceuticals special issue “Glycosaminoglycans and Proteoglycans” we describe in outline the common structural features of glycosaminoglycans and the characteristics of proteoglycans, including the intracellular proteoglycan, serglycin, cell-surface proteoglycans, like syndecans and glypicans, and the extracellular matrix proteoglycans, like aggrecan, perlecan, and small leucine-rich proteoglycans. The context in which the pharmaceutical uses of glycosaminoglycans and proteoglycans are presented in this special issue is given at the very end. Keywords: chondroitin sulfate; decorin; dermatan sulfate; glycosaminoglycans; glypican; heparan sulfate; heparin; hyaluronan; keratan sulfate; perlecan; proteoglycans; serglycin; syndecan 1. Introduction This short article is intended to provide a brief introduction to the structures of glycosaminoglycans (GAGs) and proteoglycans (PGs) to set the articles in this special issue of Pharmaceuticals on “Proteoglycans and Glycosaminoglycans” into context. The class of glycosylated proteins known as PGs is represented in the pharmaceutical world chiefly by its carbohydrate constituents. These are polysaccharides known as GAGs, such as heparin (Hp) [1] and chondroitin sulfate (CS) [2]. When attached to their native protein cores these polysaccharides form the glycoconjugates known as PGs.
    [Show full text]
  • Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor
    International Journal of Molecular Sciences Article Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor Marissa L. Maciej-Hulme 1,*,† , Eamon Dubaissi 2, Chun Shao 3, Joseph Zaia 3 , Enrique Amaya 2 , Sabine L. Flitsch 4 and Catherine L. R. Merry 1,*,‡ 1 Materials Science Centre, School of Materials, The University of Manchester, Grosvenor St., Manchester M1 7HS, UK 2 Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; [email protected] (E.D.); [email protected] (E.A.) 3 Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA; [email protected] (C.S.); [email protected] (J.Z.) 4 School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; [email protected] * Correspondence: [email protected] (M.L.M.-H.); [email protected] (C.L.R.M.) † Current address: Department of Nephrology, Radboudumc, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands. ‡ Current address: Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Citation: Maciej-Hulme, M.L.; Nottingham NG7 2RD, UK. Dubaissi, E.; Shao, C.; Zaia, J.; Amaya, E.; Flitsch, S.L.; Merry, C.L.R. Abstract: The glycosaminoglycan, heparan sulphate (HS), orchestrates many developmental pro- Selective Inhibition of Heparan cesses. Yet its biological role has not yet fully been elucidated. Small molecule chemical inhibitors Sulphate and Not Chondroitin can be used to perturb HS function and these compounds provide cheap alternatives to genetic Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor.
    [Show full text]
  • Glycosaminoglycans in Tissue Engineering: a Review
    biomolecules Review Glycosaminoglycans in Tissue Engineering: A Review Harkanwalpreet Sodhi 1 and Alyssa Panitch 1,2,* 1 Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA; [email protected] 2 Department of Surgery, University of California Davis, Sacramento, CA 95817, USA * Correspondence: [email protected] Abstract: Glycosaminoglycans are native components of the extracellular matrix that drive cell behavior and control the microenvironment surrounding cells, making them promising therapeutic targets for a myriad of diseases. Recent studies have shown that recapitulation of cell interactions with the extracellular matrix are key in tissue engineering, where the aim is to mimic and regenerate endogenous tissues. Because of this, incorporation of glycosaminoglycans to drive stem cell fate and promote cell proliferation in engineered tissues has gained increasing attention. This review summarizes the role glycosaminoglycans can play in tissue engineering and the recent advances in their use in these constructs. We also evaluate the general trend of research in this niche and provide insight into its future directions. Keywords: glycosaminoglycans; tissue engineering; extracellular matrix; chondroitin sulfate; hyaluronic acid; dermatan sulfate; keratan sulfate; heparan sulfate 1. Introduction Glycosaminoglycans (GAGs) are long, unbranched polysaccharide chains made up primarily of repeating disaccharide units. These disaccharide subunits are composed Citation: Sodhi, H.; Panitch, A. of one hexuronic acid and one amino sugar linked by glycosidic bonds [1] and these Glycosaminoglycans in Tissue variations in disaccharide composition are used to distinguish the major classes of GAGs: Engineering: A Review. Biomolecules Hyaluronic Acid (HA), Chondroitin Sulfate (CS), Dermatan Sulfate (DS), Keratan Sulfate 2021, 11, 29. https://doi.org/10.33 (KS), and Heparan Sulfate (HS).
    [Show full text]
  • Heparan Sulfate Proteoglycans: Structure, Protein Interactions and Cell Signaling
    “main” — 2009/7/27 — 14:11 — page 409 — #1 Anais da Academia Brasileira de Ciências (2009) 81(3): 409-429 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Heparan sulfate proteoglycans: structure, protein interactions and cell signaling , JULIANA L. DREYFUSS1, CAIO V. REGATIERI1 2, THAIS R. JARROUGE1, RENAN P. CAVALHEIRO1, LUCIA O. SAMPAIO1 and HELENA B. NADER1 1Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo Rua Três de Maio, 100, 04044-020 São Paulo, SP, Brasil 2Departamento de Oftalmologia, Universidade Federal de São Paulo, Rua Botucatu, 822, 04023-062 São Paulo, SP, Brasil Manuscript received on August 26, 2008; accepted for publication on October 8, 2008; contributed by HELENA B. NADER* ABSTRACT Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton inter- actions leading to gene regulation.
    [Show full text]