Glycosaminoglycans and Proteoglycans

Total Page:16

File Type:pdf, Size:1020Kb

Glycosaminoglycans and Proteoglycans pharmaceuticals Editorial Glycosaminoglycans and Proteoglycans Vitor H. Pomin 1 and Barbara Mulloy 2,* 1 Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil; [email protected] 2 Glycosciences Laboratory, Department of Medicine, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, UK * Correspondence: [email protected] Received: 19 February 2018; Accepted: 26 February 2018; Published: 27 February 2018 Abstract: In this editorial to MDPI Pharmaceuticals special issue “Glycosaminoglycans and Proteoglycans” we describe in outline the common structural features of glycosaminoglycans and the characteristics of proteoglycans, including the intracellular proteoglycan, serglycin, cell-surface proteoglycans, like syndecans and glypicans, and the extracellular matrix proteoglycans, like aggrecan, perlecan, and small leucine-rich proteoglycans. The context in which the pharmaceutical uses of glycosaminoglycans and proteoglycans are presented in this special issue is given at the very end. Keywords: chondroitin sulfate; decorin; dermatan sulfate; glycosaminoglycans; glypican; heparan sulfate; heparin; hyaluronan; keratan sulfate; perlecan; proteoglycans; serglycin; syndecan 1. Introduction This short article is intended to provide a brief introduction to the structures of glycosaminoglycans (GAGs) and proteoglycans (PGs) to set the articles in this special issue of Pharmaceuticals on “Proteoglycans and Glycosaminoglycans” into context. The class of glycosylated proteins known as PGs is represented in the pharmaceutical world chiefly by its carbohydrate constituents. These are polysaccharides known as GAGs, such as heparin (Hp) [1] and chondroitin sulfate (CS) [2]. When attached to their native protein cores these polysaccharides form the glycoconjugates known as PGs. Whole PGs are less often proposed as therapeutic agents, though recently, particularly in the context of regenerative medicine, the concept of PG mimetics, ‘neoproteoglycans’, is becoming more familiar [3]. The development of PG- and GAG-based medicines is beginning to take into account the way the GAGs are organized and presented by attachment to their PG cores, as well as the sequences and covalent structures of the compounds themselves. In this special issue, contributed articles will cover the current pharmaceutical uses of GAGs and their mimetics, with others describing the involvement of GAGs in processes, such as cell growth and differentiation, morphogenesis, inflammation, and healing; all of which are likely to give rise to future therapeutic uses of GAGs and PGs. 2. Glycosaminoglycans 2.1. Structural Features GAGs are linear and heterogeneous sulfated glycans. Although they are structurally complex, the backbones of these polysaccharides are simply made up of repeating disaccharide building blocks composed of alternating uronic acid (UA) and hexosamine units. The UA units can be either β-D-glucuronic acid (GlcA) or its C5 epimerized version, α-L-iduronic acid (IdoA). The amino sugars can be either glucose (Glc)-based (α-D- or β-D-glucosamine, GlcN) or galactose (Gal)-based, as N-acetyl-β-D-galactosamine (GalNAc). The permutation of these monosaccharide units within the Pharmaceuticals 2018, 11, 27; doi:10.3390/ph11010027 www.mdpi.com/journal/pharmaceuticals Pharmaceuticals 2018, 11, x FOR PEER REVIEW 2 of 9 Pharmaceuticals 2018, 11, 27 2 of 9 can be either glucose (Glc)-based (α-D- or β-D-glucosamine, GlcN) or galactose (Gal)-based, as N-acetyl-β-D-galactosamine (GalNAc). The permutation of these monosaccharide units within the GAGGAG backbonesbackbones givesgives riserise toto differentdifferent GAGGAG families,families, suchsuch asas thethe GlcN-containingGlcN-containing heparanheparan sulfatesulfate (HS)(HS) andand Hp Hp [4 [4,5],,5], and and the the GalNAc-containing GalNAc-containing CS CS and and dermatan dermatan sulfate sulfate (DS) (DS) [6]. Keratan[6]. Keratan sulfate sulfate (KS) alternates(KS) alternatesN-acetyl-glucosamine N-acetyl-glucosamine (GlcNAc) (GlcNAc) with with Gal, Gal, and and does does not containnot contain UA UA [7,8 ];[7,8]; hyaluronan hyaluronan or hyaluronicor hyaluronic acid acid (HA) (HA) alternates alternates GlcNAc GlcNAc with with GlcA, GlcA, and and does does not not have have a protein a protein core core [9]. [9]. TheThe disaccharidesdisaccharides ofof HSHS andand HpHp areare bothboth composedcomposed ofof alternatingalternating 4-linked4-linked UAUA andand 4-linked4-linked αα-GlcN-GlcN unitsunits [[4,5].4,5]. Structurally, Structurally, HS HS and and Hp Hp diff differer only in thethe relativerelative proportionsproportions ofof theirtheir monosaccharidemonosaccharide andand disaccharidedisaccharide substructures.substructures. HS hashas bβ--D-GlcA as itsits majormajor UAUA typetype whilewhile HpHp hashas αα--LL-IdoA.-IdoA. GlcAGlcA inin HSHS usuallyusually alternatesalternates withwith GlcNAcGlcNAc units,units, butbut lowerlower amountsamounts ofofN N-sulfated-sulfated glucosamineglucosamine (GlcNS)(GlcNS) andand rarerare amountsamounts ofof unsubstitutedunsubstituted GlcNGlcN cancan alsoalso occur.occur. HpHp isis converselyconversely predominantlypredominantly composedcomposed ofof 2-sulfated2-sulfated IdoAIdoA unitsunits (IdoA2S)(IdoA2S) togethertogether withwith NN,6-di-sulfated,6-di-sulfated GlcNGlcN unitsunits (GlcNS6S).(GlcNS6S). TheseThese disaccharidesdisaccharides areare reflectedreflected inin thethe three-dimensionalthree-dimensional structuresstructures ofof HS/Hp HS/Hp tetrasaccharidestetrasaccharides shownshown inin FigureFigure1 1A,B.A,B. They They are are experimental experimental structures structures from from the the Protein Protein Databank Databank (PDB),(PDB), andand clearlyclearly adoptadopt fairlyfairly linearlinear shapes,shapes, thoughthough inin solutionsolution theythey maymay twisttwist andand foldfold toto varyingvarying extentsextents dependingdepending onon thethe exactexact monosaccharidemonosaccharide sequencesequence [10[10].]. FigureFigure 1. Three-dimensionalThree-dimensional tetrasaccharide tetrasaccharide represen representations,tations, taken takenfrom files from in filesthe PDB in the as PDBindicated, as indicated, of: (A) Heparin of: ([IdoA2S(A) Heparinα1→4)GlcNS6S( [IdoA2S(αα11!→4)GlcNS6S(4)IdoA2S(αα11→!4)GlcNS6S]4)IdoA2S(α from1!4)GlcNS6S] 1HPN; (B) fromheparan 1HPN; sulfate (B) heparan[GlcA(β1→ sulfate4)GlcNAc( [GlcA(α1β→14)GlcA(!4)GlcNAc(β1→4)GlcNAc]α1!4)GlcA( fromβ1! 4)GlcNAc]3E7J; (C) chondroitin from 3E7J; (4-sulfateC) chondroitin [GlcA(β1 4-sulfate→3)GalNAc4S( [GlcA(ββ1→1!4)GlcA(3)GalNAc4S(β1→3)GalNAc4S]β1!4)GlcA( fromβ1! 1OFM;3)GalNAc4S] (D) dermatan from 1OFM;sulfate ([IdoA(D) dermatanα1→3)GalNAc4S( sulfate [IdoA(β1→α14)IdoA(!3)GalNAc4S(α1→3)GalNAc4S]β1!4)IdoA( αfrom1!3)GalNAc4S] 1OFL; ( fromE) 1OFL;keratan (E ) keratansulfate sulfate[Gal6S( [Gal6S(β1→4)GlcNAc6S(β1!4)GlcNAc6S(β1→3)Gal6S(β1!3)Gal6S(β1→4)GlcNAc6S]β1!4)GlcNAc6S] from from1KES; 1KES; and and (F (F) ) hyaluronanhyaluronan [GlcA([GlcA(ββ11!→3)GlcNAc(β1→!4)GlcA(4)GlcA(ββ11→!3)GlcNAc]3)GlcNAc] from from 2BVK. 2BVK. The atoms inin thethe ball-stickball-stick representationsrepresentations areare carboncarbon (grey),(grey), nitrogennitrogen (blue),(blue), hydrogenhydrogen (light(light grey);grey); oxygenoxygen (red)(red) andand sulfursulfur (yellow).(yellow). AA andand FF areare NMRNMR solutionsolution structures,structures, andand non-exchangeablenon-exchangeable protonsprotons areare shown;shown; thethe othersothers areare crystalcrystal structuresstructures so so are are shown shown without without protons. protons. Rarely,Rarely, 3- 3-OO-sulfation-sulfation at at the the GlcNS6S GlcNS6S units units can can also also occur occur (GlcNS3S6S) (GlcNS3S6S) inin bothboth HSHS andand HpHp butbut isis moremore commoncommon inin thethe HpHp chains;chains; aa pentasaccharidepentasaccharide containingcontaining thisthis unusualunusual monosaccharidemonosaccharide residueresidue confersconfers highhigh affinityaffinity forfor antithrombinantithrombin and, and, thereby, thereby, high high anticoagulant anticoagulant activity, activity, on on Hp Hp [1 [1].]. SinceSince thethe lengthlength ofof GAGGAG chainschains cancan varyvary widely,widely, bothboth amongamong differentdifferent GAGGAG typestypes andand amongamong chainschains ofof thethe samesame GAGGAG type,type, thethe rangerange ofof MWsMWs inin GAGsGAGs isis veryvery broad,broad, rangingranging fromfrom aa fewfew kDakDa toto overover aa hundred hundred kDa. kDa. It isIt alsois also true true that manufacturingthat manufacturing processes processes can alter can the alter molecular the molecular weight (MW) weight of GAGs;(MW) forof GAGs; example, for unfractionated example, unfractionated heparin (UFH) heparin and low-molecular (UFH) and low-molecular weight heparin weight (LMWH) heparin have chains(LMWH) whose have average chains whose MWs areaverage respectively MWs are ~15 respectively kDa (~25 ~15 disaccharide kDa (~25 disaccharide units) and less units) than and 8 kDa less (~12than disaccharide 8 kDa (~12 units disaccharide or fewer). Theunits measurement or fewer). The of MWs measurement for LMWH of is notMWs straightforward, for LMWH asis Hpnot consistsstraightforward, of a mixture as Hp of sequenceconsists of types a mixture as described of sequence above, types each as occurring described in domainsabove, each with occurring particular in Pharmaceuticals 2018, 11, 27 3
Recommended publications
  • Mechanistic Target of Rapamycin Regulates the Oligodendrocyte Cytoskeleton During Myelination
    Research ReportDevelopment/Plasticity/Repair Mechanistic Target of Rapamycin Regulates the Oligodendrocyte Cytoskeleton during Myelination https://doi.org/10.1523/JNEUROSCI.1434-18.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.1434-18.2020 Received: 31 May 2018 Revised: 23 February 2020 Accepted: 26 February 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 Musah et al. 1 Mechanistic Target of Rapamycin Regulates the Oligodendrocyte Cytoskeleton during 2 Myelination 3 1Aminat S. Musah, 2Tanya L. Brown, 1Marisa A. Jeffries, 1Quan Shang, 2Hirokazu Hashimoto, 4 1Angelina V. Evangelou, 3Alison Kowalski, 3Mona Batish, 2Wendy B. Macklin and 1Teresa L. 5 Wood 6 1Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, 7 Rutgers University, Newark, NJ U.S.A. 07101, 2Department of Cell and Developmental Biology, 8 University of Colorado School of Medicine, Aurora, CO, U.S.A. 80045, 3Department of Medical 9 and Molecular Sciences, University of Delaware, Newark, DE 19716 10 11 Abbreviated Title: mTOR Regulates the Oligodendrocyte Cytoskeleton 12 Corresponding Author: Teresa L. Wood, PhD, Department Pharmacology, Physiology & 13 Neuroscience, New Jersey Medical School Cancer Center H1200, Rutgers University, 205 S. 14 Orange Ave, Newark, NJ 07101-1709 15 [email protected] 16 Number of pages: 39 17 Number of Figures: 10 18 Number of Tables: 0 19 Number of Words: 20 Abstract: 242 21 Introduction: 687 22 Discussion: 1075 23 Conflict of Interest: The authors declare no competing financial interests.
    [Show full text]
  • Emerging Views of Heparan Sulfate Glycosaminoglycan Structure
    chain contains a b-D-glucosamine linked to an uronic acid, which can be one of two C5 epimers, either a-L-iduronic or b-D-glucuronic acid. Other than the C5 Emerging Views of Heparan Sulfate position of the uronic acid, HLGAGs Glycosaminoglycan Structure/Activity vary in their chain length, that is, the number of disaccharide repeat units, and Relationships Modulating Dynamic degree of sulfation and acetylation of each disaccharide unit. O-sulfation of the Biological Functions disaccharide repeat can occur at the 2-O Zachary Shriver, Dongfang Liu, and Ram Sasisekharan* position of the uronic acid and the 6-O and 3-O positions of the glucosamine. Thus, for a given disaccharide unit within an HSGAG structure, each site is Heparan sulfate glycosaminoglycans (HSGAGs) are an important subset either sulfated or unsubstituted, creat- of complex polysaccharides that represent the third major class of biopoly- ing eight possible combinations. In ad- mer, along with polynucleic acids and polypeptides. However, the impor- dition, as mentioned above, there are two possibilities for the uronic acid com- tance of HSGAGs in biological processes is underappreciated because of a ponent of each disaccharide unit, that lack of effective molecular tools to correlate specific structures with func- is, either iduronic acid or glucuronic tions. Only recently have significant strides been made in understanding acid, giving rise to a total of 16 different the steps of HSGAG biosynthesis that lead to the formation of unique possible disaccharide combinations. Fi- nally, the N-position of the glucosamine structures of functional importance. Such advances now create possibili- can be sulfated, acetylated, or unsubsti- ties for intervening in numerous clinical situations, creating much-needed tuted (three possible states).
    [Show full text]
  • Sialylated Keratan Sulfate Chains Are Ligands for Siglec-8 in Human Airways
    Sialylated Keratan Sulfate Chains are Ligands for Siglec-8 in Human Airways by Ryan Porell A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland September 2018 © 2018 Ryan Porell All Rights Reserved ABSTRACT Airway inflammatory diseases are characterized by infiltration of immune cells, which are tightly regulated to limit inflammatory damage. Most members of the Siglec family of sialoglycan binding proteins are expressed on the surfaces of immune cells and are immune inhibitory when they bind their sialoglycan ligands. When Siglec-8 on activated eosinophils and mast cells binds to its sialoglycan ligands, apoptosis or inhibition of mediator release is induced. We identified human airway Siglec-8 ligands as sialylated and 6’-sulfated keratan sulfate (KS) chains carried on large proteoglycans. Siglec-8- binding proteoglycans from human airways increase eosinophil apoptosis in vitro. Given the structural complexity of intact proteoglycans, target KS chains were isolated from airway tissue and lavage. Biological samples were extensively proteolyzed, the remaining sulfated glycan chains captured and resolved by anion exchange chromatography, methanol-precipitated then chondroitin and heparan sulfates enzymatically hydrolyzed. The resulting preparation consisted of KS chains attached to a single amino acid or a short peptide. Purified KS chains were hydrolyzed with either hydrochloric acid or trifluoroacetic acid to release acidic and neutral sugars, respectively, followed by DIONEX carbohydrate analysis. To isolate Siglec-8-binding KS chains, purified KS chains from biological samples were biotinylated at the amino acid, resolved by affinity and/or size- exclusion chromatography, the resulting fractions immobilized on streptavidin microwell plates, and probed for binding of Siglec-8-Fc.
    [Show full text]
  • TACI:Fc Scavenging B Cell Activating Factor (BAFF) Alleviates Ovalbumin-Induced Bronchial Asthma in Mice
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 39, No. 3, 343-352, June 2007 TACI:Fc scavenging B cell activating factor (BAFF) alleviates ovalbumin-induced bronchial asthma in mice 1,2,3 2 Eun-Yi Moon and Sook-Kyung Ryu the percentage of non-lymphoid cells and no changes were detected in lymphoid cell population. 1 Department of Bioscience and Biotechnology Hypodiploid cell formation in BALF was decreased Sejong University by OVA-challenge but it was recovered by TACI:Fc Seoul 143-747, Korea treatment. Collectively, data suggest that asthmatic 2 Laboratory of Human Genomics symptom could be alleviated by scavenging BAFF Korea Research Institute of Bioscience and Biotechnology (KRIBB) and then BAFF could be a novel target for the Daejeon 305-806, Korea develpoment of anti-asthmatic agents. 3 Corresponding author: Tel, 82-2-3408-3768; Fax, 82-2-466-8768; E-mail, [email protected] Keywords: asthma; B-cell activating factor; ovalbu- and [email protected] min; transmembrane activator and CAML interactor protein Accepted 28 March 2007 Introduction Abbreviations: BAFF, B cell activating factor belonging to TNF- family; BALF, bronchoalveolar lavage fluid; OVA, ovalbumin; PAS, Mature B cell generation and maintenance are regu- periodic acid-Schiff; Prx, peroxiredoxin; TACI, transmembrane lated by B-cell activating factor (BAFF). BAFF is pro- activator and calcium modulator and cyclophilin ligand interactor duced by macrophages or dendritic cells upon stim- ulation with LPS or IFN- . BAFF belongs to the TNF family. Its biological role is mediated by the specific Abstract receptors, B-cell maturation antigen (BCMA), trans- membrane activator and calcium modulator and cy- Asthma was induced by the sensitization and chal- clophilin ligand interactor (TACI) and BAFF receptor, lenge with ovalbumin (OVA) in mice.
    [Show full text]
  • Aggrecan (A1960)
    Aggrecan from bovine articular cartilage Catalog Number A1960 Storage Temperature –20 °C Product Description References Aggrecan is the major structural proteoglycan found in 1. Hardingham, T.E., and Muir, H., Biochim. Biophys. the extracellular matrix of cartilage. It has a molecular Acta, 279, 401-405 (1972). mass >2,500 kDa. The core protein (210–250 kDa) has 2. Hedlund, H., et al., Association of the aggrecan 100–150 glycosaminoglycan (GAG) chains attached to keratan sulfate-rich region with collagen in bovine it. The majority of the GAG chains are chondroitin/ articular cartilage. J. Biol. Chem., 274, 5777-5781 dermatan sulfate with the remainder being keratan (1999). sulfate. This structural molecule produces a rigid, 3. Cao, L., and Yang, B.B., Chondrocyte apoptosis reversibly deformable gel that resists compression. It induced by aggrecan G1 domain as a result of combines with hyaluronic acid to form very large decreased cell adhesion. Exp. Cell Res., 246, 527- macromolecular complexes. Addition of small amounts 537 (1999). (0.1–2% w/w) of hyaluronic acid to a solution of 4. Bolton, M.C., et al., Age-related changes in the aggrecan (2 mg/ml) results in the formation of a synthesis of link protein and aggrecan in human complex with an increased hydrodynamic volume and articular cartilage: implications for aggregate in a significant increase (30–40%) in the relative stability. Biochem. J., 337, 77-82 (1999). viscosity of the solution. 5. Arner, E.C., et al., Generation and Characterization of Aggrecanase. A soluble, cartilage-derived Aggrecan is a critical component for cartilage structure aggrecan-degrading activity.
    [Show full text]
  • Demystifying Heparan Sulfate–Protein Interactions
    UC San Diego UC San Diego Previously Published Works Title Demystifying heparan sulfate-protein interactions. Permalink https://escholarship.org/uc/item/0wj6876w Journal Annual review of biochemistry, 83(1) ISSN 0066-4154 Authors Xu, Ding Esko, Jeffrey D Publication Date 2014 DOI 10.1146/annurev-biochem-060713-035314 Peer reviewed eScholarship.org Powered by the California Digital Library University of California BI83CH06-Esko ARI 3 May 2014 10:35 Demystifying Heparan Sulfate–Protein Interactions Ding Xu and Jeffrey D. Esko Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093; email: [email protected], [email protected] Annu. Rev. Biochem. 2014. 83:129–57 Keywords First published online as a Review in Advance on heparin-binding protein, glycosaminoglycan, proteoglycan, March 6, 2014 glycan–protein interaction, heparan sulfate–binding domain, The Annual Review of Biochemistry is online at oligomerization biochem.annualreviews.org Annu. Rev. Biochem. 2014.83:129-157. Downloaded from www.annualreviews.org This article’s doi: Abstract 10.1146/annurev-biochem-060713-035314 Access provided by University of California - San Diego on 06/23/20. For personal use only. Numerous proteins, including cytokines and chemokines, enzymes and Copyright c 2014 by Annual Reviews. enzyme inhibitors, extracellular matrix proteins, and membrane recep- All rights reserved tors, bind heparin. Although they are traditionally classified as heparin- binding proteins, under normal physiological conditions these proteins actually interact with the heparan sulfate chains of one or more mem- brane or extracellular proteoglycans. Thus, they are more appropriately classified as heparan sulfate–binding proteins (HSBPs).
    [Show full text]
  • Glypican (Heparan Sulfate Proteoglycan) Is Palmitoylated, Deglycanated and Reglycanated During Recycling in Skin Fibroblasts
    Glycobiology vol. 7 no. 1 pp. 103-112, 1997 Glypican (heparan sulfate proteoglycan) is palmitoylated, deglycanated and reglycanated during recycling in skin fibroblasts Gudrun Edgren1, Birgitta Havsmark, Mats Jonsson and granules (for reviews, see Kjell6n and Lindahl, 1991; Bernfield Lars-Ake Fransson et al., 1992; David, 1993; Heinegard and Oldberg, 1993). Pro- teoglycans are classified according to the characteristic fea- Department of Cell and Molecular Biology, Faculty of Medicine, Lund University, Lund, Sweden tures or properties of the core protein and can appear in many 'To whom correspondence should be addressed at: Department of Cell and glycoforms giving rise to considerable structural variation and Downloaded from https://academic.oup.com/glycob/article/7/1/103/725516 by guest on 30 September 2021 Molecular Biology 1, POB 94, S-221 00, Lund, Sweden functional diversity. In general, the protein part determines the destination of the proteoglycan and interacts with other mol- Skin fibroblasts treated with brefeldin A produce a recy- ecules at the final location. The glycan part provides the overall cling variant of glypican (a glycosylphosphatidylinositol- bulk properties as well as binding sites for other gly- anchored heparan-sulfate proteoglycan) that is resistant to cosaminoglycans and many types of proteins, including matrix inositol-specific phospholipase C and incorporates sulfate proteins, plasma proteins, enzymes, anti-proteinases, growth and glucosamine into heparan sulfate chains (Fransson, factors, and cytokines. L.-A. et aL, Glycobiology, 5, 407-415, 1995). We have now Cultured human fibroblasts synthesize, deposit, and secrete investigated structural modifications of recycling glypican, 3 a variety of proteoglycans and have been used extensively to such as fatty acylation from [ H]palmitate, and degrada- investigate both their biosynthesis and functional properties tion and assembly of heparan sulfate side chains.
    [Show full text]
  • Immunity to the G1 Globular Domain of the Cartilage Proteoglycan
    Immunity to the G1 globular domain of the cartilage proteoglycan aggrecan can induce inflammatory erosive polyarthritis and spondylitis in BALB/c mice but immunity to G1 is inhibited by covalently bound keratan sulfate in vitro and in vivo. J Y Leroux, … , S Banerjee, A R Poole J Clin Invest. 1996;97(3):621-632. https://doi.org/10.1172/JCI118458. Research Article Earlier work from this laboratory showed that the human proteoglycan aggrecan from fetal cartilages can induce a CD4+ T cell-dependent inflammatory polyarthritis in BALB/c mice when injected after removal of chondroitin sulfate chains. Adult keratan sulfate (KS)-rich aggrecan does not possess this property. We found that two CD4+ T cell hybridomas (TH5 and TH14) isolated from arthritic mice recognize bovine calf aggrecan and the purified G1 domain of this molecule, which also contains a portion of the interglobular domain to which KS is bound. These hybridoma responses to G1 are enhanced by partial removal of KS by the endoglycosidase keratanase or by cyanogen bromide cleavage of core protein. KS removal results in increased cellular uptake by antigen-present cells in vitro. After removal of KS by keratanase, G1 alone can induce a severe erosive polyarthritis and spondylitis in BALB/c mice identifying it as an arthritogenic domain of aggrecan. The presence of KS prevents induction of arthritis presumably as a result of an impaired immune response as observed in vitro. These observations not only identify the arthritogenic properties of G1 but they also point to the importance of glycosylation and proteolysis in determining the arthritogenicity of aggrecan and fragments thereof.
    [Show full text]
  • Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use
    Molecules 2015, 20, 6342-6388; doi:10.3390/molecules20046342 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use Paola Chiodelli, Antonella Bugatti, Chiara Urbinati and Marco Rusnati * Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy; E-Mails: [email protected] (P.C.); [email protected] (A.B.); [email protected] (C.U.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-030-371-7315; Fax: +39-030-371-7747. Academic Editor: Els Van Damme Received: 26 February 2015 / Accepted: 1 April 2015 / Published: 10 April 2015 Abstract: Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called “angiogenesis glycomic interactome”.
    [Show full text]
  • The Brain Chondroitin Sulfate Proteoglycan Brevican Associates with Astrocytes Ensheathing Cerebellar Glomeruli and Inhibits Neurite Outgrowth from Granule Neurons
    The Journal of Neuroscience, October 15, 1997, 17(20):7784–7795 The Brain Chondroitin Sulfate Proteoglycan Brevican Associates with Astrocytes Ensheathing Cerebellar Glomeruli and Inhibits Neurite Outgrowth from Granule Neurons Hidekazu Yamada, Barbara Fredette, Kenya Shitara, Kazuki Hagihara, Ryu Miura, Barbara Ranscht, William B. Stallcup, and Yu Yamaguchi The Burnham Institute, La Jolla, California 92037 Brevican is a nervous system-specific chondroitin sulfate surface of these cells. Binding assays with exogenously proteoglycan that belongs to the aggrecan family and is one added brevican revealed that primary astrocytes and several of the most abundant chondroitin sulfate proteoglycans in immortalized neural cell lines have cell surface binding sites adult brain. To gain insights into the role of brevican in brain for brevican core protein. These cell surface brevican binding development, we investigated its spatiotemporal expression, sites recognize the C-terminal portion of the core protein and cell surface binding, and effects on neurite outgrowth, using are independent of cell surface hyaluronan. These results rat cerebellar cortex as a model system. Immunoreactivity of indicate that brevican is synthesized by astrocytes and re- brevican occurs predominantly in the protoplasmic islet in tained on their surface by an interaction involving its core the internal granular layer after the third postnatal week. protein. Purified brevican inhibits neurite outgrowth from Immunoelectron microscopy revealed that brevican is local- cerebellar granule neurons in vitro, an activity that requires ized in close association with the surface of astrocytes that chondroitin sulfate chains. We suggest that brevican pre- form neuroglial sheaths of cerebellar glomeruli where incom- sented on the surface of neuroglial sheaths may be control- ing mossy fibers interact with dendrites and axons from ling the infiltration of axons and dendrites into maturing resident neurons.
    [Show full text]
  • T Cell Reactivity + Autoantibodies and CD4 Therapy Is Mediated By
    Suppression of Proteoglycan-Induced Arthritis by Anti-CD20 B Cell Depletion Therapy Is Mediated by Reduction in Autoantibodies and CD4 + T Cell Reactivity This information is current as of September 27, 2021. Keith Hamel, Paul Doodes, Yanxia Cao, Yumei Wang, Jeffrey Martinson, Robert Dunn, Marilyn R. Kehry, Balint Farkas and Alison Finnegan J Immunol 2008; 180:4994-5003; ; doi: 10.4049/jimmunol.180.7.4994 Downloaded from http://www.jimmunol.org/content/180/7/4994 References This article cites 48 articles, 20 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/180/7/4994.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Suppression of Proteoglycan-Induced Arthritis by Anti-CD20 B Cell Depletion Therapy Is Mediated by Reduction in Autoantibodies and CD4؉ T Cell Reactivity1 Keith Hamel,* Paul Doodes,* Yanxia Cao,† Yumei Wang,† Jeffrey Martinson,* Robert Dunn,§ Marilyn R.
    [Show full text]
  • Syndecan - Regulation and Function of Its Glycosaminoglycan Chains
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 884 Syndecan - Regulation and Function of its Glycosaminoglycan Chains ANNA S. ERIKSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-8637-2 UPPSALA urn:nbn:se:uu:diva-197691 2013 Dissertation presented at Uppsala University to be publicly examined in A1:107a, BMC, Husargatan 3, Uppsala, Friday, May 17, 2013 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Abstract Eriksson, A. S. 2013. Syndecan - Regulation and Function of its Glycosaminoglycan Chains. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 884. 54 pp. Uppsala. ISBN 978-91-554-8637-2. The cell surface is an active area where extracellular molecules meet their receptors and affect the cellular fate by inducing for example cell proliferation and adhesion. Syndecans and integrins are two transmembrane molecules that have been suggested to fine-tune these activities, possibly in cooperation. Syndecans are proteoglycans, i.e. proteins with specific types of carbohydrate chains attached. These chains are glycosaminoglycans and either heparan sulfate (HS) or chondroitin sulfate (CS). Syndecans are known to influence cell adhesion and signaling. Integrins in turn, are important adhesion molecules that connect the extracellular matrix with the cytoskeleton, and hence can regulate cell motility. In an attempt to study how the two types of glycosaminoglycans attached to syndecan-1 can interact with integrins, a cell based model system was used and functional motility assays were performed. The results showed that HS, but not CS, on the cell surface was capable of regulating integrin-mediated cell motility.
    [Show full text]