Lesson 13: the Inscribed Angle Alternate—A Tangent Angle

Total Page:16

File Type:pdf, Size:1020Kb

Lesson 13: the Inscribed Angle Alternate—A Tangent Angle NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 13 M5 GEOMETRY Lesson 13: The Inscribed Angle Alternate—A Tangent Angle Student Outcomes . Students use the inscribed angle theorem to prove other theorems in its family (different angle and arc configurations and an arc intercepted by an angle at least one of whose rays is tangent). Students solve a variety of missing angle problems using the inscribed angle theorem. Lesson Notes The Opening Exercise reviews and solidifies the concept of inscribed angles and their intercepted arcs. Students then extend that knowledge in the remaining examples to the limiting case of inscribed angles, one ray of the angle is tangent. The Exploratory Challenge looks at a tangent and secant intersecting on the circle. The Example uses rotations to show the connection between the angle formed by the tangent and a chord intersecting on the circle and the inscribed angle of the second arc. Students then use all of the angle theorems studied in this topic to solve missing angle problems. Classwork Scaffolding: Opening Exercise (5 minutes) . Post diagrams showing key This exercise solidifies the relationship between inscribed angles and their intercepted theorems for students to arcs. Have students complete this exercise individually and then share with a neighbor. refer to. Pull the class together to answer questions and discuss part (g). Use scaffolded questions with a targeted small Opening Exercise group such as, “What do we know about the In circle 푨, 풎푩푫̂ = ퟓퟔ°, and 푩푪̅̅̅̅ is a diameter. Find the listed measure, and explain your answer. measure of the a. 풎∠푩푫푪 intercepted arc of an ퟗퟎ°, angles inscribed in a diameter inscribed angle?” b. 풎∠푩푪푫 ퟐퟖ°, inscribed angle is half measure of intercepted arc c. 풎∠푫푩푪 ퟔퟐ°, sum of angles of a triangle is ퟏퟖퟎ° d. 풎∠푩푭푮 ퟐퟖ°, inscribed angle is half measure of intercepted arc Lesson 13: The Inscribed Angle Alternate—A Tangent Angle 170 This work is licensed under a This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from GEO-M5-TE-1.3.0-10.2015 Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 13 M5 GEOMETRY e. 풎푩푪̂ ퟏퟖퟎ°, semicircle f. 풎푫푪̂ ퟏퟐퟒ°, intercepted arc is double inscribed angle g. Does ∠푩푮푫 measure ퟓퟔ°? Explain. No, the central angle of 푩푫̂ would be ퟓퟔ°. ∠푩푮푫 is not a central angle because its vertex is not the center of the circle. h. How do you think we could determine the measure of ∠푩푮푫? Answers will vary. This leads to today’s lesson. Exploratory Challenge (15 minutes) In the Lesson 12 Problem Set, students were asked to find a relationship between the measure of an arc and an angle. The point of the Exploratory Challenge is to establish the following conjecture for the class community and prove the conjecture. CONJECTURE: Let 퐴 be a point on a circle, let ⃗퐴퐵⃗⃗⃗⃗ be a tangent ray to the circle, and let 퐶 be a point on the circle such that 1 퐴퐶⃡⃗⃗⃗⃗ is a secant to the circle. If 푎 = 푚∠퐵퐴퐶 and 푏 is the angle measure of the arc intercepted by ∠퐵퐴퐶, then 푎 = 푏. 2 The Opening Exercise establishes empirical evidence toward the conjecture and helps students determine whether their reasoning on the homework may have had flaws; it can be used to see how well students understand the diagram and to review how to measure arcs. Students need a protractor and a ruler. Exploratory Challenge Diagram 1 Diagram 2 Lesson 13: The Inscribed Angle Alternate—A Tangent Angle 171 This work is licensed under a This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from GEO-M5-TE-1.3.0-10.2015 Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 13 M5 GEOMETRY Examine the diagrams shown. Develop a conjecture about the relationship between 풂 and 풃. ퟏ 풂 = 풃 ퟐ Test your conjecture by using a protractor to measure 풂 and 풃. 풂 풃 Diagram 1 ퟔퟐ ퟏퟐퟒ Diagram 2 ퟑퟔ ퟕퟐ Do your measurements confirm the relationship you found in your homework? If needed, revise your conjecture about the relationship between 풂 and 풃: Now, test your conjecture further using the circle below. 풂 풃 . What did you find about the relationship between 푎 and 푏? 1 푎 = 푏. An angle inscribed between a tangent line and secant line is equal to half of the angle 2 measure of its intercepted arc. How did you test your conjecture about this relationship? Look for evidence that students recognized that the angle should be formed by a secant intersecting a tangent at the point of tangency and that they knew to measure the arc by taking its central angle. What conjecture did you come up with? Share with a neighbor. Let students discuss, and then state a version of the conjecture publicly. Lesson 13: The Inscribed Angle Alternate—A Tangent Angle 172 This work is licensed under a This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from GEO-M5-TE-1.3.0-10.2015 Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 13 M5 GEOMETRY Now, we will prove your conjecture, which is stated below as a theorem. THE TANGENT-SECANT THEOREM: Let 푨 be a point on a circle, let 푨푩⃗⃗⃗⃗⃗⃗ be a tangent ray to the circle, and let 푪 be a point on the circle such that 푨푪⃡⃗⃗⃗⃗ is a secant to the circle. If 풂 = 풎∠푩푨푪 and 풃 is the angle measure of the arc intercepted by ∠푩푨푪, ퟏ 풂 = 풃 then ퟐ . Given circle 푶 with tangent 푨푩⃡⃗⃗⃗⃗ , prove what we have just discovered using what you know about the properties of a circle and tangent and secant lines. a. Draw triangle 푨푶푪. What is the measure of ∠푨푶푪? Explain. 풃°. The central angle is equal to the degree measure of the arc it intercepts. b. What is the measure of ∠푶푨푩? Explain. ퟗퟎ°. The radius is perpendicular to the tangent line at the point of tangency. c. Express the measure of the remaining two angles of triangle 푨푶푪 in terms of 풂 and explain. The angles are congruent because the triangle is isosceles. Each angle has a measure of (ퟗퟎ − 풂)° since 풎∠푶푨푪 + 풎∠푪푨푩 = ퟗퟎ°. d. What is the measure of ∠푨푶푪 in terms of 풂? Show how you got the answer. ퟏ ퟏퟖퟎ° ퟗퟎ − 풂 + ퟗퟎ − 풂 + 풃 = ퟏퟖퟎ 풃 = ퟐ풂 풂 = 풃 The sum of the angles of a triangle is , so . Therefore, or ퟐ . e. Explain to your neighbor what we have just proven. An inscribed angle formed by a secant and tangent line is half of the angle measure of the arc it intercepts. Example (5 minutes) We have shown that the inscribed angle theorem can be extended to the case when one of the angle’s rays is a tangent segment and the vertex is the point of tangency. The Example develops another theorem in the inscribed angle theorem’s family: the angle formed by the intersection of the tangent line and a chord of the circle on the circle and the inscribed angle of the same arc are congruent. This example is best modeled with dynamic Geometry software. Alternatively, the teacher may ask students to create a series of sketches that show point 퐸 moving toward point 퐴. THEOREM: Suppose ̅퐴퐵̅̅̅ is a chord of circle 퐶, and 퐴퐷̅̅̅̅ is a tangent segment to the circle at point 퐴. If 퐸 is any point other than 퐴 or 퐵 in the arc of 퐶 on the opposite side of ̅퐴퐵̅̅̅ from 퐷, then 푚∠퐵퐸퐴 = 푚∠퐵퐴퐷. Lesson 13: The Inscribed Angle Alternate—A Tangent Angle 173 This work is licensed under a This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from GEO-M5-TE-1.3.0-10.2015 Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 13 M5 GEOMETRY . Draw a circle, and label it 퐶. Students draw circle 퐶. Draw a chord ̅퐴퐵̅̅̅. Students draw chord ̅퐴퐵̅̅̅. Construct a segment tangent to the circle through point 퐴, and label it 퐴퐷̅̅̅̅. Students construct tangent segment 퐴퐷̅̅̅̅. Now, draw and label point 퐸 that is between 퐴 and 퐵 but on the other side of chord ̅퐴퐵̅̅̅ from 퐷. Students draw point 퐸. Rotate point 퐸 on the circle toward point 퐴. What happens to 퐸퐵̅̅̅̅? 퐸퐵̅̅̅̅ moves closer and closer to lying on top of ̅퐴퐵̅̅̅ as 퐸 gets closer and closer to 퐴. What happens to 퐸퐴̅̅̅̅? 퐸퐴̅̅̅̅ moves closer and closer to lying on top of 퐴퐷̅̅̅̅. What happens to ∠퐵퐸퐴? ∠퐵퐸퐴 moves closer and closer to lying on top of ∠퐵퐴퐷. Does 푚∠퐵퐸퐴 change as it rotates? No, it remains the same because the intercepted arc length does not change. Explain how these facts show that 푚∠퐵퐸퐴 = 푚∠퐵퐴퐷? The measure of ∠퐵퐸퐴 does not change. The segments are just rotated, but the angle measure is conserved; regardless of where 퐸 is between 퐵 and 퐴, the same arc is intercepted as ∠퐵퐴퐷. Exercises (12 minutes) Students should work on the exercises individually and then compare answers with a neighbor. Walk around the room, and use this as a quick informal assessment.
Recommended publications
  • A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected]
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Pre-calculus and Trigonometry Mathematics via Primary Historical Sources (TRIUMPHS) Spring 3-2017 A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_precalc Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits oy u. Recommended Citation Otero, Danny, "A Genetic Context for Understanding the Trigonometric Functions" (2017). Pre-calculus and Trigonometry. 1. https://digitalcommons.ursinus.edu/triumphs_precalc/1 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Pre-calculus and Trigonometry by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. A Genetic Context for Understanding the Trigonometric Functions Daniel E. Otero∗ July 22, 2019 Trigonometry is concerned with the measurements of angles about a central point (or of arcs of circles centered at that point) and quantities, geometrical and otherwise, that depend on the sizes of such angles (or the lengths of the corresponding arcs). It is one of those subjects that has become a standard part of the toolbox of every scientist and applied mathematician. It is the goal of this project to impart to students some of the story of where and how its central ideas first emerged, in an attempt to provide context for a modern study of this mathematical theory.
    [Show full text]
  • Geometric Exercises in Paper Folding
    MATH/STAT. T. SUNDARA ROW S Geometric Exercises in Paper Folding Edited and Revised by WOOSTER WOODRUFF BEMAN PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF MICHIGAK and DAVID EUGENE SMITH PROFESSOR OF MATHEMATICS IN TEACHERS 1 COLLEGE OF COLUMBIA UNIVERSITY WITH 87 ILLUSTRATIONS THIRD EDITION CHICAGO ::: LONDON THE OPEN COURT PUBLISHING COMPANY 1917 & XC? 4255 COPYRIGHT BY THE OPEN COURT PUBLISHING Co, 1901 PRINTED IN THE UNITED STATES OF AMERICA hn HATH EDITORS PREFACE. OUR attention was first attracted to Sundara Row s Geomet rical Exercises in Paper Folding by a reference in Klein s Vor- lesungen iiber ausgezucihlte Fragen der Elementargeometrie. An examination of the book, obtained after many vexatious delays, convinced us of its undoubted merits and of its probable value to American teachers and students of geometry. Accordingly we sought permission of the author to bring out an edition in this country, wnich permission was most generously granted. The purpose of the book is so fully set forth in the author s introduction that we need only to say that it is sure to prove of interest to every wide-awake teacher of geometry from the graded school to the college. The methods are so novel and the results so easily reached that they cannot fail to awaken enthusiasm. Our work as editors in this revision has been confined to some slight modifications of the proofs, some additions in the way of references, and the insertion of a considerable number of half-tone reproductions of actual photographs instead of the line-drawings of the original. W. W.
    [Show full text]
  • Circle Theorems
    Circle theorems A LEVEL LINKS Scheme of work: 2b. Circles – equation of a circle, geometric problems on a grid Key points • A chord is a straight line joining two points on the circumference of a circle. So AB is a chord. • A tangent is a straight line that touches the circumference of a circle at only one point. The angle between a tangent and the radius is 90°. • Two tangents on a circle that meet at a point outside the circle are equal in length. So AC = BC. • The angle in a semicircle is a right angle. So angle ABC = 90°. • When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference. So angle AOB = 2 × angle ACB. • Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal. So angle ACB = angle ADB and angle CAD = angle CBD. • A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle. Opposite angles in a cyclic quadrilateral total 180°. So x + y = 180° and p + q = 180°. • The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem. So angle BAT = angle ACB. Examples Example 1 Work out the size of each angle marked with a letter. Give reasons for your answers. Angle a = 360° − 92° 1 The angles in a full turn total 360°. = 268° as the angles in a full turn total 360°.
    [Show full text]
  • Lesson 19: Equations for Tangent Lines to Circles
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 19 M5 GEOMETRY Lesson 19: Equations for Tangent Lines to Circles Student Outcomes . Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the line tangent to the circle from that point. Lesson Notes This lesson builds on the understanding of equations of circles in Lessons 17 and 18 and on the understanding of tangent lines developed in Lesson 11. Further, the work in this lesson relies on knowledge from Module 4 related to G-GPE.B.4 and G-GPE.B.5. Specifically, students must be able to show that a particular point lies on a circle, compute the slope of a line, and derive the equation of a line that is perpendicular to a radius. The goal is for students to understand how to find equations for both lines with the same slope tangent to a given circle and to find the equation for a line tangent to a given circle from a point outside the circle. Classwork Opening Exercise (5 minutes) Students are guided to determine the equation of a line perpendicular to a chord of a given circle. Opening Exercise A circle of radius ퟓ passes through points 푨(−ퟑ, ퟑ) and 푩(ퟑ, ퟏ). a. What is the special name for segment 푨푩? Segment 푨푩 is called a chord. b. How many circles can be drawn that meet the given criteria? Explain how you know. Scaffolding: Two circles of radius ퟓ pass through points 푨 and 푩.
    [Show full text]
  • Angles ANGLE Topics • Coterminal Angles • Defintion of an Angle
    Angles ANGLE Topics • Coterminal Angles • Defintion of an angle • Decimal degrees to degrees, minutes, seconds by hand using the TI-82 or TI-83 Plus • Degrees, seconds, minutes changed to decimal degree by hand using the TI-82 or TI-83 Plus • Standard position of an angle • Positive and Negative angles ___________________________________________________________________________ Definition: Angle An angle is created when a half-ray (the initial side of the angle) is drawn out of a single point (the vertex of the angle) and the ray is rotated around the point to another location (becoming the terminal side of the angle). An angle is created when a half-ray (initial side of angle) A: vertex point of angle is drawn out of a single point (vertex) AB: Initial side of angle. and the ray is rotated around the point to AC: Terminal side of angle another location (becoming the terminal side of the angle). Hence angle A is created (also called angle BAC) STANDARD POSITION An angle is in "standard position" when the vertex is at the origin and the initial side of the angle is along the positive x-axis. Recall: polynomials in algebra have a standard form (all the terms have to be listed with the term having the highest exponent first). In trigonometry, there is a standard position for angles. In this way, we are all talking about the same thing and are not trying to guess if your math solution and my math solution are the same. Not standard position. Not standard position. This IS standard position. Initial side not along Initial side along negative Initial side IS along the positive x-axis.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Elementary Calculus
    Elementary Calculus 2 v0 2g 2 0 v0 g Michael Corral Elementary Calculus Michael Corral Schoolcraft College About the author: Michael Corral is an Adjunct Faculty member of the Department of Mathematics at School- craft College. He received a B.A. in Mathematics from the University of California, Berkeley, and received an M.A. in Mathematics and an M.S. in Industrial & Operations Engineering from the University of Michigan. This text was typeset in LATEXwith the KOMA-Script bundle, using the GNU Emacs text editor on a Fedora Linux system. The graphics were created using TikZ and Gnuplot. Copyright © 2020 Michael Corral. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. Preface This book covers calculus of a single variable. It is suitable for a year-long (or two-semester) course, normally known as Calculus I and II in the United States. The prerequisites are high school or college algebra, geometry and trigonometry. The book is designed for students in engineering, physics, mathematics, chemistry and other sciences. One reason for writing this text was because I had already written its sequel, Vector Cal- culus. More importantly, I was dissatisfied with the current crop of calculus textbooks, which I feel are bloated and keep moving further away from the subject’s roots in physics. In addi- tion, many of the intuitive approaches and techniques from the early days of calculus—which I think often yield more insights for students—seem to have been lost.
    [Show full text]
  • Chapter 12, Lesson 1
    i8o Chapter 12, Lesson 1 Chapter 12, Lesson 1 •14. They are perpendicular. 15. The longest chord is always a diameter; so Set I (pages 486-487) its length doesn't depend on the location of According to Matthys Levy and Mario Salvador! the point. The length of the shortest chord in their book titled \Nhy Buildings Fall Down depends on how far away from the center (Norton, 1992), the Romans built semicircular the point is; the greater the distance, the arches of the type illustrated in exercises 1 through shorter the chord. 5 that spanned as much as 100 feet. These arches Theorem 56. were used in the bridges of 50,000 miles of roads that the Romans built all the way from Baghdad 16. Perpendicular lines form right angles. to London! • 17. Two points determine a line. The conclusions of exercises 13 through 15 are supported by the fact that a diameter of a circle is •18. All radii of a circle are equal. its longest chord and by symmetry considerations. 19. Reflexive. As the second chord rotates away from the diameter in either direction about the point of 20. HL. intersection, it becomes progressively shorter. 21. Corresponding parts of congruent triangles are equal. Roman Arch. •22. If a line divides a line segment into two 1. Radii. equal parts, it bisects the segment. •2. Chords. Theorem 57. •3. A diameter. 23. If a line bisects a line segment, it divides the 4. Isosceles. Each has two equal sides because segment into two equal parts. the radii of a circle are equal.
    [Show full text]
  • Eureka Math Geometry Modules 3, 4, 5
    FL State Adoption Bid #3704 Student Edition Eureka Math Geometry Modules 3,4, 5 Special thanks go to the GordRn A. Cain Center and to the Department of Mathematics at Louisiana State University for their support in the development of Eureka Math. For a free Eureka Math Teacher Resource Pack, Parent Tip Sheets, and more please visit www.Eureka.tools Published by WKHQRQSURILWGreat Minds Copyright © 2015 Great Minds. No part of this work may be reproduced, sold, or commercialized, in whole or in part, without written permission from Great Minds. Non-commercial use is licensed pursuant to a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license; for more information, go to http://greatminds.net/maps/math/copyright. “Great Minds” and “Eureka Math” are registered trademarks of Great Minds. Printed in the U.S.A. This book may be purchased from the publisher at eureka-math.org 10 9 8 7 6 5 4 3 2 1 ISBN 978-1-63255-328-7 ^dKZzK&&hEd/KE^ Lesson 1 M3 GEOMETRY Lesson 1: What Is Area? Classwork Exploratory Challenge 1 a. What is area? b. What is the area of the rectangle below whose side lengths measure ͵ units by ͷ units? ଷ ହ c. What is the area of the ൈ rectangle below? ସ ଷ Lesson 1: What Is Area? S.1 ΞϮϬϭϱ'ƌĞĂƚDŝŶĚƐ͘ĞƵƌĞŬĂͲŵĂƚŚ͘ŽƌŐ 'KͲDϯͲ^ͲϮͲϭ͘ϯ͘ϬͲϭϬ͘ϮϬϭϱ ^dKZzK&&hEd/KE^ Lesson 1 M3 GEOMETRY Exploratory Challenge 2 a. What is the area of the rectangle below whose side lengths measure ξ͵ units by ξʹ units? Use the unit squares on the graph to guide your approximation.
    [Show full text]
  • Constructibility
    Appendix A Constructibility This book is dedicated to the synthetic (or axiomatic) approach to geometry, di- rectly inspired and motivated by the work of Greek geometers of antiquity. The Greek geometers achieved great work in geometry; but as we have seen, a few prob- lems resisted all their attempts (and all later attempts) at solution: circle squaring, trisecting the angle, duplicating the cube, constructing all regular polygons, to cite only the most popular ones. We conclude this book by proving why these various problems are insolvable via ruler and compass constructions. However, these proofs concerning ruler and compass constructions completely escape the scope of syn- thetic geometry which motivated them: the methods involved are highly algebraic and use theories such as that of fields and polynomials. This is why we these results are presented as appendices. Moreover, we shall freely use (with precise references) various algebraic results developed in [5], Trilogy II. We first review the theory of the minimal polynomial of an algebraic element in a field extension. Furthermore, since it will be essential for the applications, we prove the Eisenstein criterion for the irreducibility of (such) a (minimal) polynomial over the field of rational numbers. We then show how to associate a field with a given geometric configuration and we prove a formal criterion telling us—in terms of the associated fields—when one can pass from a given geometrical configuration to a more involved one, using only ruler and compass constructions. A.1 The Minimal Polynomial This section requires some familiarity with the theory of polynomials in one variable over a field K.
    [Show full text]
  • Classify Each Triangle by Its Side Lengths and Angle Measurements
    GRADE 4 | MODULE 4 | TOPIC D | LESSONS 12–16 KEY CONCEPT OVERVIEW In Lessons 12 through 16, students explore lines of symmetry and characteristics of triangles and quadrilaterals. You can expect to see homework that asks your child to do the following: ▪ Find and draw lines of symmetry. ▪ Given half of a figure and the line of symmetry, draw the other half of the figure. ▪ Classify triangles by side lengths (e.g., equilateral, isosceles, scalene) and by angle measurements (e.g., acute, right, obtuse). ▪ Draw triangles that fit different classifications (e.g., acute and scalene). ▪ Name quadrilaterals, identify attributes (i.e., characteristics) that define them, and construct them based on given attributes. SAMPLE PROBLEM (From Lesson 13) Classify each triangle by its side lengths and angle measurements. Circle the correct names. Additional sample problems with detailed answer steps are found in the Eureka Math Homework Helpers books. Learn more at GreatMinds.org. For more resources, visit » Eureka.support GRADE 4 | MODULE 4 | TOPIC D | LESSONS 12–16 HOW YOU CAN HELP AT HOME ▪ Ask your child to look around the house for objects that have lines of symmetry. Examples include the headboard of a bed, dressers, chairs, couches, and place mats. Ask him to show where the line of symmetry would be and what makes it a line of symmetry. Be careful of objects such as doors and windows. They could have a line of symmetry, but if there’s a knob or crank on just one side, then they are not symmetrical. ▪ Ask your child to name and draw all the quadrilaterals she can think of (e.g., square, rectangle, parallelogram, trapezoid, and rhombus).
    [Show full text]
  • Geometry, the Common Core, and Proof
    Geometry, the Common Core, and Proof John T. Baldwin, Andreas Mueller Geometry, the Common Core, and Proof Overview From Geometry to Numbers John T. Baldwin, Andreas Mueller Proving the field axioms Interlude on Circles December 14, 2012 An Area function Side-splitter Pythagorean Theorem Irrational Numbers Outline Geometry, the Common Core, and Proof 1 Overview John T. Baldwin, 2 From Geometry to Numbers Andreas Mueller 3 Proving the field axioms Overview From Geometry to 4 Interlude on Circles Numbers Proving the 5 An Area function field axioms Interlude on Circles 6 Side-splitter An Area function 7 Pythagorean Theorem Side-splitter Pythagorean 8 Irrational Numbers Theorem Irrational Numbers Agenda Geometry, the Common Core, and Proof John T. Baldwin, Andreas 1 G-SRT4 { Context. Proving theorems about similarity Mueller 2 Proving that there is a field Overview 3 Areas of parallelograms and triangles From Geometry to Numbers 4 lunch/Discussion: Is it rational to fixate on the irrational? Proving the 5 Pythagoras, similarity and area field axioms Interlude on 6 reprise irrational numbers and Golden ratio Circles 7 resolving the worries about irrationals An Area function Side-splitter Pythagorean Theorem Irrational Numbers Logistics Geometry, the Common Core, and Proof John T. Baldwin, Andreas Mueller Overview From Geometry to Numbers Proving the field axioms Interlude on Circles An Area function Side-splitter Pythagorean Theorem Irrational Numbers Common Core Geometry, the Common Core, and Proof John T. Baldwin, G-SRT: Prove theorems involving similarity Andreas Mueller 4. Prove theorems about triangles. Theorems include: a line Overview parallel to one side of a triangle divides the other two From proportionally, and conversely; the Pythagorean Theorem Geometry to Numbers proved using triangle similarity.
    [Show full text]