Torasemide Significantly Reduces Thiazide-Induced Potassium and Magnesium Loss Despite Supra-Additive Natriuresis H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Torasemide Significantly Reduces Thiazide-Induced Potassium and Magnesium Loss Despite Supra-Additive Natriuresis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Eur J Clin Pharmacol (2009) 65:465–472 DOI 10.1007/s00228-009-0626-7 PHARMACODYNAMICS Torasemide significantly reduces thiazide-induced potassium and magnesium loss despite supra-additive natriuresis H. Knauf & E. Mutschler & H. Velazquez & G. Giebisch Received: 12 November 2008 /Accepted: 23 January 2009 /Published online: 20 February 2009 # The Author(s) 2009. This article is published with open access at Springerlink.com Abstract combination significantly reduced K+ and Mg2+ excretion. Background Resistance to high-dose loop diuretics can be The K+-sparing effect of the HCT/TO combination was overcome either by co-administration with thiazides or by shown to be due to a significant reduction in the HCT- treatment with medium-dose loop diuretics combined with induced increase in fractional K+ excretion by the loop thiazides. Combination therapy has been proven to be diuretic. Total excretion of Ca2+ relative to Na+ excretion superior to high-dose loop diuretic monotherapy for cardiac was less with the HCT/TO combination than with TO given and renal edema. However, such a strongly efficacious alone. short-term regimen is often complicated by undesired Conclusion The enhancement of desired NaCl excretion by effects, including circulatory collapse and electrolyte the HCT/TO combination with significant reduction of disturbances. The question of whether the loop diuretic/ undesired loss of K+ and Mg2+ meets clinical requirements thiazide combinations are efficacious and safe when but has to be validated in long-term clinical trials. conventional doses are combined has not yet been answered. -
Properties and Units in Clinical Pharmacology and Toxicology
Pure Appl. Chem., Vol. 72, No. 3, pp. 479–552, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART XII. PROPERTIES AND UNITS IN CLINICAL PHARMACOLOGY AND TOXICOLOGY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, DAVID COWAN2, RAFAEL DE LA TORRE3 , IVAN BRUUNSHUUS1, MORTEN ROHDE1, and DESMOND KENNY4 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Drug Control Centre, London University, King’s College, London, UK; 3IMIM, Dr. Aiguader 80, Barcelona, Spain; 4Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994–1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996); Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada, 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H. Olesen, Office of Laboratory Informatics 76-6-1, Copenhagen University Hospital (Rigshospitalet), 9 Blegdamsvej, DK-2100 Copenhagen, Denmark. E-mail: [email protected] Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible. -
Summary of Product Characteristics
Sandoz Business use only Page 1 of 9 1.3.1 spc-label-pl - common-spc – 11,006 20191218 (DE/H/1772/001-002-003 – 155347 - validation) TORASEMIDE 100 MG, 200 MG, 50 MG, TABLET 721-6534.01, 721-6535.01, 721-6536.01 SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE MEDICINAL PRODUCT [Nationally completed name] 50 mg tablets [Nationally completed name] 100 mg tablets [Nationally completed name] 200 mg tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each tablet contains 50 mg of torasemide. Each tablet contains 100 mg of torasemide. Each tablet contains 200 mg of torasemide. For excipients, see section 6.1 3. PHARMACEUTICAL FORM Tablet. 50 mg tablets: White to off-white round tablet. 100 mg tablets: White to off-white round tablet with break notch. The tablet can be divided into equal doses. 200 mg tablets: White to off-white round tablet with cross break notch on both sides. The tablet can be divided into four equal doses. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications The administration of [Nationally completed name] 50 mg/- 100 mg/- 200 mg tablets is exclusively indicated in patients with highly reduced renal function (creatinine clearance less than 20 ml/min and/or serum creatinine concentration greater than 6 mg/dl). For maintenance of residual diuresis in case of severe renal insufficiency – even on dialysis if there is a considerable residual diuresis (more than 200 ml/24 hours) – if oedemas, effusions and/or hypertension exist. Note: [Nationally completed name] 50 mg/- 100 mg/- 200 mg tablets tablets are to be used only in case of highly impaired and not in normal renal function. -
Diuretics in Clinical Practice. Part I: Mechanisms of Action, Pharmacological Effects and 1
Review Diuretics in clinical practice. Part I: mechanisms of action, pharmacological effects and 1. Introduction clinical indications of diuretic 2. Principles of diuretic action and classification of diuretic compounds compounds † 3. Carbonic anhydrase inhibitors Pantelis A Sarafidis , Panagiotis I Georgianos & Anastasios N Lasaridis Aristotle University of Thessaloniki, AHEPA Hospital, Section of Nephrology and Hypertension, 4. Osmotic diuretics 1st Department of Medicine, Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece 5. Loop diuretics 6. Thiazides and thiazide-related Importance of the field: Diuretics are among the most important drugs of our diuretics therapeutic armamentarium and have been broadly used for > 50 years, 7. Potassium-retaining diuretics providing important help towards the treatment of several diseases. Although all diuretics act primarily by impairing sodium reabsorption in the renal 8. Conclusion tubules, they differ in their mechanism and site of action and, therefore, in 9. Expert opinion their specific pharmacological properties and clinical indications. Loop diure- tics are mainly used for oedematous disorders (i.e., cardiac failure, nephrotic syndrome) and for blood pressure and volume control in renal disease; thiazides and related agents are among the most prescribed drugs for hypertension treatment; aldosterone-blockers are traditionally used for primary or secondary aldosteronism; and other diuretic classes have more specific indications. Areas covered in this review: This article discusses the mechanisms of action, pharmacological effects and clinical indications of the various diuretic classes For personal use only. used in everyday clinical practice, with emphasis on recent knowledge sug- gesting beneficial effects of certain diuretics on clinical conditions distinct from the traditional indications of these drugs (i.e., heart protection for aldosterone blockers). -
DIURETICS Diuretics Are Drugs That Promote the Output of Urine Excreted by the Kidneys
DIURETICS Diuretics are drugs that promote the output of urine excreted by the Kidneys. The primary action of most diuretics is the direct inhibition of Na+ transport at one or more of the four major anatomical sites along the nephron, where Na+ reabsorption takes place. The increased excretion of water and electrolytes by the kidneys is dependent on three different processes viz., glomerular filtration, tubular reabsorption (active and passive) and tubular secretion. Diuretics are very effective in the treatment of Cardiac oedema, specifically the one related with congestive heart failure. They are employed extensively in various types of disorders, for example, nephritic syndrome, diabetes insipidus, nutritional oedema, cirrhosis of the liver, hypertension, oedema of pregnancy and also to lower intraocular and cerebrospinal fluid pressure. Therapeutic Uses of Diuretics i) Congestive Heart Failure: The choice of the diuretic would depend on the severity of the disorder. In an emergency like acute pulmonary oedema, intravenous Furosemide or Sodium ethacrynate may be given. In less severe cases. Hydrochlorothiazide or Chlorthalidone may be used. Potassium-sparing diuretics like Spironolactone or Triamterene may be added to thiazide therapy. ii) Essential hypertension: The thiazides usually sever as primary antihypertensive agents. They may be used as sole agents in patients with mild hypertension or combined with other antihypertensives in more severe cases. iii) Hepatic cirrhosis: Potassium-sparing diuretics like Spironolactone may be employed. If Spironolactone alone fails, then a thiazide diuretic can be added cautiously. Furosemide or Ethacrymnic acid may have to be used if the oedema is regractory, together with spironolactone to lessen potassium loss. Serum potassium levels should be monitored periodically. -
Diuretic-Induced Hyponatraemia in Elderly Hypertensive Women
Journal of Human Hypertension (2003) 17, 151 & 2003 Nature Publishing Group All rights reserved 0950-9240/03 $25.00 www.nature.com/jhh LETTER TO THE EDITOR Diuretic-induced hyponatraemia in elderly hypertensive women Journal of Human Hypertension there were 10 with plasma so- plasma sodium of 111 mmol/l (2003) 17, 151. doi:10.1038/ dium levels in the range 101– when inadvertently rechallenged sj.jhh.1001513 109 mmol/l. Of the 26, 11 had with thiazides, the agent this time plasma potassium levels less than being hydrochlorothiazide copre- My experience of diuretic- 3.5 mmol/l. The age range was scribed with amiloride. I now induced hyponatraemia in the 74–93 and 22 were women. Hy- utilise torasemide as an adjunc- elderly is in accordance with the drochlorothiazide was the offend- tive diuretic in patients with a observations made by the ing agent in 12 cases, having been previous history of thiazide- authors.1 In my personal series coprescribed with amiloride in induced hyponatraemia. The data of 61 cases of severe hyponatraemia 10 instances, and with triamterene presented here extend the obser- (plasma sodium o120 mmol/l), in two. Bendrofluazide was the vations I published previously on compiled over a period of 18 offending agent in nine instances, this topic. years in patients aged 465, 26 the dose being 2.5 mg/day in were attributable to thiazide seven instances (coprescribed diuretics, culprit drugs in seven with amiloride in one instance), References other cases being frusemide (three and 5.0 mg/day in the other two. 1 Sharabi Y et al. -
Phvwp Monthly Report Mar 2011
24 March 2011 EMA/CHMP/PhVWP/217595/2011 Patient Health Protection Monthly report Issue number: 1103 Pharmacovigilance Working Party (PhVWP) March 2011 plenary meeting The CHMP Pharmacovigilance Working Party (PhVWP) held its March 2011 plenary meeting on 14-16 March 2011. Safety concerns Discussions on non-centrally authorised medicinal products are summarised below in accordance with the PhVWP publication policy. The positions agreed by the PhVWP for non-centrally authorised products form recommendations to Member States. For the publication policy, readers are referred to http://www.ema.europa.eu/docs/en_GB/document_library/Report/2009/10/WC500006181.pdf. The PhVWP also provides advice to the Committee for Medicinal Products for Human Use (CHMP) on centrally authorised products and products subject to ongoing CHMP procedures at the request of the CHMP. For safety updates concerning these products, readers are referred to the CHMP monthly report (http://www.ema.europa.eu, go to: about us/Committees/CHMP/Committees meeting reports). High-ceiling diuretics – Evidence does not confirm risk of basal cell carcinoma Evidence does not confirm a causal association between high-ceiling diuretics and basal cell carcinoma. Following the recent publication of a study showing an increased risk of basal cell carcinoma (BCC) with the use of high-ceiling diuretics, the PhVWP reviewed this possible safety concern1. The PhVWP concluded that the evidence does not confirm a causal association between the use of the high-ceiling diuretics and the development of BCC and that no regulatory action is currently necessary (see Annex 1 for the Summary Assessment Report). 1 The active substances included in this review were bumetanide, etacrynic acid, furosemide, piretanide and torasemide. -
Actual Place of Diuretics in Hypertension Treatment
Mini Review J Cardiol & Cardiovasc Ther Volume 3 Issue 4 - March 2017 Copyright © All rights are reserved by Farouk Abcha DOI: 10.19080/JOCCT.2017.03.555616 Actual Place of Diuretics in Hypertension Treatment Farouk Abcha, Marouane Boukhris*, Zied Ibn Elhadj, Lobna Laroussi, Faouzi Addad, Afef Ben Halima and Salem Kachboura Cardiology Department of Abderrahmen Mami Hospital, University of Tunis El Manar, Tunisia Submission: February 03, 2017; Published: March 07, 2017 *Corresponding author: Marouane Boukhris, Cardiology Department of Abderrahmen Mami Hospital, Ariana, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia, Tel: ; Email: Abstract Diuretics represent a large and heterogeneous class of drugs, differing from each other by structure, site and mechanism of action. Diuretics are widely used, and have several indications in different cardiovascular disorders, particularly in hypertension and heart failure. Despite the large number of available anti-hypertensive drugs, diuretics remained a cornerstone of hypertension treatment. In the current editorial, we assessed the actual place of different diuretics in the hypertension guidelines focusing on the concept of tailored approach in prescribing them for hypertensive patients. Keywords: Diuretics; Hypertension; Hydrochlorothiazide; Indapamide; Guidelines Introduction Diuretics represent a large and heterogeneous class of drugs, differing from each other by structure, site and mechanism of action. Diuretics are widely used, and have several indications in different cardiovascular disorders, particularly in hypertension and heart failure. Despite the large number of available anti-hypertensive drugs, diuretics remained a cornerstone of hypertension treatment [1]. Indeed, they are the second most commonly prescribed class of antihypertensive medication. For instance, 12% of US adults were prescribed a diuretic, and the relative increase in prescriptions from 1999 through 2012 was 1.4 [2]. -
Initial Medication Selection for Treatment of Hypertension in an Open-Panel HMO
J Am Board Fam Pract: first published as 10.3122/jabfm.8.1.1 on 1 January 1995. Downloaded from Initial Medication Selection For Treatment Of Hypertension In An Open-Panel HMO Micky jerome, PharmD, MBA, George C. Xakellis, MD, Greg Angstman, MD, and Wayne Patchin, MBA Background: During the past 25 years recommendations for treating hypertension have evolved from a stepped-care approach to monotherapy or sequential monotherapy as experience has been gained and new antihypertensive agents have been introduced. In an effort to develop a disease management strategy for hypertension, we investigated the prescribing patterns of initial medication therapy for newly treated hypertensive patients. Methods: We examined paid claims data of an open-panel HMO located in the midwest. Charts from 377 patients with newly treated hypertension from a group of 12,242 hypertenSive patients in a health insurance population of 85,066 persons were studied. The type of medication regimen received by patients newly treated for hypertension during an 18-month period was categorized into monotherapy, sequential monotherapy, stepped care, and initial treatment with multiple agents. With monotherapy, the class of medication was also reported. Associations between use of angiotensin-converting enzyme (ACE) inhibitors, calcium channel blockers, or (3-blockers and presence of comorbid conditions were reported. Results: Fifty-five percent of patients received monotherapy, 22 percent received stepped care, and 18 percent received sequential monotherapy. Of those 208 patients receiving monotherapy, 30 percent were prescribed a calcium channel blocker, 22 percent an ACE inhibitor, and 14 percent a f3-blocker. No customization of treatment for comorbid conditions was noted. -
Penetrating Topical Pharmaceutical Compositions Containing N-\2-Hydroxyethyl\Pyrrolidone
Europaisches Patentamt ® J European Patent Office © Publication number: 0 129 285 Office europeen des brevets A2 (12) EUROPEAN PATENT APPLICATION © Application number: 84200823.7 ©Int CI.3: A 61 K 47/00 A 61 K 31/57, A 61 K 45/06 © Date of filing: 12.06.84 © Priority: 21.06.83 US 506273 © Applicant: THE PROCTER & GAMBLE COMPANY 301 East Sixth Street Cincinnati Ohio 45201 (US) © Date of publication of application: 27.12.84 Bulletin 84/52 © Inventor: Cooper, Eugene Rex 2425 Ambassador Drive © Designated Contracting States: Cincinnati Ohio 4523KUS) BE CH DE FR GB IT LI NL SE © Representative: Suslic, Lydia et al, Procter & Gamble European Technical Center Temseiaan 100 B-1820 Strombeek-Bever(BE) © Penetrating topical pharmaceutical compositions containing N-(2-hydroxyethyl)pyrrolidone. Topical pharmaceutical compositions comprising a pharmaceutically-active agent and a novel, penetration- enhancing vehicle or carrier are disclosed. The vehicle or carrier comprises a binary combination of N-(2-Hydroxyethyl) pyrrolidone and a "cell-envelope disordering compound". The compositions provide marked transepidermal and per- cutaneous delivery of the active selected. A method of treat- ing certain pathologies and conditions responsive to the selected active, systemically or locally, is also disclosed. TECHNICAL FIELD i The present invention relates to compositions which enhance the utility of certain pharmaceutically-active agents by effectively delivering these agents through the integument. Because of the ease of access, dynamics of application, large surface area, vast exposure to the circulatory and lymphatic networks, and non-invasive nature of the treatment, the delivery of pharmaceutically-active agents through the skin has long been a promising concept. -
Azosemide Is More Potent Than Bumetanide and Various Other Loop
www.nature.com/scientificreports OPEN Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium- Received: 21 November 2017 Accepted: 14 June 2018 potassium-chloride-cotransporter Published: xx xx xxxx human variants hNKCC1A and hNKCC1B Philip Hampel 1,2, Kerstin Römermann1, Nanna MacAulay 3 & Wolfgang Löscher1,2 The Na+–K+–2Cl− cotransporter NKCC1 plays a role in neuronal Cl− homeostasis secretion and represents a target for brain pathologies with altered NKCC1 function. Two main variants of NKCC1 have been identifed: a full-length NKCC1 transcript (NKCC1A) and a shorter splice variant (NKCC1B) that is particularly enriched in the brain. The loop diuretic bumetanide is often used to inhibit NKCC1 in brain disorders, but only poorly crosses the blood-brain barrier. We determined the sensitivity of the two human NKCC1 splice variants to bumetanide and various other chemically diverse loop diuretics, using the Xenopus oocyte heterologous expression system. Azosemide was the most potent NKCC1 inhibitor (IC50s 0.246 µM for hNKCC1A and 0.197 µM for NKCC1B), being about 4-times more potent than bumetanide. Structurally, a carboxylic group as in bumetanide was not a prerequisite for potent NKCC1 inhibition, whereas loop diuretics without a sulfonamide group were less potent. None of the drugs tested were selective for hNKCC1B vs. hNKCC1A, indicating that loop diuretics are not a useful starting point to design NKCC1B-specifc compounds. Azosemide was found to exert an unexpectedly potent inhibitory efect and as a non-acidic compound, it is more likely to cross the blood-brain barrier than bumetanide. Te Na+–K+–2Cl− cotransporter NKCC1 (encoded by SLC12A2) plays an important role in Cl- uptake in neu- rons both in developing brain and in adult sensory neurons1,2. -
Network-Based Prediction of Drug Combinations
Corrected: Publisher correction ARTICLE https://doi.org/10.1038/s41467-019-09186-x OPEN Network-based prediction of drug combinations Feixiong Cheng1,2,3,4,5, Istvań A. Kovacś1,2 & Albert-Laszló ́Barabasí1,2,6,7 Drug combinations, offering increased therapeutic efficacy and reduced toxicity, play an important role in treating multiple complex diseases. Yet, our ability to identify and validate effective combinations is limited by a combinatorial explosion, driven by both the large number of drug pairs as well as dosage combinations. Here we propose a network-based methodology to identify clinically efficacious drug combinations for specific diseases. By 1234567890():,; quantifying the network-based relationship between drug targets and disease proteins in the human protein–protein interactome, we show the existence of six distinct classes of drug–drug–disease combinations. Relying on approved drug combinations for hypertension and cancer, we find that only one of the six classes correlates with therapeutic effects: if the targets of the drugs both hit disease module, but target separate neighborhoods. This finding allows us to identify and validate antihypertensive combinations, offering a generic, powerful network methodology to identify efficacious combination therapies in drug development. 1 Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA 02115, USA. 2 Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. 3 Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA. 4 Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA. 5 Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.