RECENT DIATOMS REPORTED from the CENTRAL UNITED STATES
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
First Record of Benthic Diatoms
Available online at www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 86 (2015) 281–292 www.ib.unam.mx/revista/ Taxonomy and systematics First record of benthic diatoms (Bacillariophyceae and Fragilariophyceae) from Isla Guadalupe, Baja California, Mexico Primer registro de diatomeas bentónicas (Bacillariophyceae y Fragilariophyceae) de isla Guadalupe, Baja California, México Francisco Omar López-Fuerte a, David A. Siqueiros-Beltrones b,∗, Ricardo Yabur c a Laboratorio de Sistemas Arrecifales, Departamento Académico de Economía, Universidad Autónoma de Baja California Sur, Carretera al Sur, Km. 5.5, 23080 La Paz, B.C.S., Mexico b Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, Intituto Politécnico Nacional, Av. Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, 23096 La Paz, B.C.S., Mexico c Departamento Académico de Biología Marina, Universidad Autónoma de Baja California Sur, Carretera al Sur, Km. 5.5, 23080 La Paz, B.C.S., Mexico Received 13 June 2014; accepted 3 December 2014 Available online 26 May 2015 Abstract Guadalupe Island represents a unique ecosystem. Its volcanic origin and remoteness from the Baja California peninsula have allowed for the successful establishment of its distinctive flora and fauna. However, the difficulty in accessing the island has precluded the study of its biotic communities, mainly the marine ones. Consequently, no studies on benthic or planktonic diatoms have been hitherto published. Thus, the first records of marine benthic diatom species (epiphytic, epilithic, epizoic) from Guadalupe Island in the NW Mexican Pacific are here provided. One hundred and nineteen diatom taxa belonging to the Bacillariophyceae and Fragilariophyceae were identified, including species and varieties. -
Extensive Chloroplast Genome Rearrangement Amongst Three Closely Related Halamphora Spp
RESEARCH ARTICLE Extensive chloroplast genome rearrangement amongst three closely related Halamphora spp. (Bacillariophyceae), and evidence for rapid evolution as compared to land plants 1,2 3 3 4 Sarah E. HamsherID *, Kyle G. KeepersID , Cloe S. Pogoda , Joshua G. Stepanek , Nolan C. Kane3, J. Patrick Kociolek3,5 1 Department of Biology, Grand Valley State University, Allendale, Michigan, United States of America, a1111111111 2 Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan, United States of America, 3 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, a1111111111 United States of America, 4 Department of Biology, Colorado Mountain College, Edwards, Colorado, United a1111111111 States of America, 5 Museum of Natural History, University of Colorado, Boulder, Colorado, United States of a1111111111 America a1111111111 * [email protected] Abstract OPEN ACCESS Citation: Hamsher SE, Keepers KG, Pogoda CS, Diatoms are the most diverse lineage of algae, but the diversity of their chloroplast Stepanek JG, Kane NC, Kociolek JP (2019) genomes, particularly within a genus, has not been well documented. Herein, we present Extensive chloroplast genome rearrangement three chloroplast genomes from the genus Halamphora (H. americana, H. calidilacuna, and amongst three closely related Halamphora spp. H. coffeaeformis), the first pennate diatom genus to be represented by more than one spe- (Bacillariophyceae), and evidence for rapid evolution as compared to land plants. PLoS ONE cies. Halamphora chloroplast genomes ranged in size from ~120 to 150 kb, representing a 14(7): e0217824. https://doi.org/10.1371/journal. 24% size difference within the genus. Differences in genome size were due to changes in pone.0217824 the length of the inverted repeat region, length of intergenic regions, and the variable pres- Editor: Berthold Heinze, Austrian Federal Research ence of ORFs that appear to encode as-yet-undescribed proteins. -
Akashiwo Sanguinea
Ocean ORIGINAL ARTICLE and Coastal http://doi.org/10.1590/2675-2824069.20-004hmdja Research ISSN 2675-2824 Phytoplankton community in a tropical estuarine gradient after an exceptional harmful bloom of Akashiwo sanguinea (Dinophyceae) in the Todos os Santos Bay Helen Michelle de Jesus Affe1,2,* , Lorena Pedreira Conceição3,4 , Diogo Souza Bezerra Rocha5 , Luis Antônio de Oliveira Proença6 , José Marcos de Castro Nunes3,4 1 Universidade do Estado do Rio de Janeiro - Faculdade de Oceanografia (Bloco E - 900, Pavilhão João Lyra Filho, 4º andar, sala 4018, R. São Francisco Xavier, 524 - Maracanã - 20550-000 - Rio de Janeiro - RJ - Brazil) 2 Instituto Nacional de Pesquisas Espaciais/INPE - Rede Clima - Sub-rede Oceanos (Av. dos Astronautas, 1758. Jd. da Granja -12227-010 - São José dos Campos - SP - Brazil) 3 Universidade Estadual de Feira de Santana - Departamento de Ciências Biológicas - Programa de Pós-graduação em Botânica (Av. Transnordestina s/n - Novo Horizonte - 44036-900 - Feira de Santana - BA - Brazil) 4 Universidade Federal da Bahia - Instituto de Biologia - Laboratório de Algas Marinhas (Rua Barão de Jeremoabo, 668 - Campus de Ondina 40170-115 - Salvador - BA - Brazil) 5 Instituto Internacional para Sustentabilidade - (Estr. Dona Castorina, 124 - Jardim Botânico - 22460-320 - Rio de Janeiro - RJ - Brazil) 6 Instituto Federal de Santa Catarina (Av. Ver. Abrahão João Francisco, 3899 - Ressacada, Itajaí - 88307-303 - SC - Brazil) * Corresponding author: [email protected] ABSTRAct The objective of this study was to evaluate variations in the composition and abundance of the phytoplankton community after an exceptional harmful bloom of Akashiwo sanguinea that occurred in Todos os Santos Bay (BTS) in early March, 2007. -
Periphytic Algal Biomass in Two Distinct Regions of a Tropical Coastal Lake
Acta Limnologica Brasiliensia, 2012, vol. 24, no. 3, p. 244-254 http://dx.doi.org/10.1590/S2179-975X2012005000042 Periphytic algal biomass in two distinct regions of a tropical coastal lake Biomassa de algas perifíticas em duas regiões distintas de uma lagoa costeira tropical Stéfano Zorzal de Almeida1 and Valéria de Oliveira Fernandes2 1Programa de Pós-graduação em Biologia Vegetal, Universidade Federal do Espírito Santo – UFES, Av. Fernando Ferrari, 514, Goiabeiras, CEP 29075-910, Vitória, ES, Brazil e-mail: [email protected] 2Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo – UFES, Av. Fernando Ferrari, 514, Goiabeiras, CEP 29075-910, Vitória, ES, Brazil e-mail: [email protected] Abstract: Aim: This study assessed the phycoperiphyton biomass in two regions submitted to different human impacts on Juara Lake, a coastal ecosystem with multiple uses, to order to test the hypothesis that the sampling sites that receive domestic sewage shows higher biomass values. Methods: It was installed three experimental structures with artificial substrate (glass slides) in December 2009 in two sampling sites: ED – near the domestic sewage’s release; TR – in the area of intensive fish farming (net cages). Samplings were conducted in each experimental structure, after 21, 26 and 31 days for colonization. We evaluated: transparency, electric conductivity, pH, turbidity, total suspended solids, alkalinity, dissolved oxygen, water temperature, total nitrogen, nitrate, nitrite, ammonia nitrogen, total phosphorus, orthophosphate and silicate. The phycoperiphyton was analyzed regarding biomass: biovolume (total and per class); pigments (chlorophyll-a and b and carotenoids) and phaeophytin; dry weight and ash- free dry weight. Results: TR featured higher values of transparency, water temperature and silicate. -
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae -
Biology and Systematics of Heterokont and Haptophyte Algae1
American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed. -
The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK. -
50 Annual Meeting of the Phycological Society of America
50th Annual Meeting of the Phycological Society of America August 10-13 Drexel University Philadelphia, PA The Phycological Society of America (PSA) was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. PSA awards include the Bold Award for the best student paper at the annual meeting, the Lewin Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, The PSA Award of Excellence (given to an eminent phycologist to recognize career excellence) and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrollment in phycology courses, Hoshaw Travel Awards for travel to the annual meeting and Grants-In-Aid for supporting research. To join PSA, contact the membership director or visit the website: www.psaalgae.org LOCAL ORGANIZERS FOR THE 2015 PSA ANNUAL MEETING: Rick McCourt, Academy of Natural Sciences of Drexel University Naomi Phillips, Arcadia University PROGRAM DIRECTOR FOR 2015: Dale Casamatta, University of North Florida PSA OFFICERS AND EXECUTIVE COMMITTEE President Rick Zechman, College of Natural Resources and Sciences, Humboldt State University Past President John W. Stiller, Department of Biology, East Carolina University Vice President/President Elect Paul W. Gabrielson, Hillsborough, NC International Vice President Juliet Brodie, Life Sciences Department, Genomics and Microbial Biodiversity Division, Natural History Museum, Cromwell Road, London Secretary Chris Lane, Department of Biological Sciences, University of Rhode Island, Treasurer Eric W. -
Manual for Phytoplankton Sampling and Analysis in the Black Sea
Manual for Phytoplankton Sampling and Analysis in the Black Sea Dr. Snejana Moncheva Dr. Bill Parr Institute of Oceanology, Bulgarian UNDP-GEF Black Sea Ecosystem Academy of Sciences, Recovery Project Varna, 9000, Dolmabahce Sarayi, II. Hareket P.O.Box 152 Kosku 80680 Besiktas, Bulgaria Istanbul - TURKEY Updated June 2010 2 Table of Contents 1. INTRODUCTION........................................................................................................ 5 1.1 Basic documents used............................................................................................... 1.2 Phytoplankton – definition and rationale .............................................................. 1.3 The main objectives of phytoplankton community analysis ........................... 1.4 Phytoplankton communities in the Black Sea ..................................................... 2. SAMPLING ................................................................................................................. 9 2.1 Site selection................................................................................................................. 2.2 Depth ............................................................................................................................... 2.3 Frequency and seasonality ....................................................................................... 2.4 Algal Blooms................................................................................................................. 2.4.1 Phytoplankton bloom detection -
Proceedings of the 1St Central-European Diatom Meeting
Proceedings of the 1st Central European Diatom Meeting 2007 Kusber, W.-H. & Jahn, R. (ed.) Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin ISBN 978-3-921800-63-8, © BGBM, Berlin 2007. doi:10.3372/cediatom.105 (available via http://dx.doi.org/) Digitizing African Surirellaceae: a pilot study Christine Cocquyt1, Jonathan Taylor2, Wolf-Henning Kusber3, Colin Archibald4, William 5 3 Harding & Regine Jahn 1National Botanic Garden of Belgium, Domein van Bouchout, 1860 Meise, Belgium; [email protected] 2North West University, Potchefstroom, South Africa; [email protected] 3Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Str. 6-8, 14195 Berlin, Germany; [email protected]; [email protected] 4KZN Aquatic Ecosystems, Durban, South Africa; [email protected] 5BDH Environmental Consulting, Helderberg, South Africa; [email protected] INTRODUCTION The investigation of African inland diatoms already started in the 19th century. Scientists such as C.G. Ehrenberg (1795–1876), O. Müller (1837–1917), G.S. West (1876–1919), F. Hustedt (1886–1968), B.J. Cholnoky (1899–1972), N. Woodhead (1903–1978), R.D. Tweed (1900–1989), N. Foged (1906–1988), and P. Compère (1934–) described new taxa and depicted their findings by line drawings (many published in Schmidt 1874-1959). Since the 1990’s, publications dealing with African micro-algae have started publishing LM and SEM microphotographs (e.g. Compère 1995, Caljon & Cocquyt 1992, Cocquyt 1999a, b, 2003, 2004, Cocquyt & Vyverman 1994). African diatom taxa have often been regarded as varieties or formas of European species or have been sunk into synonymy. -
Dynamics of Late Spring and Summer Phytoplankton Communities on Georges Bank, with Emphasis on Diatoms, Alexandrium Spp., and Other Dinoflagellates
Deep-Sea Research II 103 (2014) 120–138 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Dynamics of late spring and summer phytoplankton communities on Georges Bank, with emphasis on diatoms, Alexandrium spp., and other dinoflagellates Rachel M. Gettings, David W. Townsend n, Maura A. Thomas, Lee Karp-Boss School of Marine Sciences, University of Maine, Orono, ME, USA article info abstract Available online 18 May 2013 We analyzed the distribution, abundance, and succession patterns of major phytoplankton taxa on Keywords: Georges Bank in relation to hydrography, nutrients, and size-fractionated chlorophyll concentrations 4 μ o μ – Georges Bank ( 20 m; 20 m) on three oceanographic cruises from late spring through summer 2008 (28 April 5 Alexandrium May, 27 May–4 June, and 27 June–3 July). The April–May phytoplankton community was dominated Dinoflagellates numerically by the diatoms Skeletonema spp., Thalassiosira spp., Coscinodiscus spp., and Chaetoceros spp., Diatoms with highest total diatom cell densities exceeding 200,000 cells l−1 on the Northeast Peak. In May–June, Phytoplankton community low nitrate and silicate concentrations over the Bank, along with patches of slightly elevated ammonium, were apparently supporting a predominantly dinoflagellate population; the toxic dinoflagellate Alexan- drium spp. reached 13,000 cells l−1. Diatom cell densities on the second cruise in May–June were less than 60,000 cells l−1 and their spatial distributions did not overlap with the highest cell densities of Alexandrium spp. or other dinoflagellates. On the third and last cruise, in June–July, reduced nitrate and silicate concentrations were accompanied by a shift in the phytoplankton community: Alexandrium spp.