Tesis Doctoral Dinámica Del Microfitobentos Y Su
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extensive Chloroplast Genome Rearrangement Amongst Three Closely Related Halamphora Spp
RESEARCH ARTICLE Extensive chloroplast genome rearrangement amongst three closely related Halamphora spp. (Bacillariophyceae), and evidence for rapid evolution as compared to land plants 1,2 3 3 4 Sarah E. HamsherID *, Kyle G. KeepersID , Cloe S. Pogoda , Joshua G. Stepanek , Nolan C. Kane3, J. Patrick Kociolek3,5 1 Department of Biology, Grand Valley State University, Allendale, Michigan, United States of America, a1111111111 2 Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan, United States of America, 3 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, a1111111111 United States of America, 4 Department of Biology, Colorado Mountain College, Edwards, Colorado, United a1111111111 States of America, 5 Museum of Natural History, University of Colorado, Boulder, Colorado, United States of a1111111111 America a1111111111 * [email protected] Abstract OPEN ACCESS Citation: Hamsher SE, Keepers KG, Pogoda CS, Diatoms are the most diverse lineage of algae, but the diversity of their chloroplast Stepanek JG, Kane NC, Kociolek JP (2019) genomes, particularly within a genus, has not been well documented. Herein, we present Extensive chloroplast genome rearrangement three chloroplast genomes from the genus Halamphora (H. americana, H. calidilacuna, and amongst three closely related Halamphora spp. H. coffeaeformis), the first pennate diatom genus to be represented by more than one spe- (Bacillariophyceae), and evidence for rapid evolution as compared to land plants. PLoS ONE cies. Halamphora chloroplast genomes ranged in size from ~120 to 150 kb, representing a 14(7): e0217824. https://doi.org/10.1371/journal. 24% size difference within the genus. Differences in genome size were due to changes in pone.0217824 the length of the inverted repeat region, length of intergenic regions, and the variable pres- Editor: Berthold Heinze, Austrian Federal Research ence of ORFs that appear to encode as-yet-undescribed proteins. -
Morphological Characterization and Dna
MORPHOLOGICAL CHARACTERIZATION AND DNA FINGERPRINTING OF A PRASINOPHYTE FLAGELLATE ISOLATED FROM KERLA COAST BY KANCHAN SHASHIKANT NASARE DIVISION OF BIOCHEMICAL SCIENCES NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA 2002 MORPHOLOGICAL CHARACTERIZATION AND DNA FINGERPRINTING OF A PRASINOPHYTE FLAGELLATE ISOLATED FROM KERALA COAST A THESIS SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN BOTANY) BY KANCHAN SHASHIKANT NASARE DIVISION OF BIOCHEMICAL SCIENCES NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA. October 20002 DEDICATED TO MY FAMILY TABLE OF CONTENTS Page No. Declaration I Acknowledgement II Abbreviations III Abstract IV-VIII Chapter 1: General Introduction 1-19 Chapter2: Morphological characterization of a prasinophyte 20-43 flagellate isolated from Kochi backwaters Abstract 21 Introduction 21 Materials and Methods 23 Materials 23 Methods 23 Growth medium 23 Optimization of culture conditions 25 Pigment analysis 26 Light and electron microscopy 26 Results and Discussion Culture conditions 28 Pigment analysis 31 Light microscopy 32 Scanning electron microscopy 35 Transmission electron microscopy 36 Chapter 3: Phylogenetic placement of the Kochi isolate 44-67 among prasinophytes and other green algae using 18S ribosomal DNA sequences Abstract 45 Introduction 45 Materials and Methods 47 Materials 47 Methods 47 DNA isolation 47 Amplification of 18S rDNA 48 Sequencing of 18S rDNA 48 Sequence analysis 49 Results and Discussion 50 Chapter 4: DNA fingerprinting of the prasinophyte 68-101 flagellate isolated -
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
50 Annual Meeting of the Phycological Society of America
50th Annual Meeting of the Phycological Society of America August 10-13 Drexel University Philadelphia, PA The Phycological Society of America (PSA) was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. PSA awards include the Bold Award for the best student paper at the annual meeting, the Lewin Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, The PSA Award of Excellence (given to an eminent phycologist to recognize career excellence) and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrollment in phycology courses, Hoshaw Travel Awards for travel to the annual meeting and Grants-In-Aid for supporting research. To join PSA, contact the membership director or visit the website: www.psaalgae.org LOCAL ORGANIZERS FOR THE 2015 PSA ANNUAL MEETING: Rick McCourt, Academy of Natural Sciences of Drexel University Naomi Phillips, Arcadia University PROGRAM DIRECTOR FOR 2015: Dale Casamatta, University of North Florida PSA OFFICERS AND EXECUTIVE COMMITTEE President Rick Zechman, College of Natural Resources and Sciences, Humboldt State University Past President John W. Stiller, Department of Biology, East Carolina University Vice President/President Elect Paul W. Gabrielson, Hillsborough, NC International Vice President Juliet Brodie, Life Sciences Department, Genomics and Microbial Biodiversity Division, Natural History Museum, Cromwell Road, London Secretary Chris Lane, Department of Biological Sciences, University of Rhode Island, Treasurer Eric W. -
Mannitol Biosynthesis in Algae : More Widespread and Diverse Than Previously Thought
This is a repository copy of Mannitol biosynthesis in algae : more widespread and diverse than previously thought. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/113250/ Version: Accepted Version Article: Tonon, Thierry orcid.org/0000-0002-1454-6018, McQueen Mason, Simon John orcid.org/0000-0002-6781-4768 and Li, Yi (2017) Mannitol biosynthesis in algae : more widespread and diverse than previously thought. New Phytologist. pp. 1573-1579. ISSN 1469-8137 https://doi.org/10.1111/nph.14358 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Mannitol biosynthesis in algae: more widespread and diverse than previously thought. Thierry Tonon1,*, Yi Li1 and Simon McQueen-Mason1 1 Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK. * Author for correspondence: tel +44 1904328785; email [email protected] Key words: Algae, primary metabolism, mannitol biosynthesis, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, haloacid dehalogenase, histidine phosphatase, evolution of metabolic pathways. -
Permian–Triassic Non-Marine Algae of Gondwana—Distributions
Earth-Science Reviews 212 (2021) 103382 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Review Article Permian–Triassic non-marine algae of Gondwana—Distributions, natural T affinities and ecological implications ⁎ Chris Maysa,b, , Vivi Vajdaa, Stephen McLoughlina a Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden b Monash University, School of Earth, Atmosphere and Environment, 9 Rainforest Walk, Clayton, VIC 3800, Australia ARTICLE INFO ABSTRACT Keywords: The abundance, diversity and extinction of non-marine algae are controlled by changes in the physical and Permian–Triassic chemical environment and community structure of continental ecosystems. We review a range of non-marine algae algae commonly found within the Permian and Triassic strata of Gondwana and highlight and discuss the non- mass extinctions marine algal abundance anomalies recorded in the immediate aftermath of the end-Permian extinction interval Gondwana (EPE; 252 Ma). We further review and contrast the marine and continental algal records of the global biotic freshwater ecology crises within the Permian–Triassic interval. Specifically, we provide a case study of 17 species (in 13 genera) palaeobiogeography from the succession spanning the EPE in the Sydney Basin, eastern Australia. The affinities and ecological im- plications of these fossil-genera are summarised, and their global Permian–Triassic palaeogeographic and stra- tigraphic distributions are collated. Most of these fossil taxa have close extant algal relatives that are most common in freshwater, brackish or terrestrial conditions, and all have recognizable affinities to groups known to produce chemically stable biopolymers that favour their preservation over long geological intervals. -
Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts. -
The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
Downloaded from orbit.dtu.dk on: Oct 10, 2021 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng Total number of authors: 24 Published in: Nature Ecology & Evolution Link to article, DOI: 10.1038/s41559-020-1221-7 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Li, L., Wang, S., Wang, H., Sahu, S. K., Marin, B., Li, H., Xu, Y., Liang, H., Li, Z., Cheng, S., Reder, T., Çebi, Z., Wittek, S., Petersen, M., Melkonian, B., Du, H., Yang, H., Wang, J., Wong, G. K. S., ... Liu, H. (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology & Evolution, 4, 1220-1231. https://doi.org/10.1038/s41559-020-1221-7 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton. -
Onetouch 4.0 Scanned Documents
29 December 2000 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 113(4):1079-1088. 2000. Grievella shanki, a new genus and species of scolecitrichid calanoid copepod (Crustacea) from a hydrothermal vent along the southern East Pacific Rise Frank D. Ferrari and E. L. Markhaseva (FDF) Department of Invertebrate Zoology (MRC 534), National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A; (ELM) Russian Academy of Sciences, Zoological Institute, Universitetskaya nab. I, 199034, St. Petersburg, Russia Abstract.—Four derived states separate the calanoid copepod Grievella shan- ki, new genus and species, from other scolecitrichids: small integumental bumps on the genital complex; an ear-like extension on articulating segment 22 of antenna 1; two lateral setae on the distal exopodal segment of swimming leg 2; a denticle-like attenuation of the proximal praecoxal lobe of maxilla 2. The first probably is an autapomorphy for the species; the second, third and fourth are presumed synapomorphies for species of the new genus. The last derived state is convergent with some species of the calanoid superfamilies Epacteriscoidea, Centropagoidea and Megacalanoidea, but it is a synapomorphy within the Clausocalanoidea to which Grievella shanki belongs. Five setae on the proximal praecoxal lobe of maxilla 2 and three setae on the distal praecoxal lobe of the maxilliped separate Grievella shanki from species of Diaixidae, Parkiidae and Tharybidae, and species of Phaennidae, respectively. The states of these characters for Grievella shanki may be plesiomorphic to the states expressed in Diaixidae, Parkiidae, Tharybidae and Phaennidae so assignment of this species to the Scolecitrichidae is tentative. The number and kind of sensory setae on the distal basal lobe plus exopod of maxilla 2 alone are not adequate to diagnose the Scolecitrichidae, or to separate all of its species from those of the other families with these sensory setae. -
Microalgal Structure and Diversity in Some Canals Near Garbage Dumps of Bobongo Basin in the City of Douala, Cameroun
GSC Biological and Pharmaceutical Sciences, 2020, 10(02), 048–061 Available online at GSC Online Press Directory GSC Biological and Pharmaceutical Sciences e-ISSN: 2581-3250, CODEN (USA): GBPSC2 Journal homepage: https://www.gsconlinepress.com/journals/gscbps (RESEARCH ARTICLE) Microalgal structure and diversity in some canals near garbage dumps of Bobongo basin in the city of Douala, Cameroun Ndjouondo Gildas Parfait 1, *, Mekoulou Ndongo Jerson 2, Kojom Loïc Pradel 3, Taffouo Victor Désiré 4, Dibong Siegfried Didier 5 1 Department of Biology, High Teacher Training College, The University of Bamenda, P.O. BOX 39 Bambili, Cameroon. 2 Department of Animal organisms, Faculty of Science, The University of Douala, PO.BOX 24157 Douala, Cameroon. 3 Department of Animal organisms, Faculty of Science, The University of Douala, PO.BOX 24157 Douala, Cameroon. 4 Department of Botany, Faculty of Science, The University of Douala, PO.BOX 24157 Douala, Cameroon. 5 Department of Botany, Faculty of Science, The University of Douala, PO.BOX 24157 Douala, Cameroon. Publication history: Received on 14 January 2020; revised on 06 February 2020; accepted on 10 February 2020 Article DOI: https://doi.org/10.30574/gscbps.2020.10.2.0013 Abstract Anarchical and galloping anthropization is increasingly degrading the wetlands. This study aimed at determining the structure, diversity and spatiotemporal variation of microalgae from a few canals in the vicinity of garbage dumps of the Bobongo basin to propose methods of ecological management of these risk areas. Sampling took place from March 2016 to April 2019. Pelagic algae as well as those attached to stones and macrophytes were sampled in 25 stations. -
Trabajo De Grado Para Optar Al Título De Biólogo Marino
ESTRUCTURA DEL ZOOPLANCTON Y SU RELACIÓN CON LAS CONDICIONES MARINAS EN EL CARIBE NORTE COLOMBIANO LEIDY JOHANNA HERNÁNDEZ RIVERA Tesis de maestría para optar al título de Magíster en Ciencias Marinas Director ADOLFO SANJUAN MUÑOZ Profesor Asociado Biólogo Marino Magíster en Gestión Ambiental en Zonas Costeras Máster en Biodiversidad Animal Codirector ANDRÉS FRANCO HERRERA Director Departamento de Ciencias Biológicas y Ambientales Biólogo Marino Doctor en Oceanografía PROGRAMA DE MAESTRÍA EN CIENCIAS MARINAS DEPARTAMENTO DE CIENCIAS BIOLÓGICAS Y AMBIENTALES FACULTAD DE CIENCIAS NATURALES E INGENIERÍA UNIVERSIDAD DE BOGOTÁ JORGE TADEO LOZANO SANTA MARTA 2019 ESTRUCTURA DEL ZOOPLANCTON Y SU RELACIÓN CON LAS CONDICIONES MARINAS EN EL CARIBE NORTE COLOMBIANO Hernández Rivera, L. Programa de Maestría en Ciencias Marinas. Departamento de ciencias biológicas y ambientales. facultad de Ciencias Naturales e Ingeniería. Universidad de Bogotá Jorge Tadeo Lozano. RESUMEN Con el objetivo de determinar la estructura en términos de abundancia, biomasa, composición y diversidad del ensamblaje zooplanctónico en la costa del Caribe norte colombiano y relacionarla con las condiciones del agua, se llevaron a cabo dos cruceros de investigación en las dos épocas climáticas típicas de la región (seca y lluviosa). Las estaciones fueron ubicadas en dos de las provincias fisicoquímicas determinadas en el Caribe colombiano; grupo 2: río Magdalena-CGSM (región 1) y grupo 6: PNN Tayrona-Guajira (región 2). Estos se realizaron sobre una grilla de 16 estaciones, donde se efectuaron arrastres circulares superficiales. Se encontraron 87 familias-morfotipos encontrándose la mayor riqueza de familias en la región 1 en la época seca, mientras que las mayores contribuciones en abundancias y biomasas se obtuvieron en época lluviosa en la región PNN Tayrona-Guajira.