AP Biology Stats Notes Mean, Standard Deviation and Standard

Total Page:16

File Type:pdf, Size:1020Kb

AP Biology Stats Notes Mean, Standard Deviation and Standard AP Biology Stats Notes Mean, Standard Deviation and Standard Error Mean The mean formula should be used when you need to calculate the average of a set of values (data points). You are finding the average – don’t be intimidated by the crazy formula below. Standard Deviation The standard deviation formula is used to determine the amount by which your values (data points) typically differ from the mean value. In other words, the standard deviation determines the amount of variation in your data. A low standard deviation (less than 2): Tells you that your data is closer to the mean (most of the numbers are close to the mean) Increases the likelihood that the independent variable is causing the change in the dependent variable A high standard deviation (greater than 2): Tells you that your data is spread out (numbers are further from the mean) Additional factors, other than the independent variable, are affecting the dependent variable Standard Error The standard error formula is used to determine the precision of the mean value. In other words, you are determining how confident you are in your mean value by considering both the standard deviation (s) and the number of data points (n). Typically, when we have more data points, we can be more confident in our data (i.e., a lower standard error). A low standard error: Tells you that the calculated mean is closer to the true mean of the population Standard error allows you to: Infer how well the sample mean represents the true population mean Helps you to determine confidence in the data collected in a sample Set the 95% confidence interval = ± 2 SE (and place Error Bars on the data sets) Random sampling of the population should produce a mean that falls within ± 2 SE 95% of the time Error Bars If the error bars/confidence intervals DO NOT overlap, then you could claim that the data is statistically significant If the error bars/confidence internal DO overlap, you could not claim a statistically significant difference .
Recommended publications
  • Lecture 22: Bivariate Normal Distribution Distribution
    6.5 Conditional Distributions General Bivariate Normal Let Z1; Z2 ∼ N (0; 1), which we will use to build a general bivariate normal Lecture 22: Bivariate Normal Distribution distribution. 1 1 2 2 f (z1; z2) = exp − (z1 + z2 ) Statistics 104 2π 2 We want to transform these unit normal distributions to have the follow Colin Rundel arbitrary parameters: µX ; µY ; σX ; σY ; ρ April 11, 2012 X = σX Z1 + µX p 2 Y = σY [ρZ1 + 1 − ρ Z2] + µY Statistics 104 (Colin Rundel) Lecture 22 April 11, 2012 1 / 22 6.5 Conditional Distributions 6.5 Conditional Distributions General Bivariate Normal - Marginals General Bivariate Normal - Cov/Corr First, lets examine the marginal distributions of X and Y , Second, we can find Cov(X ; Y ) and ρ(X ; Y ) Cov(X ; Y ) = E [(X − E(X ))(Y − E(Y ))] X = σX Z1 + µX h p i = E (σ Z + µ − µ )(σ [ρZ + 1 − ρ2Z ] + µ − µ ) = σX N (0; 1) + µX X 1 X X Y 1 2 Y Y 2 h p 2 i = N (µX ; σX ) = E (σX Z1)(σY [ρZ1 + 1 − ρ Z2]) h 2 p 2 i = σX σY E ρZ1 + 1 − ρ Z1Z2 p 2 2 Y = σY [ρZ1 + 1 − ρ Z2] + µY = σX σY ρE[Z1 ] p 2 = σX σY ρ = σY [ρN (0; 1) + 1 − ρ N (0; 1)] + µY = σ [N (0; ρ2) + N (0; 1 − ρ2)] + µ Y Y Cov(X ; Y ) ρ(X ; Y ) = = ρ = σY N (0; 1) + µY σX σY 2 = N (µY ; σY ) Statistics 104 (Colin Rundel) Lecture 22 April 11, 2012 2 / 22 Statistics 104 (Colin Rundel) Lecture 22 April 11, 2012 3 / 22 6.5 Conditional Distributions 6.5 Conditional Distributions General Bivariate Normal - RNG Multivariate Change of Variables Consequently, if we want to generate a Bivariate Normal random variable Let X1;:::; Xn have a continuous joint distribution with pdf f defined of S.
    [Show full text]
  • Applied Biostatistics Mean and Standard Deviation the Mean the Median Is Not the Only Measure of Central Value for a Distribution
    Health Sciences M.Sc. Programme Applied Biostatistics Mean and Standard Deviation The mean The median is not the only measure of central value for a distribution. Another is the arithmetic mean or average, usually referred to simply as the mean. This is found by taking the sum of the observations and dividing by their number. The mean is often denoted by a little bar over the symbol for the variable, e.g. x . The sample mean has much nicer mathematical properties than the median and is thus more useful for the comparison methods described later. The median is a very useful descriptive statistic, but not much used for other purposes. Median, mean and skewness The sum of the 57 FEV1s is 231.51 and hence the mean is 231.51/57 = 4.06. This is very close to the median, 4.1, so the median is within 1% of the mean. This is not so for the triglyceride data. The median triglyceride is 0.46 but the mean is 0.51, which is higher. The median is 10% away from the mean. If the distribution is symmetrical the sample mean and median will be about the same, but in a skew distribution they will not. If the distribution is skew to the right, as for serum triglyceride, the mean will be greater, if it is skew to the left the median will be greater. This is because the values in the tails affect the mean but not the median. Figure 1 shows the positions of the mean and median on the histogram of triglyceride.
    [Show full text]
  • Startips …A Resource for Survey Researchers
    Subscribe Archives StarTips …a resource for survey researchers Share this article: How to Interpret Standard Deviation and Standard Error in Survey Research Standard Deviation and Standard Error are perhaps the two least understood statistics commonly shown in data tables. The following article is intended to explain their meaning and provide additional insight on how they are used in data analysis. Both statistics are typically shown with the mean of a variable, and in a sense, they both speak about the mean. They are often referred to as the "standard deviation of the mean" and the "standard error of the mean." However, they are not interchangeable and represent very different concepts. Standard Deviation Standard Deviation (often abbreviated as "Std Dev" or "SD") provides an indication of how far the individual responses to a question vary or "deviate" from the mean. SD tells the researcher how spread out the responses are -- are they concentrated around the mean, or scattered far & wide? Did all of your respondents rate your product in the middle of your scale, or did some love it and some hate it? Let's say you've asked respondents to rate your product on a series of attributes on a 5-point scale. The mean for a group of ten respondents (labeled 'A' through 'J' below) for "good value for the money" was 3.2 with a SD of 0.4 and the mean for "product reliability" was 3.4 with a SD of 2.1. At first glance (looking at the means only) it would seem that reliability was rated higher than value.
    [Show full text]
  • 1. How Different Is the T Distribution from the Normal?
    Statistics 101–106 Lecture 7 (20 October 98) c David Pollard Page 1 Read M&M §7.1 and §7.2, ignoring starred parts. Reread M&M §3.2. The eects of estimated variances on normal approximations. t-distributions. Comparison of two means: pooling of estimates of variances, or paired observations. In Lecture 6, when discussing comparison of two Binomial proportions, I was content to estimate unknown variances when calculating statistics that were to be treated as approximately normally distributed. You might have worried about the effect of variability of the estimate. W. S. Gosset (“Student”) considered a similar problem in a very famous 1908 paper, where the role of Student’s t-distribution was first recognized. Gosset discovered that the effect of estimated variances could be described exactly in a simplified problem where n independent observations X1,...,Xn are taken from (, ) = ( + ...+ )/ a normal√ distribution, N . The sample mean, X X1 Xn n has a N(, / n) distribution. The random variable X Z = √ / n 2 2 Phas a standard normal distribution. If we estimate by the sample variance, s = ( )2/( ) i Xi X n 1 , then the resulting statistic, X T = √ s/ n no longer has a normal distribution. It has a t-distribution on n 1 degrees of freedom. Remark. I have written T , instead of the t used by M&M page 505. I find it causes confusion that t refers to both the name of the statistic and the name of its distribution. As you will soon see, the estimation of the variance has the effect of spreading out the distribution a little beyond what it would be if were used.
    [Show full text]
  • Appendix F.1 SAWG SPC Appendices
    Appendix F.1 - SAWG SPC Appendices 8-8-06 Page 1 of 36 Appendix 1: Control Charts for Variables Data – classical Shewhart control chart: When plate counts provide estimates of large levels of organisms, the estimated levels (cfu/ml or cfu/g) can be considered as variables data and the classical control chart procedures can be used. Here it is assumed that the probability of a non-detect is virtually zero. For these types of microbiological data, a log base 10 transformation is used to remove the correlation between means and variances that have been observed often for these types of data and to make the distribution of the output variable used for tracking the process more symmetric than the measured count data1. There are several control charts that may be used to control variables type data. Some of these charts are: the Xi and MR, (Individual and moving range) X and R, (Average and Range), CUSUM, (Cumulative Sum) and X and s, (Average and Standard Deviation). This example includes the Xi and MR charts. The Xi chart just involves plotting the individual results over time. The MR chart involves a slightly more complicated calculation involving taking the difference between the present sample result, Xi and the previous sample result. Xi-1. Thus, the points that are plotted are: MRi = Xi – Xi-1, for values of i = 2, …, n. These charts were chosen to be shown here because they are easy to construct and are common charts used to monitor processes for which control with respect to levels of microbiological organisms is desired.
    [Show full text]
  • Problems with OLS Autocorrelation
    Problems with OLS Considering : Yi = α + βXi + ui we assume Eui = 0 2 = σ2 = σ2 E ui or var ui Euiuj = 0orcovui,uj = 0 We have seen that we have to make very specific assumptions about ui in order to get OLS estimates with the desirable properties. If these assumptions don’t hold than the OLS estimators are not necessarily BLU. We can respond to such problems by changing specification and/or changing the method of estimation. First we consider the problems that might occur and what they imply. In all of these we are basically looking at the residuals to see if they are random. ● 1. The errors are serially dependent ⇒ autocorrelation/serial correlation. 2. The error variances are not constant ⇒ heteroscedasticity 3. In multivariate analysis two or more of the independent variables are closely correlated ⇒ multicollinearity 4. The function is non-linear 5. There are problems of outliers or extreme values -but what are outliers? 6. There are problems of missing variables ⇒can lead to missing variable bias Of course these problems do not have to come separately, nor are they likely to ● Note that in terms of significance things may look OK and even the R2the regression may not look that bad. ● Really want to be able to identify a misleading regression that you may take seriously when you should not. ● The tests in Microfit cover many of the above concerns, but you should always plot the residuals and look at them. Autocorrelation This implies that taking the time series regression Yt = α + βXt + ut but in this case there is some relation between the error terms across observations.
    [Show full text]
  • Characteristics and Statistics of Digital Remote Sensing Imagery (1)
    Characteristics and statistics of digital remote sensing imagery (1) Digital Images: 1 Digital Image • With raster data structure, each image is treated as an array of values of the pixels. • Image data is organized as rows and columns (or lines and pixels) start from the upper left corner of the image. • Each pixel (picture element) is treated as a separate unite. Statistics of Digital Images Help: • Look at the frequency of occurrence of individual brightness values in the image displayed • View individual pixel brightness values at specific locations or within a geographic area; • Compute univariate descriptive statistics to determine if there are unusual anomalies in the image data; and • Compute multivariate statistics to determine the amount of between-band correlation (e.g., to identify redundancy). 2 Statistics of Digital Images It is necessary to calculate fundamental univariate and multivariate statistics of the multispectral remote sensor data. This involves identification and calculation of – maximum and minimum value –the range, mean, standard deviation – between-band variance-covariance matrix – correlation matrix, and – frequencies of brightness values The results of the above can be used to produce histograms. Such statistics provide information necessary for processing and analyzing remote sensing data. A “population” is an infinite or finite set of elements. A “sample” is a subset of the elements taken from a population used to make inferences about certain characteristics of the population. (e.g., training signatures) 3 Large samples drawn randomly from natural populations usually produce a symmetrical frequency distribution. Most values are clustered around the central value, and the frequency of occurrence declines away from this central point.
    [Show full text]
  • The Bootstrap and Jackknife
    The Bootstrap and Jackknife Summer 2017 Summer Institutes 249 Bootstrap & Jackknife Motivation In scientific research • Interest often focuses upon the estimation of some unknown parameter, θ. The parameter θ can represent for example, mean weight of a certain strain of mice, heritability index, a genetic component of variation, a mutation rate, etc. • Two key questions need to be addressed: 1. How do we estimate θ ? 2. Given an estimator for θ , how do we estimate its precision/accuracy? • We assume Question 1 can be reasonably well specified by the researcher • Question 2, for our purposes, will be addressed via the estimation of the estimator’s standard error Summer 2017 Summer Institutes 250 What is a standard error? Suppose we want to estimate a parameter theta (eg. the mean/median/squared-log-mode) of a distribution • Our sample is random, so… • Any function of our sample is random, so... • Our estimate, theta-hat, is random! So... • If we collected a new sample, we’d get a new estimate. Same for another sample, and another... So • Our estimate has a distribution! It’s called a sampling distribution! The standard deviation of that distribution is the standard error Summer 2017 Summer Institutes 251 Bootstrap Motivation Challenges • Answering Question 2, even for relatively simple estimators (e.g., ratios and other non-linear functions of estimators) can be quite challenging • Solutions to most estimators are mathematically intractable or too complicated to develop (with or without advanced training in statistical inference) • However • Great strides in computing, particularly in the last 25 years, have made computational intensive calculations feasible.
    [Show full text]
  • Linear Regression
    eesc BC 3017 statistics notes 1 LINEAR REGRESSION Systematic var iation in the true value Up to now, wehav e been thinking about measurement as sampling of values from an ensemble of all possible outcomes in order to estimate the true value (which would, according to our previous discussion, be well approximated by the mean of a very large sample). Givenasample of outcomes, we have sometimes checked the hypothesis that it is a random sample from some ensemble of outcomes, by plotting the data points against some other variable, such as ordinal position. Under the hypothesis of random selection, no clear trend should appear.Howev er, the contrary case, where one finds a clear trend, is very important. Aclear trend can be a discovery,rather than a nuisance! Whether it is adiscovery or a nuisance (or both) depends on what one finds out about the reasons underlying the trend. In either case one must be prepared to deal with trends in analyzing data. Figure 2.1 (a) shows a plot of (hypothetical) data in which there is a very clear trend. The yaxis scales concentration of coliform bacteria sampled from rivers in various regions (units are colonies per liter). The x axis is a hypothetical indexofregional urbanization, ranging from 1 to 10. The hypothetical data consist of 6 different measurements at each levelofurbanization. The mean of each set of 6 measurements givesarough estimate of the true value for coliform bacteria concentration for rivers in a region with that urbanization level. The jagged dark line drawn on the graph connects these estimates of true value and makes the trend quite clear: more extensive urbanization is associated with higher true values of bacteria concentration.
    [Show full text]
  • Lecture 5 Significance Tests Criticisms of the NHST Publication Bias Research Planning
    Lecture 5 Significance tests Criticisms of the NHST Publication bias Research planning Theophanis Tsandilas !1 Calculating p The p value is the probability of obtaining a statistic as extreme or more extreme than the one observed if the null hypothesis was true. When data are sampled from a known distribution, an exact p can be calculated. If the distribution is unknown, it may be possible to estimate p. 2 Normal distributions If the sampling distribution of the statistic is normal, we will use the standard normal distribution z to derive the p value 3 Example An experiment studies the IQ scores of people lacking enough sleep. H0: μ = 100 and H1: μ < 100 (one-sided) or H0: μ = 100 and H1: μ = 100 (two-sided) 6 4 Example Results from a sample of 15 participants are as follows: 90, 91, 93, 100, 101, 88, 98, 100, 87, 83, 97, 105, 99, 91, 81 The mean IQ score of the above sample is M = 93.6. Is this value statistically significantly different than 100? 5 Creating the test statistic We assume that the population standard deviation is known and equal to SD = 15. Then, the standard error of the mean is: σ 15 σµˆ = = =3.88 pn p15 6 Creating the test statistic We assume that the population standard deviation is known and equal to SD = 15. Then, the standard error of the mean is: σ 15 σµˆ = = =3.88 pn p15 The test statistic tests the standardized difference between the observed mean µ ˆ = 93 . 6 and µ 0 = 100 µˆ µ 93.6 100 z = − 0 = − = 1.65 σµˆ 3.88 − The p value is the probability of getting a z statistic as or more extreme than this value (given that H0 is true) 7 Calculating the p value µˆ µ 93.6 100 z = − 0 = − = 1.65 σµˆ 3.88 − The p value is the probability of getting a z statistic as or more extreme than this value (given that H0 is true) 8 Calculating the p value To calculate the area in the distribution, we will work with the cumulative density probability function (cdf).
    [Show full text]
  • Probability Distributions and Error Bars
    Statistics and Data Analysis in MATLAB Kendrick Kay, [email protected] Lecture 1: Probability distributions and error bars 1. Exploring a simple dataset: one variable, one condition - Let's start with the simplest possible dataset. Suppose we measure a single quantity for a single condition. For example, suppose we measure the heights of male adults. What can we do with the data? - The histogram provides a useful summary of a set of data—it shows the distribution of the data. A histogram is constructed by binning values and counting the number of observations in each bin. - The mean and standard deviation are simple summaries of a set of data. They are parametric statistics, as they make implicit assumptions about the form of the data. The mean is designed to quantify the central tendency of a set of data, while the standard deviation is designed to quantify the spread of a set of data. n ∑ xi mean(x) = x = i=1 n n 2 ∑(xi − x) std(x) = i=1 n − 1 In these equations, xi is the ith data point and n is the total number of data points. - The median and interquartile range (IQR) also summarize data. They are nonparametric statistics, as they make minimal assumptions about the form of the data. The Xth percentile is the value below which X% of the data points lie. The median is the 50th percentile. The IQR is the difference between the 75th and 25th percentiles. - Mean and standard deviation are appropriate when the data are roughly Gaussian. When the data are not Gaussian (e.g.
    [Show full text]
  • Examples of Standard Error Adjustment In
    Statistical Analysis of NCES Datasets Employing a Complex Sample Design > Examples > Slide 11 of 13 Examples of Standard Error Adjustment Obtaining a Statistic Using Both SRS and Complex Survey Methods in SAS This resource document will provide you with an example of the analysis of a variable in a complex sample survey dataset using SAS. A subset of the public-use version of the Early Child Longitudinal Studies ECLS-K rounds one and two data from 1998 accompanies this example, as well as an SAS syntax file. The stratified probability design of the ECLS-K requires that researchers use statistical software programs that can incorporate multiple weights provided with the data in order to obtain accurate descriptive or inferential statistics. Research question This dataset training exercise will answer the research question “Is there a difference in mathematics achievement gain from fall to spring of kindergarten between boys and girls?” Step 1- Get the data ready for use in SAS There are two ways for you to obtain the data for this exercise. You may access a training subset of the ECLS-K Public Use File prepared specifically for this exercise by clicking here, or you may use the ECLS-K Public Use File (PUF) data that is available at http://nces.ed.gov/ecls/dataproducts.asp. If you use the training dataset, all of the variables needed for the analysis presented herein will be included in the file. If you choose to access the PUF, extract the following variables from the online data file (also referred to by NCES as an ECB or “electronic code book”): CHILDID CHILD IDENTIFICATION NUMBER C1R4MSCL C1 RC4 MATH IRT SCALE SCORE (fall) C2R4MSCL C2 RC4 MATH IRT SCALE SCORE (spring) GENDER GENDER BYCW0 BASE YEAR CHILD WEIGHT FULL SAMPLE BYCW1 through C1CW90 BASE YEAR CHILD WEIGHT REPLICATES 1 through 90 BYCWSTR BASE YEAR CHILD STRATA VARIABLE BYCWPSU BASE YEAR CHILD PRIMARY SAMPLING UNIT Export the data from this ECB to SAS format.
    [Show full text]