State of the Climate in 2009

Total Page:16

File Type:pdf, Size:1020Kb

State of the Climate in 2009 STATE OF THE CLIMATE IN 2009 D.S. Arndt, M.O. Baringer and M.R. Johnson, Eds. Associate Eds. L.V. Alexander, H.J. Diamond, R.L. Fogt, J.M. Levy, J. Richter-Menge, P.W. Thorne, L.A. Vincent, A.B. Watkins and K.M. Willett (a) Yearly mean sea surface temperature anomalies (SSTA) in 2009 and (b) SSTA differences between 2009 and 2008. Anomalies are defi ned as departures from the 1971-2000 climatology. Refer to Chapter 3, Figure 3.1 for a more detailed description. Special Supplement to the Bulletin of the American Meteorological Society Vol. 91, No. 7, July 2010 STATE OF THE CLIMATE IN 2009 HOW TO CITE THIS DOCUMENT Citing the complete report: Arndt, D. S., M. O. Baringer, and M. R. Johnson, Eds., 2010: State of the Climate in 2009. Bull. Amer. Meteor. Soc., 91 (7), S1–S224. Citing a chapter (example): Diamond, H. J., Ed., 2010: The tropics [in “State of the Climate in 2009”]. Bull. Amer. Meteor. Soc., 91 (7), S79–S106. Citing a section (example): Halpert, M., G. D. Bell, and M. L’Heureux, 2010: ENSO and the Tropical Pacific [in “State of the Climate in 2009”]. Bull. Amer. Meteor. Soc., 91 (7), S79–S82. E DITOR & AUTHOR AffILIATIONS (alphabetical by name) EDITORS Attaher, Samar M., Agricultural Research Center, MALR, Alexander, Lisa V., Climate Change Research Centre, Universi- Cairo, Egypt ty of New South Wales, Sydney, New South Wales, Australia Baez, Julian, DMH-DINAC / CTA-UCA, Asunción, Paraguay Arndt, Derek S., NOAA/NESDIS National Climatic Data Cen- Banda, Joyce, Zimbabwe Meteorological Service, Zimbabwe ter, Asheville, North Carolina Banzon, Viva, NOAA/NESDIS National Climatic Data Center, Baringer, Molly O., NOAA/OAR Atlantic Oceanographic and Asheville, North Carolina Meteorological Laboratory, Physical Oceanography Division, Baringer, Molly O., NOAA/OAR Atlantic Oceanographic and Miami, florida Meteorological Laboratory, Physical Oceanography Division, Diamond, Howard J., NOAA/NESDIS National Climatic Data Miami, florida Center, Silver Spring, Maryland Barreira, Sandra, Argentine Naval Hydrographic Service, Fogt, Ryan L., Department of Geography, Ohio University, Buenos Aires, Argentina Athens, Ohio Barriopedro, David, Centro de Geofísica da Universidade de Johnson, Michael R., NOAA National Marine fisheries Service, Lisboa, Lisbon, Portugal Gloucester, Massachusetts Beal, Lisa M., Rosenstiel School of Marine and Atmospheric Levy, Joel M., NOAA/OAR Climate Program Office, Silver Science, Division of Meteorology and Physical Oceanography, Spring, Maryland Miami, florida Richter-Menge, Jacqueline, US Army Corps of Engineers, Behrenfeld, Michael J., Oregon State University, Corvallis, ERDC-Cold Regions Research and Engineering Laboratory, Oregon Hanover, New Hampshire Bell, Gerald D., NOAA/NWS/NCEP Climate Prediction Cen- Thorne, Peter W., Met Office Hadley Centre, Exeter, Devon, ter, Camp Springs, Maryland United Kingdom Belward, Alan S., Global Environment Monitoring Unit, IES, EC Vincent, Lucie A., Environment Canada, Toronto, Canada Joint Research Centre, Ispra, Italy Watkins, Andrew B., National Climate Centre, Australian Benedetti, Angela, European Centre for Medium-Range Bureau of Meteorology, Melbourne, Australia Weather forecasts (ECMWf), Reading, United Kingdom Willett, Katharine M., Met Office Hadley Centre, Exeter, Beszczynska-Moeller, Agnieszka, Alfred Wegener Institute, Devon, United Kingdom Germany Bhatt, Uma S., Geophysical Institute, University of Alaska AUTHORS fairbanks, fairbanks, Alaska Aceituno, Patricio, Universidad de Chile, Santiago, Chile Bhattacharya, Indrajit, Byrd Polar Research Center and De- Achberger, Christine, Earth Sciences Centre, University of partment of Geography, The Ohio State University, Colum- Gothenburg, Gothernburg, Sweden bus, Ohio Ackerman, Steven A., CIMSS University of Wisconsin - Madi- Bidegain, Mario, Universidad de la República, Uruguay son, Madison, Wisconsin Birkett, Charon, ESSIC, University of Maryland, College Park, Aguilar, Enrique, University Rovira I Virgili de Tarragona, Tar- Maryland ragona, Spain Bissolli, Peter, Deutscher Wetterdienst (German Meteorologi- Ahmed, Farid H., Météo Nationale Comorienne, Comores cal Service, DWD), WMO RA VI Regional Climate Centre on Alexander, Lisa V., Climate Change Research Centre, Universi- Climate Monitoring, Offenbach, Germany ty of New South Wales, Sydney, New South Wales, Australia Blake, Eric S., NOAA/NWS/NCEP National Hurricane Center, Alfaro, Eric J., Center for Geophysical Research and School of Miami, florida Physics, University of Costa Rica, San Jose, Costa Rica Blunden, Jessica, STG, Inc., Asheville, North Carolina Allan, Robert J., Met Office Hadley Centre, Exeter, Devon, Booneeady, Prithiviraj, Mauritius Meteorological Services, United Kingdom Vacoas, Mauritius Alves, Lincoln, Centro de Ciências do Sistema Terrestre Bowling, Laura C., Department of Agronomy, Purdue Univer- (CCST), Instituto Nacional de Pesquisas Espaciais (INPE), São sity, West Lafayette, Indiana Paulo, Brazil Box, Jason E., Byrd Polar Research Center and Department of Amador, Jorge A., Center for Geophysical Research and School Geography, The Ohio State University, Columbus, Ohio of Physics, University of Costa Rica, San Jose, Costa Rica Boyer, Timothy P., NOAA/NESDIS National Ocean Data Cen- Ambenje, Peter, Kenya Meteorological Department, Nairobi, ter, Silver Spring, Maryland Kenya Bromwich, David H., Byrd Polar Research Center, The Ohio Amelie,Vincent, Seychelles Meteorological Services, Seychelles State University, Columbus, Ohio Antonov, John I., NOAA/NESDIS National Ocean Data Center, Brown, Ross, Climate Research Division, Environment Canada, Silver Spring, Maryland Montréal, Quebec, Canada Ashik, Igor, Arctic and Antarctic Research Institute, St. Peters- Bryden, Harry L., Ocean Observing and Climate Research burg, Russia Group, National Oceanography Centre, Southampton, United Atheru, Zachary, IGAD Climate Prediction and Applications Kingdom Centre, Nairobi, Kenya STATE OF THE CLIMATE IN 2009 JULY 2010 | S3 Bulygina, Olga N., All-Russian Research Institute of Hydro- Fenimore, Chris, NOAA/NESDIS National Climatic Data Cen- meteorological Information – World Data Center, Obninsk, ter, Asheville, North Carolina Russia Fettweis, Xavier, Department of Geography, University of Calderon, Blanca, Center for Geophysical Research, University Liège, Belgium of Costa Rica, San Jose, Costa Rica Fogt, Ryan L., Department of Geography, Ohio University, Camargo, Suzana J., Lamont-Doherty Earth Observatory, The Athens, Ohio Earth Institute at Columbia University, Palisades, New York Fonseca-Rivera, Cecilia, Institute of Meteorology of Cuba, La Cappelen, John, Danish Meteorological Institute, Copenhagen, Habana, Cuba Denmark Foster, Michael J., AOS/CIMSS University of Wisconsin—Madi- Carmack, Eddy, Institute of Ocean Sciences, Sidney, Canada son, Madison, Wisconsin Carrasco, Gualberto, Servicio Nacional de Meteorología e Free, Melissa, NOAA Air Resources Laboratory, Silver Spring, Hidrología de Bolivia (SENAMHI), La Paz, Bolivia Maryland Carrión Romero, Ana M., Institute of Meteorology of Cuba, Frolov, Ivan, Arctic and Antarctic Research Institute, St. Peters- La Habana, Cuba burg, Russia Christy, John R., Earth System Science Center, University of Gibney, Ethan J., IMSG Inc., Asheville, North Carolina Alabama in Huntsville, Huntsville, Alabama Gill, Stephen, NOAA/NOS Center for Operational Oceano- Coelho, Caio A. S., CPTEC/INPE, Center for Weather fore- graphic Products and Services, Silver Spring, Maryland casts and Climate Studies, Cachoeira Paulista, Brazil Gitau, Wilson, Department of Meteorology, University of Colwell, Steve, British Antarctic Survey, Cambridge, United Nairobi, Kenya Kingdom Gleason, Karin L., NOAA/NESDIS National Climatic Data Comiso, Josefino C., NASA Goddard Space flight Center, Center, Asheville, North Carolina Greenbelt, Maryland Gobron, Nadine, Global Environment Monitoring Unit, IES, EC Crouch, Jake, NOAA/NESDIS National Climatic Data Center, Joint Research Centre, Ispra, Italy Asheville, North Carolina Goldammer, Johann G., Global fire Monitoring Centre, Max Cunningham, Stuart A., Ocean Observing and Climate Re- Planck Institute for Chemistry, freiburg University / United search Group, National Oceanography Centre, Southampton, Nations University (UNU), Germany and European Centre United Kingdom for Medium-Range Weather forecasts (ECMWf), Reading, Cutié Cancino, Virgen, Institute of Meteorology of Cuba, La United Kingdom Habana, Cuba Goldenberg, Stanley B., NOAA/OAR Atlantic Oceanographic Davydova-Belitskaya, Valentina, National Meteorological and Meteorological Laboratory, Miami, florida Service of Mexico, Mexico City, Mexico Goni, Gustavo, NOAA/OAR Atlantic Oceanographic and Decker, David, Byrd Polar Research Center and Department of Meteorological Laboratory, Physical Oceanography Division, Geography, The Ohio State University, Columbus, Ohio Miami, florida Derksen, Chris, Climate Research Division, Environment González García, Idelmis, Institute of Meteorology of Cuba, Canada, Downsview, Ontario, Canada La Habana, Cuba Diamond, Howard J., NOAA/NESDIS National Climatic Data Good, Simon A., Met Office Hadley Centre, Exeter, Devon, Center, Silver Spring, Maryland United Kingdom Dlugokencky, Ed J., NOAA Global Monitoring Division, Earth Gottschalck, Jonathan, NOAA/NWS/NCEP Climate Predic- System Research Laboratory, Boulder, Colorado tion Center, Camp Springs, Maryland Doelling, David R., NASA Langley Research Center, Hampton, Gould, William A., USDA forest Service, International Insti- Virginia tute of Tropical forestry,
Recommended publications
  • List of Dams and Reservoirs 1 List of Dams and Reservoirs
    List of dams and reservoirs 1 List of dams and reservoirs The following is a list of reservoirs and dams, arranged by continent and country. Africa Cameroon • Edea Dam • Lagdo Dam • Song Loulou Dam Democratic Republic of Congo • Inga Dam Ethiopia Gaborone Dam in Botswana. • Gilgel Gibe I Dam • Gilgel Gibe III Dam • Kessem Dam • Tendaho Irrigation Dam • Tekeze Hydroelectric Dam Egypt • Aswan Dam and Lake Nasser • Aswan Low Dam Inga Dam in DR Congo. Ghana • Akosombo Dam - Lake Volta • Kpong Dam Kenya • Gitaru Reservoir • Kiambere Reservoir • Kindaruma Reservoir Aswan Dam in Egypt. • Masinga Reservoir • Nairobi Dam Lesotho • Katse Dam • Mohale Dam List of dams and reservoirs 2 Mauritius • Eau Bleue Reservoir • La Ferme Reservoir • La Nicolière Reservoir • Mare aux Vacoas • Mare Longue Reservoir • Midlands Dam • Piton du Milieu Reservoir Akosombo Dam in Ghana. • Tamarind Falls Reservoir • Valetta Reservoir Morocco • Aït Ouarda Dam • Allal al Fassi Dam • Al Massira Dam • Al Wahda Dam • Bin el Ouidane Dam • Daourat Dam • Hassan I Dam Katse Dam in Lesotho. • Hassan II Dam • Idriss I Dam • Imfout Dam • Mohamed V Dam • Tanafnit El Borj Dam • Youssef Ibn Tachfin Dam Mozambique • Cahora Bassa Dam • Massingir Dam Bin el Ouidane Dam in Morocco. Nigeria • Asejire Dam, Oyo State • Bakolori Dam, Sokoto State • Challawa Gorge Dam, Kano State • Cham Dam, Gombe State • Dadin Kowa Dam, Gombe State • Goronyo Dam, Sokoto State • Gusau Dam, Zamfara State • Ikere Gorge Dam, Oyo State Gariep Dam in South Africa. • Jibiya Dam, Katsina State • Jebba Dam, Kwara State • Kafin Zaki Dam, Bauchi State • Kainji Dam, Niger State • Kiri Dam, Adamawa State List of dams and reservoirs 3 • Obudu Dam, Cross River State • Oyan Dam, Ogun State • Shiroro Dam, Niger State • Swashi Dam, Niger State • Tiga Dam, Kano State • Zobe Dam, Katsina State Tanzania • Kidatu Kihansi Dam in Tanzania.
    [Show full text]
  • Matthew Henson (August 8, 1866 – March 9, 1955) “First African-American Artic Explorer”
    The Clerk’s Black History Series Debra DeBerry Clerk of Superior Court DeKalb County Matthew Henson (August 8, 1866 – March 9, 1955) “First African-American Artic Explorer” Matthew Henson was born August 8, 1866, in Nanjemoy, Maryland, to freeborn black sharecropper parents. In 1867, his parents and three sisters moved to Georgetown to escape racial violence where his mother died when Matthew was seven years old. When Matthew’s father died, he went to live with his uncle in Washington, D.C. When Matthew was ten years old, he attended a ceremony honoring Abraham Lincoln where he heard social reformer and abolitionist, Frederick Douglas speak. Shortly thereafter, he left home, determined to find his own way. After working briefly in a restaurant, he walked all the way to Baltimore, Maryland. At the age of 12, Matthew went to sea as a cabin boy on the merchant ship Katie Hines, traveling to Asia, Africa and Europe under the watchful eye of the ship’s skipper, Captain Childs. After Captain Childs died, Matthew moved back to Washington, D.C. When Matthew was 21 years old, he met Commander Robert E. Peary, an explorer and officer in the U.S. Navy Corps of Civil Engineers. Impressed with Matthew’s seafaring experience, Commander Peary recruited him for an upcoming voyage to Nicaragua. After returning from Nicaragua, Matthew found work in Philadelphia, and in April 1891 he met and married Eva Flint. But shortly thereafter, the two explorers were off again for an expedition to Green- land and the marriage to Eva ended. Matthew and the Commander would cover thousands of miles across the sea and the world, exploring and making multiple attempts to reach the North Pole.
    [Show full text]
  • Analysis of the Constructive Features of the Earth Dam
    MATEC Web of Conferences 196, 02002 (2018) https://doi.org/10.1051/matecconf/201819602002 XXVII R-S-P Seminar 2018, Theoretical Foundation of Civil Engineering Analysis of the Constructive Features of the Earth Dam Mikhail Balzannikov1, 1Samara State University of Economics, 443090 Samara, 141 Sovetskoi Armii St, Russia Abstract. The article considers the earth dam of the run-of-river unit – Kuibyshev hydroelectric power station on the Volga river (Russia). The main parameters of the earth dam, peculiarities of its erection and operation are described. The article notes the importance of ensuring a high degree of reliability of water structures constructed near major cities. It is especially important to monitor the condition of retaining structures with long service life. The factors influencing the change of the initial design conditions of operation of the Kuibyshev run-of-river unit dam are discussed. The results of examination of the geometric parameters of the body of the dam, performed at different periods of its maintenance, are analyzed. Examination results revealed significant deviations of the elevation marks of the earth dam surface on the upstream side from the design values. Possible causes of the discrepancy between these parameters and the design solutions are considered. The conclusion is drawn that the most likely reason for these features of the dam design lies in the initial incompleteness of construction. The measures for carrying out repair work to improve the reliability of the earth dam are being recommended. 1 Introduction At present, ensuring reliable operation of retaining water structures is a very urgent requirement for both operating enterprises and design organizations [1, 2].
    [Show full text]
  • Special Supplement to the Bulletin of the American Meteorological Society Vol
    J. Blunden, D. S. Arndt, and M. O. Baringer, Eds. Associate Eds. K. M. Willett, A. J. Dolman, B. D. Hall, P. W. Thorne, J. M. Levy, H. J. Diamond, J. Richter-Menge, M. Jeffries, R. L. Fogt, L. A. Vincent, and J. M. Renwick Special Supplement to the Bulletin of the American Meteorological Society Vol. 92, No. 6, June 2011 www.whoi.edu/beaufort) show that the pack ice in the e. Land central Canada Basin is changing from a multiyear to 1) veGetation—D. A. Walker, U. S. Bhatt, T. V. Callaghan, J. a seasonal ice cover. C. Comiso, H. E. Epstein, B. C. Forbes, M. Gill, W. A. Gould, G. H. R. Henry, G. J. Jia, S. V. Kokelj, T. C. Lantz, S. F Oberbauer, 3) Sea ice thickness J. E. Pinzon, M. K. Raynolds, G. R. Shaver, C. J. Tucker, C. E. Combined estimates of ice thickness from sub- Tweedie, and P. J. Webber marine and satellite-based instruments provide the Circumpolar changes to tundra vegetation are longest record of sea ice thickness observation, begin- monitored from space using the Normalized Differ- ning in 1980 (Kwok et al. 2009; Ro throck et al. 2008). ence Vegetation Index (NDVI), an index of vegetation These data indicate that over a region covering ~38% greenness. In tundra regions, the annual maximum of the Arctic Ocean there is a long-term trend of sea NDVI (MaxNDVI) is usually achieved in early Au- ice thinning over the last three decades. gust and is correlated with above-ground biomass, Haas et al.
    [Show full text]
  • For Classification and Construction of Ships (Rccs)
    RULES FOR CLASSIFICATION AND CONSTRUCTION OF SHIPS (RCCS) Part 0 CLASSIFICATION 4 RCCS. Part 0 “Classification” 1 GENERAL PROVISIONS 1.1 The present Part of the Rules for the materials for the ships except for small craft Classification and Construction of Inland and used for non-for-profit purposes. The re- Combined (River-Sea) Navigation Ships (here quirements of the present Rules are applicable and in all other Parts — Rules) defines the to passenger ships, tankers, pushboats, tug- basic terms and definitions applicable for all boats, ice breakers and industrial ships of Parts of the Rules, general procedure of ship‘s overall length less than 20 m. class adjudication and composing of class The requirements of the present Rules are formula, as well as contains information on not applicable to small craft, pleasure ships, the documents issued by Russian River Regis- sports sailing ships, military and border- ter (hereinafter — River Register) and on the security ships, ships with nuclear power units, areas and seasons of operation of the ships floating drill rigs and other floating facilities. with the River Register class. However, the River Register develops and 1.2 When performing its classification and issues corresponding regulations and other survey activities the River Register is governed standards being part of the Rules for particu- by the requirements of applicable interna- lar types of ships (small craft used for com- tional agreements of Russian Federation, mercial purposes, pleasure and sports sailing Regulations on Classification and Survey of ships, ekranoplans etc.) and other floating Ships, as well as the Rules specified in Clause facilities (pontoon bridges etc.).
    [Show full text]
  • The Maritime Dimension of Csdp
    DIRECTORATE-GENERAL FOR EXTERNAL POLICIES OF THE UNION DIRECTORATE B POLICY DEPARTMENT STUDY THE MARITIME DIMENSION OF CSDP: GEOSTRATEGIC MARITIME CHALLENGES AND THEIR IMPLICATIONS FOR THE EUROPEAN UNION Abstract The global maritime security environment is in the midst of an important transformation, driven by a simultaneous intensification of global maritime flows, the growing interconnectedness of maritime regions, the diffusion of maritime power to emerging powers, and the rise of a number of maritime non-state actors. These changes are having a profound impact on the maritime security environment of the EU and its member states and require an upgrading of the maritime dimension of the EU’s Common Security and Defence Policy (CSDP). This study analysis the impact that the changing maritime security context is having on the EU’s maritime neighbourhood and along the EU’s sea lines of communications (SLOCs) and takes stock of the EU’s existing policies and instruments in the maritime security domain. Based on this analysis, the study suggests that the EU requires a comprehensive maritime security strategy that creates synergies between the EU’s Integrated Maritime Policy and the maritime dimension of CSDP and that focuses more comprehensively on the security and management of global maritime flows and sea-based activities in the global maritime commons. EP/EXPO/B/SEDE/FWC/2009-01/Lot6/21 January 2013 PE 433.839 EN Policy Department DG External Policies This study was requested by the European Parliament's Subcommittee on Security and
    [Show full text]
  • Arctic Policy &
    Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by the International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law (IUCN-CEL) Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by The International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of ICEL or the Arctic Task Force of the IUCN Commission on Environmental Law concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers and boundaries. The views expressed in this publication do not necessarily reflect those of ICEL or the Arctic Task Force. The preparation of Arctic Policy & Law: References to Selected Documents was a project of ICEL with the support of the Elizabeth Haub Foundations (Germany, USA, Canada). Published by: International Council of Environmental Law (ICEL), Bonn, Germany Copyright: © 2011 International Council of Environmental Law (ICEL) Reproduction of this publication for educational or other non- commercial purposes is authorized without prior permission from the copyright holder provided the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. Citation: International Council of Environmental Law (ICEL) (2011).
    [Show full text]
  • Geographic Names
    Commentary THE FLOOR OF THE ARCTICOCEAN: GEOGRAPHIC NAMES M. A. Beall, F. Edvalson2, K. Hunkins3, A. Molloyl, and N. Ostenso4 HE NAMING OF OCEAN FLOOR features in the Arctic seems to have been done Twithout thought to standardization in geographic nomenclature. W. K. Lyon, Director of the Arctic Sciences and Technology Division of the US.Navy Electronics Laboratory, called a meeting of the authors of the present paper to arbitrate the naming of these features in the hope that it would help to stem the proliferation of new namesand to standardize the names of the major features. The decisions of the meeting which was held in San Diego on 10 and 11 January 1966 were based on the following criteria: 1. Consistency with the Undersea terms and definitions proposed by the Advisory Committee on Undersea Features to the U.S. Board on Geo- graphicNames (Washington, D.C.: 1964) andLimits of Oceans and Seas, InternationalHydrographic Bureau Special PublicationNo. 23 (Monte Carlo: 1953) 2. Common usage 3. Priority of discovery or naming 4. Association withestablished geographic features 5. Minimizing ambiguity Fifty-four major features were discussed. Table 1 lists the names considered, the final suggested name, the approximate location, and the status of the name with the U.S. Board on Geographic Names and the International Hydrographic Bureau. The final suggested names represent the majority decision of the authors but it should be noted that in certain cases there was not complete unanimity. For the most part, however, it it felt that the accepted names should raise little controversy. The authors will endeavour to use the final suggested namesin future publications, and it is hoped that other investigatorswill find them suitable for their use.
    [Show full text]
  • Redacted for Privacy Abstract Approved: John V
    AN ABSTRACT OF THE THESIS OF MIAH ALLAN BEAL for the Doctor of Philosophy (Name) (Degree) in Oceanography presented on August 12.1968 (Major) (Date) Title:Batymety and_Strictuof_thp..4rctic_Ocean Redacted for Privacy Abstract approved: John V. The history of the explordtion of the Central Arctic Ocean is reviewed.It has been only within the last 15 years that any signifi- cant number of depth-sounding data have been collected.The present study uses seven million echo soundings collected by U. S. Navy nuclear submarines along nearly 40, 000 km of track to construct, for the first time, a reasonably complete picture of the physiography of the basin of the Arctic Ocean.The use of nuclear submarines as under-ice survey ships is discussed. The physiography of the entire Arctic basin and of each of the major features in the basin are described, illustrated and named. The dominant ocean floor features are three mountain ranges, generally paralleling each other and the 40°E. 140°W. meridian. From the Pacific- side of the Arctic basin toward the Atlantic, they are: The Alpha Cordillera; The Lomonosov Ridge; andThe Nansen Cordillera. The Alpha Cordillera is the widest of the three mountain ranges. It abuts the continental slopes off the Canadian Archipelago and off Asia across more than550of longitude on each slope.Its minimum width of about 300 km is located midway between North America and Asia.In cross section, the Alpha Cordillera is a broad arch rising about two km, above the floor of the basin.The arch is marked by volcanoes and regions of "high fractured plateau, and by scarps500to 1000 meters high.The small number of data from seismology, heat flow, magnetics and gravity studies are reviewed.The Alpha Cordillera is interpreted to be an inactive mid-ocean ridge which has undergone some subsidence.
    [Show full text]
  • New Records of the Chinese Mitten Crab, Eriocheir Sinensis H. Milne Edwards, 1853, from the Volga River, Russia
    Aquatic Invasions (2007) Volume 2, Issue 3: 169-173 Open Access doi: http://dx.doi.org/10.3391/ai.2007.2.3.3 © 2007 The Author(s). Journal compilation © 2007 REABIC Research Article New records of the Chinese mitten crab, Eriocheir sinensis H. Milne Edwards, 1853, from the Volga River, Russia Firdauz M. Shakirova1, Vadim E. Panov2* and Paul F. Clark3 1Federal State Scientific Institute “GosNIORKh”, Tatarstan Branch, Kazan, Tatarstan, Russia 2St.Petersburg State University, St. Petersburg, Russia 3Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, England E-mail: [email protected] (FMS), [email protected](VEP), [email protected] (PFC) *Corresponding author Received: 10 July 2007 / Accepted: 7 September 2007 Abstract Single adult specimens of the Chinese mitten crab have been regularly found in the Volga River since the mid-1970s, most likely originating from the eastern Baltic Sea via the Volga-Baltic Canal. Three new records of Eriocheir sinensis H. Milne Edwards, 1853 are reported from the Kuibyshev Reservoir, Volga River, Russia, found in fishing nets in October 2002 and April-May 2007. The origins and possible vectors for the introduction of these crabs are discussed. Key words: Crustacea, Brachyura, Eriocheir sinensis, Volga River basin, migration, hull fouling Introduction the eastern Baltic Sea have increased, with the estuaries of north-western Europe (Ojaveer et al. The Chinese mitten crab Eriocheir sinensis H. 2007) serving as a breeding area for crabs found Milne Edwards, 1853 (Crustacea: Brachyura: in the brackish water of the Baltic Sea and its Varunidae) was introduced into Europe at the basin.
    [Show full text]
  • SESSION I : Geographical Names and Sea Names
    The 14th International Seminar on Sea Names Geography, Sea Names, and Undersea Feature Names Types of the International Standardization of Sea Names: Some Clues for the Name East Sea* Sungjae Choo (Associate Professor, Department of Geography, Kyung-Hee University Seoul 130-701, KOREA E-mail: [email protected]) Abstract : This study aims to categorize and analyze internationally standardized sea names based on their origins. Especially noting the cases of sea names using country names and dual naming of seas, it draws some implications for complementing logics for the name East Sea. Of the 110 names for 98 bodies of water listed in the book titled Limits of Oceans and Seas, the most prevalent cases are named after adjacent geographical features; followed by commemorative names after persons, directions, and characteristics of seas. These international practices of naming seas are contrary to Japan's argument for the principle of using the name of archipelago or peninsula. There are several cases of using a single name of country in naming a sea bordering more than two countries, with no serious disputes. This implies that a specific focus should be given to peculiar situation that the name East Sea contains, rather than the negative side of using single country name. In order to strengthen the logic for justifying dual naming, it is suggested, an appropriate reference should be made to the three newly adopted cases of dual names, in the respects of the history of the surrounding region and the names, people's perception, power structure of the relevant countries, and the process of the standardization of dual names.
    [Show full text]
  • Waterbirds of Lake Baikal, Eastern Siberia, Russia
    FORKTAIL 25 (2009): 13–70 Waterbirds of Lake Baikal, eastern Siberia, Russia JIŘÍ MLÍKOVSKÝ Lake Baikal lies in eastern Siberia, Russia. Due to its huge size, its waterbird fauna is still insufficiently known in spite of a long history of relevant research and the efforts of local and visiting ornithologists and birdwatchers. Overall, 137 waterbird species have been recorded at Lake Baikal since 1800, with records of five further species considered not acceptable, and one species recorded only prior to 1800. Only 50 species currently breed at Lake Baikal, while another 11 species bred there in the past or were recorded as occasional breeders. Only three species of conservation importance (all Near Threatened) currently breed or regularly migrate at Lake Baikal: Asian Dowitcher Limnodromus semipalmatus, Black-tailed Godwit Limosa limosa and Eurasian Curlew Numenius arquata. INTRODUCTION In the course of past centuries water levels in LB fluctuated considerably (Galaziy 1967, 1972), but the Lake Baikal (hereafter ‘LB’) is the largest lake in Siberia effects on the local avifauna have not been documented. and one of the largest in the world. Avifaunal lists of the Since the 1950s, the water level in LB has been regulated broader LB area have been published by Gagina (1958c, by the Irkutsk Dam. The resulting seasonal fluctuations 1960b,c, 1961, 1962b, 1965, 1968, 1988), Dorzhiyev of water levels significantly influence the distribution and (1990), Bold et al. (1991), Dorzhiyev and Yelayev (1999) breeding success of waterbirds (Skryabin 1965, 1967a, and Popov (2004b), but the waterbird fauna has not 1995b, Skryabin and Tolchin 1975, Lipin et al.
    [Show full text]