Geographic Names

Total Page:16

File Type:pdf, Size:1020Kb

Geographic Names Commentary THE FLOOR OF THE ARCTICOCEAN: GEOGRAPHIC NAMES M. A. Beall, F. Edvalson2, K. Hunkins3, A. Molloyl, and N. Ostenso4 HE NAMING OF OCEAN FLOOR features in the Arctic seems to have been done Twithout thought to standardization in geographic nomenclature. W. K. Lyon, Director of the Arctic Sciences and Technology Division of the US.Navy Electronics Laboratory, called a meeting of the authors of the present paper to arbitrate the naming of these features in the hope that it would help to stem the proliferation of new namesand to standardize the names of the major features. The decisions of the meeting which was held in San Diego on 10 and 11 January 1966 were based on the following criteria: 1. Consistency with the Undersea terms and definitions proposed by the Advisory Committee on Undersea Features to the U.S. Board on Geo- graphicNames (Washington, D.C.: 1964) andLimits of Oceans and Seas, InternationalHydrographic Bureau Special PublicationNo. 23 (Monte Carlo: 1953) 2. Common usage 3. Priority of discovery or naming 4. Association withestablished geographic features 5. Minimizing ambiguity Fifty-four major features were discussed. Table 1 lists the names considered, the final suggested name, the approximate location, and the status of the name with the U.S. Board on Geographic Names and the International Hydrographic Bureau. The final suggested names represent the majority decision of the authors but it should be noted that in certain cases there was not complete unanimity. For the most part, however, it it felt that the accepted names should raise little controversy. The authors will endeavour to use the final suggested namesin future publications, and it is hoped that other investigatorswill find them suitable for their use. Two recommendations for changes are beingmade tothe International Hydrographic Bureau. The I.H.B. publication, Limits of Oceans and Seas, shows the southern boundary of the Chukchi Sea to bealong the Arctic Circle. A more logical southern boundary for this sea would be astraight line across the narrowest constriction of the Bering Strait, i.e. a line connecting Cape Prince of Wales and East Cape (Mys Dezhneva). The second recommendation is the elimination 1U.S. Navy Electronics Laboratory, San Diego, California. 2U.S. Naval Oceanographic Office, Washington, D.C. 3Lamont Geological Observatory, Palisades, New York. *Geophysical and Polar Research Center, Madison, Wisconsin. 21 5 216 THE FLOOR OF THEARCTIC OCEAN.. of the term Beaufort Sea, as recent studies have shown that there are no hydro- graphic or physiographic reasons for a unique designation of this region of the Arctic Ocean. The location and approximate boundaries of the suggested names (Table 1) are shown in Figs. 1 and 2. Recent investigations from drifting ice stations, aero- magnetic flights, nuclearsubmarine voyages, and icebreaker expeditions have shown that the limits and sizes of many ocean floor features will require modifi- cation in the future. The authors also wish to emphasize that the proposed names are not theonly features to be foundin the Arctic Ocean and environs. They do, however, represent the majorfeatures that are now defined with sufficient certainty and clarity to warrant proper and consistent names; others wilI un- doubtedly be added in the future as a result of further investigations. The opinionsand assertions contained herein are those of the writers personally and are not to be construed as official, or as reflecting the views of the Navy Department, the naval service at large, or of the Arctic Institute of North America. Table 1 PREVIOUSNAME(S) DESCRIPTIONACCEPTEDNAME AND/OR LOCATION (upper and lower case used for descriptive terms, Fig. 2) ARCTIC OCEAN ARCTIC OCEAN NORTHPOLAR SEA ~CHUKCHISEA ~CHUKCHISEA CHUKCHEESEA (Boundarychange requested of. IHB) BEAST SIBERIANSEA 3EAST SIBERIANSEA 1-8As shown by the International Hydrographic BureauSpecial 4LAPTEV SEA 4LAPTEV SEA . Publication No. 23. %ARA SEA 5KARA SEA ~BARENTSSEA ~BARENTSSEA ?LINCOLN SEA LINCOLN SEA BEAUFORT SEA UDeletionrequested of IHB 9ARCTIC OCEAN BASIN 9Arctic Ocean Basin 9The basin of the Arctic Ocean seaward of the edge of the Conti- NORTHPOLAR BASIN nental Shelves. C CANADA BASIN ~~AMERASIABASIN* 10The portion of the Arctic Ocean Basin that is bounded in part by LAURENTIAN BASIN theChukchi and East Siberian Shelves andthe crest of the HYPERBOREANBASIN LomonosovRidge. E EURASIA BASIN EURASIA BASIN* 11The portion of the Arctic Ocean Basin that is bounded in part by EURASIANBASIN the Lincoln, Barents,Kara, Laptev Shelves andthe crest of the ANGARABASIN Lomonosov Ridge. ~~LOMONOSOVRIDGE ~~LOMONOSOVRIDGE* 12A long, narrow ridge bisecting the Arctic Ocean Basin. HARRISRIDGE l3N0RTH CANADIAN BASIN ]CANADA BASIN* 13AmerasiaBasin CANADABASIN C.4NADA DEEP I4ALPHA RIDGE CORDILLERA' 14AmerasiaBasin ALPHA RISE FLETCHERSRIDGE FLETCHERSRISE MENDELEEVRIDGE 15MID-ARCTIC RIDGE 15NANSEN CORDILLERA' 15EurasiaBasin MID-ATLANTICRIDGE Extension into theArctic Ocean Table 1 (Cont'd.) P REV IOU S NAME(S)PREVIOUS ACCEPTEDDESCRIPTIONNAME AND/OR LOCATION (upper and lower case used for descriptive terms, Fig. 2) ~~MARKAROVBASIN ~~MARKAROVBASIN* l6Basin bounded by the Alpha Cordillera and theLomonosov Ridge. CENTRALARCTIC BASIN SIBERIABASIN I7FRAM DEEP 17FRAM BASIN" 17Basin bounded by the Lomonosov Ridge and the Nansen Cordillera. NANSENBASIN EUROPEANBASIN ~~CHUKCHISHELF 1sChukchi Shelf 1sThe Shelf beneath theChukchi Sea. lgoGOTORUK SEAVALLEY 10oGOTORUK VALLEY* 19ChukchiShelf. HERALD SHOAL HERALD REEF* "ChukchiShelf. HERALD CANYON "HERALDCANYON* 2lChukchi Shelf. ~~CHUKCHICANYON HOPE VALLEY* "ChukchiShelf. 23CHUKCHI RISE 23cHUKCHI RISE* 23Rise abutting the Chukchi Shelf, including the Chukchi Plateau. 24CHIJKCHICAP 24CHUKCHlPLATEAU' 24Canada Basin. 25cIIUKCHI ABYSSALPLAIN ~~CHUKCHIPLAIN" "Canada Basin. C CANADA ABYSSALPLAIN C CANADA PLAIN* 26Canada Basin. 27cHARLIE GAP 27cHARLIE GAP* 27The Gap connecting theChukchi Plain andthe CanadaPlain. *SEASTSIBERIAN SHELF "East Siberian Shelf 28Shelf beneath the EastSiberian Sea. *gwRANGEL ABYSSALPLAIN SgWRANGEL PLAIN" 29Markarov Basin. soSIAERIA ABYSSAL PLAIN 30FLETCHER PLAIN* 30Markarov Basin. 31A~~~SGAP ~~ARLISGAP* 31The Gap connecting theWrangel Plain andthe FletcherPlain. ~~LAPTEVSHELF 32Laptev Shelf 32Shelf beneath the Laptev Sea. KAKA SHELF "Kara Shelf Whelf beneath the Kara Sea. 34vORONIN TROUGH 34vORONIN TROUGH* 34Kara Shelf. SEVERNAYASTRATH 3BUSHAKOVA TROUGH 35SVYATAYA ANNATROUGH" 35Kara Shelf. ST. ANNA TROUGH SVYATAYAANNA TROUGH Table 1 (Cont'd.) PREVIOUSNAME(S) ACCEPTEDDESCRIPTION NAME AND/OR LOCATION (upper and lower case used for descriptive terms, Fig. 2) 36EASTNOVAYA ZEMLYA TROUGHz6EAST NOVAYAZEMLYA TROUGH' 36Kara Shelf. 37BARENTSSHELF 37Barents Shelf 37SShelf beneaththe Barents Sea. 38WEST NOVAYAZEMLYA TROUGH38WEST NOVAYAZEMLYA TROUGH'38Barents Shelf. 39MURMANSK RISE 39MURMANSK RISE* 39Barents Shelf. 40BARENTS TROUGH lOBARENTS TROUGH" 40Barents Shelf. BEARISLAND TROUGH 41HOPEN RISE 41SPITSBERGEN BANK' 41Barents Shelf. SPITSBERGENBANK 42LENA TROUGH 42LENA TROUGH* 42Between Greenland and Spitsbergen. 43NANSEN RISE 43YERMAK RISE* 430ff NorthCoast of Spitsbergen. NANSENSWELL 44NANSEN SILL 44Delete 440ff Northeast Greenland. 45BELGICA BANK 45BELGICA BANK' 450ff Northeast Greenland. 460~'SHOAL 460~'BANK' 46Off Northeast Coast of Greenland. OB' BANK 47MORRIS JESUP RISE ORRIS JESUPRISE* 470ff NortheastCoast of Greenland. 48LINCOLNSHELF 48Lincoln Shelf 48Shelf beneath the Lincoln Sea. 4gMARVIN RIDGE 49MARVIN SPUR' 49Between the Alpha Cordillera and the Lornonosov Ridge EOBEAUFORTPLATEAU SOBEAUFORT TERRACE' 50Canada Basin. 51BEAUFORTSHELF 5lDelete 51Shelf beneaththe Beaufort Sea. 52AMUNDSEN STRATH 57AMUNDSEN STRATH' 52Canada Basin. 53MACKENZIESEA VALLEY 53MACKENZIE CANYON' 53Canada Basin. MACKENZIECANYON BIBARROW CANYON 54BARROWCANYON' 54Canada Basin. BARROW SEA VALLEY 'Name approved by the U.S. Board of Geographic Names. .
Recommended publications
  • Matthew Henson (August 8, 1866 – March 9, 1955) “First African-American Artic Explorer”
    The Clerk’s Black History Series Debra DeBerry Clerk of Superior Court DeKalb County Matthew Henson (August 8, 1866 – March 9, 1955) “First African-American Artic Explorer” Matthew Henson was born August 8, 1866, in Nanjemoy, Maryland, to freeborn black sharecropper parents. In 1867, his parents and three sisters moved to Georgetown to escape racial violence where his mother died when Matthew was seven years old. When Matthew’s father died, he went to live with his uncle in Washington, D.C. When Matthew was ten years old, he attended a ceremony honoring Abraham Lincoln where he heard social reformer and abolitionist, Frederick Douglas speak. Shortly thereafter, he left home, determined to find his own way. After working briefly in a restaurant, he walked all the way to Baltimore, Maryland. At the age of 12, Matthew went to sea as a cabin boy on the merchant ship Katie Hines, traveling to Asia, Africa and Europe under the watchful eye of the ship’s skipper, Captain Childs. After Captain Childs died, Matthew moved back to Washington, D.C. When Matthew was 21 years old, he met Commander Robert E. Peary, an explorer and officer in the U.S. Navy Corps of Civil Engineers. Impressed with Matthew’s seafaring experience, Commander Peary recruited him for an upcoming voyage to Nicaragua. After returning from Nicaragua, Matthew found work in Philadelphia, and in April 1891 he met and married Eva Flint. But shortly thereafter, the two explorers were off again for an expedition to Green- land and the marriage to Eva ended. Matthew and the Commander would cover thousands of miles across the sea and the world, exploring and making multiple attempts to reach the North Pole.
    [Show full text]
  • Bathymetry and Deep-Water Exchange Across the Central Lomonosov Ridge at 88–891N
    ARTICLE IN PRESS Deep-Sea Research I 54 (2007) 1197–1208 www.elsevier.com/locate/dsri Bathymetry and deep-water exchange across the central Lomonosov Ridge at 88–891N Go¨ran Bjo¨rka,Ã, Martin Jakobssonb, Bert Rudelsc, James H. Swiftd, Leif Andersone, Dennis A. Darbyf, Jan Backmanb, Bernard Coakleyg, Peter Winsorh, Leonid Polyaki, Margo Edwardsj aGo¨teborg University, Earth Sciences Center, Box 460, SE-405 30 Go¨teborg, Sweden bDepartment of Geology and Geochemistry, Stockholm University, Stockholm, Sweden cFinnish Institute for Marine Research, Helsinki, Finland dScripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA eDepartment of Chemistry, Go¨teborg University, Go¨teborg, Sweden fDepartment of Ocean, Earth, & Atmospheric Sciences, Old Dominion University, Norfolk, USA gDepartment of Geology and Geophysics, University of Alaska, Fairbanks, USA hPhysical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA iByrd Polar Research Center, Ohio State University, Columbus, OH, USA jHawaii Institute of Geophysics and Planetology, University of Hawaii, HI, USA Received 23 October 2006; received in revised form 9 May 2007; accepted 18 May 2007 Available online 2 June 2007 Abstract Seafloor mapping of the central Lomonosov Ridge using a multibeam echo-sounder during the Beringia/Healy–Oden Trans-Arctic Expedition (HOTRAX) 2005 shows that a channel across the ridge has a substantially shallower sill depth than the 2500 m indicated in present bathymetric maps. The multibeam survey along the ridge crest shows a maximum sill depth of about 1870 m. A previously hypothesized exchange of deep water from the Amundsen Basin to the Makarov Basin in this area is not confirmed.
    [Show full text]
  • Special Supplement to the Bulletin of the American Meteorological Society Vol
    J. Blunden, D. S. Arndt, and M. O. Baringer, Eds. Associate Eds. K. M. Willett, A. J. Dolman, B. D. Hall, P. W. Thorne, J. M. Levy, H. J. Diamond, J. Richter-Menge, M. Jeffries, R. L. Fogt, L. A. Vincent, and J. M. Renwick Special Supplement to the Bulletin of the American Meteorological Society Vol. 92, No. 6, June 2011 www.whoi.edu/beaufort) show that the pack ice in the e. Land central Canada Basin is changing from a multiyear to 1) veGetation—D. A. Walker, U. S. Bhatt, T. V. Callaghan, J. a seasonal ice cover. C. Comiso, H. E. Epstein, B. C. Forbes, M. Gill, W. A. Gould, G. H. R. Henry, G. J. Jia, S. V. Kokelj, T. C. Lantz, S. F Oberbauer, 3) Sea ice thickness J. E. Pinzon, M. K. Raynolds, G. R. Shaver, C. J. Tucker, C. E. Combined estimates of ice thickness from sub- Tweedie, and P. J. Webber marine and satellite-based instruments provide the Circumpolar changes to tundra vegetation are longest record of sea ice thickness observation, begin- monitored from space using the Normalized Differ- ning in 1980 (Kwok et al. 2009; Ro throck et al. 2008). ence Vegetation Index (NDVI), an index of vegetation These data indicate that over a region covering ~38% greenness. In tundra regions, the annual maximum of the Arctic Ocean there is a long-term trend of sea NDVI (MaxNDVI) is usually achieved in early Au- ice thinning over the last three decades. gust and is correlated with above-ground biomass, Haas et al.
    [Show full text]
  • The Maritime Dimension of Csdp
    DIRECTORATE-GENERAL FOR EXTERNAL POLICIES OF THE UNION DIRECTORATE B POLICY DEPARTMENT STUDY THE MARITIME DIMENSION OF CSDP: GEOSTRATEGIC MARITIME CHALLENGES AND THEIR IMPLICATIONS FOR THE EUROPEAN UNION Abstract The global maritime security environment is in the midst of an important transformation, driven by a simultaneous intensification of global maritime flows, the growing interconnectedness of maritime regions, the diffusion of maritime power to emerging powers, and the rise of a number of maritime non-state actors. These changes are having a profound impact on the maritime security environment of the EU and its member states and require an upgrading of the maritime dimension of the EU’s Common Security and Defence Policy (CSDP). This study analysis the impact that the changing maritime security context is having on the EU’s maritime neighbourhood and along the EU’s sea lines of communications (SLOCs) and takes stock of the EU’s existing policies and instruments in the maritime security domain. Based on this analysis, the study suggests that the EU requires a comprehensive maritime security strategy that creates synergies between the EU’s Integrated Maritime Policy and the maritime dimension of CSDP and that focuses more comprehensively on the security and management of global maritime flows and sea-based activities in the global maritime commons. EP/EXPO/B/SEDE/FWC/2009-01/Lot6/21 January 2013 PE 433.839 EN Policy Department DG External Policies This study was requested by the European Parliament's Subcommittee on Security and
    [Show full text]
  • Age and Origin of the Lomonosov Ridge: a Key Continental Fragment in Arctic Ocean Reconstructions
    Geophysical Research Abstracts Vol. 17, EGU2015-10207-1, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License. Age and origin of the Lomonosov Ridge: a key continental fragment in Arctic Ocean reconstructions Christian Marcussen, Christian Knudsen, John R. Hopper, Thomas Funck, Jon R. Ineson, and Morten Bjerager Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark The Lomonosov Ridge is a trans-oceanic seafloor high that separates the Eurasia Basin from the Amerasia Basin. It extends for a distance of almost 1800 km across the Arctic Ocean from the Lincoln Shelf off Greenland and Canada to the East Siberian Shelf. Although known from the ACEX drilling expedition to be a sliver of continental crust, it remains an enigmatic feature and many details of its history are unknown. In the summer of 2012, GEUS recovered dredge samples from two locations along the flank of the ridge facing the Eurasian Basin. The samples comprise 100 kg and 200 kg of rocks and rock pieces ranging in size from 0.1 to 80 kg which were recovered from two different scarps associated with rotated continental fault blocks. A significant quantity of rocks with identical structures and isotopic fingerprints show that they formed at the same time and from the same geological material. This combined with the broken and angular nature of many of the pieces recovered indicates that the material is from in situ bedrock and does not represent dropstones brought to the area by drifting ice. Two main sedimentary rock types were recovered - an arkosic metasedimentary rock, and a quartz rich non-metamorphic sandstone.
    [Show full text]
  • Arctic Policy &
    Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by the International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law (IUCN-CEL) Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by The International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of ICEL or the Arctic Task Force of the IUCN Commission on Environmental Law concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers and boundaries. The views expressed in this publication do not necessarily reflect those of ICEL or the Arctic Task Force. The preparation of Arctic Policy & Law: References to Selected Documents was a project of ICEL with the support of the Elizabeth Haub Foundations (Germany, USA, Canada). Published by: International Council of Environmental Law (ICEL), Bonn, Germany Copyright: © 2011 International Council of Environmental Law (ICEL) Reproduction of this publication for educational or other non- commercial purposes is authorized without prior permission from the copyright holder provided the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. Citation: International Council of Environmental Law (ICEL) (2011).
    [Show full text]
  • Redacted for Privacy Abstract Approved: John V
    AN ABSTRACT OF THE THESIS OF MIAH ALLAN BEAL for the Doctor of Philosophy (Name) (Degree) in Oceanography presented on August 12.1968 (Major) (Date) Title:Batymety and_Strictuof_thp..4rctic_Ocean Redacted for Privacy Abstract approved: John V. The history of the explordtion of the Central Arctic Ocean is reviewed.It has been only within the last 15 years that any signifi- cant number of depth-sounding data have been collected.The present study uses seven million echo soundings collected by U. S. Navy nuclear submarines along nearly 40, 000 km of track to construct, for the first time, a reasonably complete picture of the physiography of the basin of the Arctic Ocean.The use of nuclear submarines as under-ice survey ships is discussed. The physiography of the entire Arctic basin and of each of the major features in the basin are described, illustrated and named. The dominant ocean floor features are three mountain ranges, generally paralleling each other and the 40°E. 140°W. meridian. From the Pacific- side of the Arctic basin toward the Atlantic, they are: The Alpha Cordillera; The Lomonosov Ridge; andThe Nansen Cordillera. The Alpha Cordillera is the widest of the three mountain ranges. It abuts the continental slopes off the Canadian Archipelago and off Asia across more than550of longitude on each slope.Its minimum width of about 300 km is located midway between North America and Asia.In cross section, the Alpha Cordillera is a broad arch rising about two km, above the floor of the basin.The arch is marked by volcanoes and regions of "high fractured plateau, and by scarps500to 1000 meters high.The small number of data from seismology, heat flow, magnetics and gravity studies are reviewed.The Alpha Cordillera is interpreted to be an inactive mid-ocean ridge which has undergone some subsidence.
    [Show full text]
  • Quaternary Stratigraphy of the Northwind Ridge, Arctic Ocean
    Quaternary Stratigraphy of the Northwind Ridge, Arctic Ocean THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Kevin Allen Crawford B.S. Graduate Program in Geological Sciences The Ohio State University 2010 Master's Examination Committee: Peter-Noel Webb, Advisor Leonid Polyak Lawrence A. Krissek Copyright by Kevin A Crawford 2010 Abstract The Arctic Ocean plays an important role in modulating the world‘s climate. Changes in sea-ice albedo and the export of freshwater into the North Atlantic could have serious repercussions to the climate patterns far beyond the Arctic. To understand fully the impacts of the retreating sea-ice cover and the warming Arctic Ocean we need to look into the past for clues. Paleoenvironments of the Arctic Ocean can be reconstructed by using sea-floor sediment constituents, such as paleobiological and mineral components as well as chemical and paleomagnetic parameters. Three cores raised from the Northwind Ridge, north of the Alaskan continental margin, were chosen to investigate sedimentary patterns and related paleoenvironments in the western Arctic Ocean across a time frame from the Holocene to estimated early Pleistocene. These cores show a range of sedimentation rates decreasing from south to north, thus allowing a development of a relatively high-resolution Upper Quaternary stratigraphy at the southern part of the ridge and a lower-resolution, yet longer stratigraphy for its northern part. In addition to this long stratigraphic coverage, the northern core has well-preserved calcareous microfauna, which provides new insights into paleoceanographic environments.
    [Show full text]
  • On Thin Ice? (Mis)Interpreting Russian Policy in the High North Roderick Kefferpütz
    No. 205/February 2010 On Thin Ice? (Mis)interpreting Russian Policy in the High North Roderick Kefferpütz limate change in the Arctic is expected to make the ice cap dwindling to a record-low minimum extent the region a lot busier as new strategic of 4.3 million square km in September 2007.2 resources become available. The Russian C These developments open up an array of intractable Federation is a key player in this context, having put challenges, including threats to biodiversity and the forth a comprehensive Arctic strategy. Russian policy traditional way of life of autochthon communities in towards the so-called High North, however, is the Arctic region. Of particular danger to global oftentimes not seen in its entirety and has received a environmental stability, however, is the threat to low- plethora of criticism in the Western media and foreign lying coastal regions posed by rising sea levels. This policy community. This paper aims to contribute to a would not only have immense political, environmental better understanding of Russian actions in the High and social consequences; the economic effects would North by providing a succinct overview of Russian also be tremendous. According to Allianz financial policies in the region and identifying the fundamental services, a rise of half a metre by the middle of this rationale behind them. The paper concludes that century could put at risk more than 28 trillion dollars’ Russia’s Arctic policy is not only a lot more nuanced worth of assets in the world’s largest coastal cities.3 In but also not very different from the policies conducted addition, increasing temperatures in this volatile region by other riparian states.
    [Show full text]
  • Gchron-2019-16.Pdf
    https://doi.org/10.5194/gchron-2019-16 Preprint. Discussion started: 7 November 2019 c Author(s) 2019. CC BY 4.0 License. A new 30,000 year chronology for rapidly deposited sediments on the Lomonosov Ridge using bulk radiocarbon dating and probabilistic stratigraphic alignment Francesco Muschitiello1, Matt O’Regan2, Jannik Martens3, Gabriel West2, Örjan Gustafsson3, Martin 5 Jakobsson2 1 Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK 2 Department of Geological Sciences, Stockholm University, Svante Arrhenius väg 8, SE 106 91, Sweden 3 Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE 106 91, Sweden 10 Correspondence to: Francesco Muschitiello ([email protected]) Abstract. We present a new marine chronostratigraphy from a high-accumulation rate Arctic Ocean core at the intersection of the Lomonosov Ridge and the Siberian margin, spanning the last ~30 kyr. The chronology was derived using a combination of bulk 14C dating and stratigraphic correlation to Greenland ice-core records. This was achieved by applying an appositely developed Markov chain Monte Carlo algorithm for Bayesian probabilistic alignment of proxy records. The algorithm 15 simulates depositionally realistic alignments that are consistent with the available radiocarbon age estimates and allows deriving uncertainty bands associated with the inferred alignment. Current composite chronologies from this region are reasonably consistent with our age model during the Holocene and the latter part of deglaciation. However, prior to ~14 kyr BP they yield too old age estimates with offsets that linearly increase up to ~40 kyr near the onset of Marine Isotope Stage (MIS) 2.
    [Show full text]
  • SESSION I : Geographical Names and Sea Names
    The 14th International Seminar on Sea Names Geography, Sea Names, and Undersea Feature Names Types of the International Standardization of Sea Names: Some Clues for the Name East Sea* Sungjae Choo (Associate Professor, Department of Geography, Kyung-Hee University Seoul 130-701, KOREA E-mail: [email protected]) Abstract : This study aims to categorize and analyze internationally standardized sea names based on their origins. Especially noting the cases of sea names using country names and dual naming of seas, it draws some implications for complementing logics for the name East Sea. Of the 110 names for 98 bodies of water listed in the book titled Limits of Oceans and Seas, the most prevalent cases are named after adjacent geographical features; followed by commemorative names after persons, directions, and characteristics of seas. These international practices of naming seas are contrary to Japan's argument for the principle of using the name of archipelago or peninsula. There are several cases of using a single name of country in naming a sea bordering more than two countries, with no serious disputes. This implies that a specific focus should be given to peculiar situation that the name East Sea contains, rather than the negative side of using single country name. In order to strengthen the logic for justifying dual naming, it is suggested, an appropriate reference should be made to the three newly adopted cases of dual names, in the respects of the history of the surrounding region and the names, people's perception, power structure of the relevant countries, and the process of the standardization of dual names.
    [Show full text]
  • Russia and the Arctic: the New Great Game 1 Dr Mark a Smith
    Advanced Research and Assessment Group Russi an Series 07/26 Defence Academy of the United Kingdom The Last Dash North Dr Mark A Smith & Keir Giles Contents Russia and the Arctic: The New Great Game 1 Dr Mark A Smith Looking North 10 Keir Giles Key Points * The belief that the North Pole region could contain large quantities of oil and gas is one of the major forces driving Russian policy. The North Pole expedition of July-August 2007 is laying the ground for submitting a claim to the UN Commission on the Limits of the Continental Shelf that the Lomonosov Ridge belongs to Russia. * Russia’s claims will be challenged by Canada, the USA and Denmark. The Arctic region is likely to become a region of geopolitical competition later in the 21st century as the ice cap melts. * There is a widespread view in Russia that its claim to Arctic territory is not speculative, but rightful compensation for territorial losses in Europe. * Any foreign interest in the area, government, commercial or environmental, is seen as hostile intent. * Armed action by NATO to contest Russia’s Arctic claims is discussed as a serious possibility. * Reports of the death of the Russian North are greatly exaggerated, as they take no account of commercial rebirth based on the oil industry. * Russia has a well-developed commercial and transport infrastructure to take advantage of opportunities offered by the retreating icecap, in contrast to other littoral states. * Naval re-armament and increased military activity mean the same applies to capacity for military action. This map has been supplied courtesy of the University of Texas Libraries, The Univeristy of Texas at Austin.
    [Show full text]