Biological Control (Revised March 2021)

Total Page:16

File Type:pdf, Size:1020Kb

Biological Control (Revised March 2021) SECTION A. INTRODUCTION Section contents Biological Control (Revised March 2021) . A-1 Using Pesticides Safely (Revised March 2020) . A-8 This handbook is designed as a quick and ready reference for weed Important Points to Remember control practices and herbicides used in various cropping systems or sites in Idaho, Oregon, and Washington. This handbook is not intended as a complete guide to weed con- trol or herbicide use. Authors have assembled the most reli- This handbook will be useful to Extension agents, company field able information available to them at the time of publication. representatives, commercial spray applicators and consultants, her- Due to constantly changing laws and regulations, authors can bicide dealers, teachers, and producers. assume no liability for the recommendations. Recommendations are based on research results from the Agricultural Any use of a pesticide contrary to instructions on the printed Experiment Stations and Extension Services of Oregon, Idaho, and label is illegal and is not recommended. Before using any Washington. A few suggestions are included from research conducted herbicide, read the label on the container. Before a herbicide in other states, and from U.S. Department of Agriculture research can be recommended for a specific use, it must be thoroughly centers. In all cases, authors make every effort to list only registered her- tested. The recommendation on the manufacturer’s label, bicides, and to ensure that the information conforms to product labels when followed, can prevent many problems arising from the and company recommendations. improper use of a chemical. Revision and Availability This handbook is updated annually. Trade-name products and services are mentioned as illustra- Individual sections are revised once each year; revision dates are tions only. This does not mean that the participating Exten- listed at the start of each section. Most sections are also available as sion Services endorse these products and services or that they PDF documents on the weed handbook website: intend to discriminate against products and services not men- http://pnwhandbooks.org/weed tioned. Commonly recognized trade names (brand names) Some sections may include additional online content, such as photos of some commercial pesticides are used in this handbook to and links to related websites, publications, and other resources. help identify the common name used by the Weed Science Society of America (WSSA), not as recommendations for that Please send comments or suggestions to handbook editor particular product. Ed Peachey ([email protected]). Biological Control Jennifer E . Andreas, Joseph Milan, Carol Randall, and Joel Price Revised March 2021 Classical biological weed control involves the introduction and in controlling Mediterranean sage, St. Johnswort (Klamath weed), management of selected host-specific natural enemies to reduce tansy ragwort, Dalmatian and yellow toadflax, purple loosestrife, and suppress problematic non-native weeds. The majority of the diffuse knapweed, and leafy spurge. Pacific Northwest’s weeds are exotic, originating from other con- Biocontrol is a slow process, and its efficacy is highly variable. Since tinents. These newly introduced plants, freed from the natural it can take several years for biological control agent (BCA) popula- enemies found in their native range, gain a competitive advantage tions to build to levels capable of weed suppression, many BCAs over native plants which allows the introduced plants to become have not been present or studied long enough in the Pacific North- weedy. Once weed populations become well distributed, herbicides, west to determine their ability to control their host weed. Only after cultural, and mechanical methods of weed control are not always monitoring target weed and BCA populations over time will the economical or physically able to meet weed management objec- impact of newly introduced BCAs become evident. tives. Classical weed biological control (biocontrol) is a weed man- agement tool that is inexpensive, self-sustaining, and host-specific BCAs impact their target weeds directly and indirectly. They directly and may help reduce the negative impact of weeds, particularly impact weeds by destroying plant tissues and interfering with plant where other control methods are not feasible. functions. BCAs cause indirect impact by increasing stress on the weed, which may reduce its ability to compete with desirable plants. Biocontrol differs from other weed control methods because it does not result in immediate weed population reductions. Successful Biocontrol can be integrated with other management practices to biological control reduces the competitive ability of target weeds, reduce target weed populations. For example, once weeds are weak- allowing other plants to successfully compete with and suppress ened by BCAs, competitive plantings can reduce the availability of target weed populations through time. Unlike other weed control light, water, and nutrients to already stressed weed populations. In options, biocontrol rarely causes substantial weed population re- addition, satellite weed populations can be controlled by herbicides ductions in the initial year of release; however, successful biocontrol or physical means to reduce weed spread while BCAs attack the can result in significant, sustained weed reductions over a period primary infestation. of years. In the Pacific Northwest, biocontrol has been successful PNW Weed Management Handbook A1 Similar to other weed control methods, biocontrol is not a silver management methods. Interdisciplinary vegetation management bullet; it will not eradicate all of the target weed since a BCA’s sur- teams are working strategically to find the best single or combina- vival depends on the presence of its host plant. Therefore, when tion of weed control tools to minimize adverse environmental and using BCAs, expect weed populations to persist, but at much lower socioeconomic impacts. levels. After target weed populations decrease, populations of BCAs If you are considering importing BCAs from another state, be aware will decrease correspondingly. This is a natural cycle. A resurgence that federal interstate transport permits may be required. For more of weed populations may occur due to seed reserves in the soil, host information, contact your nearest USDA APHIS PPQ office, or visit weed plants missed by the BCA, and lagging populations of BCAs. https://www.aphis.usda.gov/aphis/ourfocus/planthealth/import-in- In areas where the BCAs do not provide sufficient control, other formation/permits/regulated-organism-and-soil-permits/biological- weed control methods may need to be integrated to achieve desired control-organism-permits or your state weed biocontrol specialist. results, or a search for additional BCAs may be pursued. Permits for approved BCAs are free but take time to review and issue The BCAs released in the Pacific Northwest have been tested to so it is best to apply well before your anticipated ship date. ensure they are host-specific (i.e., they will only feed on the host Anyone who implements classical biological weed control is en- weed species). Host-specificity testing is an expensive and time- couraged to follow the International Code of Best Practices for Clas- consuming task that must be done before a BCA is allowed to be sical Biological Control of Weeds, adopted by the delegates at the introduced into the United States. Some candidate BCAs, which 1999 International Symposium on Biological Control of Weeds. The could be effective in reducing target weed populations, may not twelve codes for safe and effective biocontrol practices can be found be approved for introduction because they are not host-specific at http://www.invasives.wsu.edu/Code.htm. Briefly, the key guide- enough. A candidate BCA that is not sufficiently host-specific will lines for biocontrol implementation includes: be rejected for release in the United States to ensure that the BCA, in the absence of its host weed, will not move to crops, native flora, • Releasing only safe and approved BCAs. or endangered plant species. • Using the most effective BCAs. Biocontrol of certain weeds may not work in your area, even if it • Documenting releases. State agencies can provide release does elsewhere. BCAs require specific conditions to survive and forms and appreciate receiving release information for their thrive. Climate variations (e.g. cold winters), plant biotype differ- records. ences, and nearby insecticidal treatments (e.g. mosquito abate- ment or agricultural pest insect control) may account for some • Releasing only the intended target BCA by thoroughly remov- past biocontrol failures. To maximize success, trained personnel ing all other insects and plants from collecting material. should supervise and monitor biocontrol efforts. To monitor BCAs, • Stopping releases of ineffective BCA, or when control is the Standardized Impact Monitoring Protocol (SIMP) is recom- achieved. mended. More information on SIMP can be found by accessing the • Monitoring for impacts on the host weed, non-target species, ISDA/BLM biocontrol website (http://invasivespecies.idaho.gov/ and the environment. bio-control-monitoring). Once release sites for BCAs have been selected, protecting those areas from disturbance so BCAs can get established is essential. As highlighted in the code of best practices, do not use non-APHIS Initial BCA releases often consist of a small number of individual approved natural
Recommended publications
  • Jahresberichte Des Naturwissenschaftlichen Vereins Wuppertal E.V
    Jber. naturwiss. Ver. Wuppertal 53 158- 205 Wuppertal, 15.12.2000 Das Käfervorkommen im Burgholz - Untersuchungsaspekte von 1952 bis 1996 Wolfgang Kolbe Mit 1 Tabelle Abstract Since the beginning of the second part of the 20'h century systematic collections ofbeetles were made to investigate the forest populations of the Burgholz State Forest in Wuppertal and Solingen (Northrhine­ Westphalia, Germany). H.-U. TRIELE was the first, who studied comparatively the composition of animal communities - among other arthropods also the beetles- of 9 testareas in the Burgholz State Forest (1952/53). A new phase in exploration of Coleoptera starts 1969. Over a period of 25 years investigations were made to explore the Coleoptera. One aspect was the influence of the red ants (Formica polyctena) as enemies of carabids.- Very important apparatures to study the structure and dynamic of several populations are pitfall traps, ground photoeclectors and arboreal photoeclectors. Within the catched beetle species above all Staphylinidae, Curculionidae, Scolytidae und Rhizophagidae are in the centre of interest. Important results yield also the investigation in different types offorests (exotic and indigenous wood­ land trees ), Anfang der zweiten Hälfte des vergangeneu Jahrhunderts begannen die gezielten Aufsammlungen von Käfern in den Wäldern des Staatsforstes Burgholz in Wupper­ tal und Solingen. Es war Hans-Ulrich TRIELE, der 1952 und 1953 die Aufnahme von Tierbeständen zur Erfassung der Tiergesellschaften in der Bodenstreu verschie­ dener Waldtypen des Niederbergischen Landes durchführte. Neun seiner insgesamt 27 Probeflächen befanden sich im Burgholz; dabei handelte es sich um Buchen­ Traubeneichen-Wälder, Fichten- und Lärchenaufforstungen. Hier ein Zitat aus sei­ ner einschlägigen Publikation: "Von allen in dieser Arbeit behandelten Tiergruppen stellen die Käfer die artenreichste dar.
    [Show full text]
  • Euphorbia Subg
    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ БОТАНИЧЕСКИЙ ИНСТИТУТ ИМ. В.Л. КОМАРОВА РОССИЙСКОЙ АКАДЕМИИ НАУК На правах рукописи Гельтман Дмитрий Викторович ПОДРОД ESULA РОДА EUPHORBIA (EUPHORBIACEAE): СИСТЕМА, ФИЛОГЕНИЯ, ГЕОГРАФИЧЕСКИЙ АНАЛИЗ 03.02.01 — ботаника ДИССЕРТАЦИЯ на соискание ученой степени доктора биологических наук САНКТ-ПЕТЕРБУРГ 2015 2 Оглавление Введение ......................................................................................................................................... 3 Глава 1. Род Euphorbia и основные проблемы его систематики ......................................... 9 1.1. Общая характеристика и систематическое положение .......................................... 9 1.2. Краткая история таксономического изучения и формирования системы рода ... 10 1.3. Основные проблемы систематики рода Euphorbia и его подрода Esula на рубеже XX–XXI вв. и пути их решения ..................................................................................... 15 Глава 2. Материал и методы исследования ........................................................................... 17 Глава 3. Построение системы подрода Esula рода Euphorbia на основе молекулярно- филогенетического подхода ...................................................................................................... 24 3.1. Краткая история молекулярно-филогенетического изучения рода Euphorbia и его подрода Esula ......................................................................................................... 24 3.2. Результаты молекулярно-филогенетического
    [Show full text]
  • HADULLA WAGNER 2016 Hundsbachtal
    Mitt. Arb.gem. Rhein. Koleopterologen (Bonn) 26 , 2016, 11–25 Zur Käferfauna (Coleoptera) der Blockhalden im Hundsbachtal bei Gerolstein Ergebnisse der Gemeinschaftsexkursionen der Arbeitsgemeinschaft Rheinischer Koleopterologen im April 2013 KARL HADULLA & THOMAS WAGNER Kurzfassung: Im Naturschutzgebiet Hundsbachtal südwestlich von Gerolstein in der Eifel befindet sich in einer Blockschutthalde am Rande eines Basaltschlacken- vulkans ein bekannter Standort für Glazialrelikte der Tierwelt. Am 13. April 2013 fand eine Exkursion statt, während der auch Bodenfallen tief in den Blockschutt ausgebracht und zwei Wochen später eingeholt wurden. Es konnten insgesamt 210 Käferarten nachgewiesen werden, 24 in Bodenfallen und davon acht ausschließlich mit dieser Methode. Darunter waren eine Anzahl cavernicoler Arten, dabei auch Choleva lederiana als Erstfund für das Rheinland, sowie der blockhaldenspezifische Kurzflügler Leptusa simonii . Ein Wiederfund nach 50 Jahren für die Rheinprovinz ist Orthocerus clavicornis . Auf die taxonomisch-nomenklatorischen Änderungen von Choleva lederiana , deren Berücksichtigung in der Bestimmungsliteratur und ihre aktuelle mitteleuropäische Verbreitung, wird im Besonderen eingegangen. Abstract: The Nature Reserve „Hundsbachtal“ southwest of Gerolstein, Eifel moun- tains in Western Germany, has a large scree slope along an pleistocaene volcano and is a well known area for glacial relict species. During an excursion on 13th of April 2013 pitfall traps have been set most deeply in rubble that were collected two weeks later. Altogether 210 beetle species could be found, 24 in the pitfall traps, and eight of them exclusively with this method. Beyond the numerous cavernicolous beetles, many Choleva lederiana could be found for the first time in the Rhineland, further- more the scree slope typic staphylinid Leptusa simonii . As a recapture after fifty years in the Rhineland, Orthocerus clavicornis was found on gravel ground covered with lichens close to the mouth of the Hundsbach creek.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Coleoptera: Curculionidae, Lixinae)
    J. Entomol. Res. Soc., 14(2): 71-85, 2012 ISSN:1302-0250 New Faunistic Data on Selected Palaearctic Species of the Genus Larinus Dejean, 1821 (Coleoptera: Curculionidae, Lixinae) Levent GÜLTEKİN1 Attila PODLUSSÁNY2 1Atatürk University, Faculty of Agriculture, Department of Plant Protection, 25240 Erzurum, TURKEY. e-mail: [email protected] 2Hungarian Natural History Museum, H-1088 Budapest, Baross utca 13, HUNGARY. e-mail: [email protected] ABSTRACT Faunistic data regarding 50 species of the weevil genus Larinus Dejean, 1821 (Curculionidae: Lixinae) from the Palaearctic region are registered. New country records are: Larinus elegans Desbrochers, 1897 and L. puncticollis Capiomont, 1874 for Iran; L. filiformis Petri, 1907 for Georgia; L. fucatus Faust, 1891 and L. rectinasus Petri, 1907 for Syria; L. hedenborgi Boheman, 1845 for Cyprus; L. idoneus Gyllenhal, 1835 and L. darsi Capiomont, 1874 for Turkey; L. carinirostris Gyllenhal, 1835 for Bulgaria; L. curtus Hochhuth, 1851 and L. minutus Gyllenhal, 1835 for Croatia; L. leuzeae Fabre, 1870 for Spain; L. modestus Gyllenhal, 1835 for Syria and Israel; L. nubeculosus Gyllenhal, 1835 for Greece, Hungary, Slovenia; L. gravidus Olivier, 1807 and L. rectinasus Petri, 1907 for Greece; L. serratulae Becker, 1864 for Turkmenistan; L. sibiricus Gyllenhal, 1835 for Macedonia; L. sulphurifer Boheman, 1843 and L. ochreatus (Olivier, 1807) for Tunisia; L. syriacus Gyllenhal, 1835 for Croatia and Macedonia; L. vitellinus Gyllenhal, 1835 for Israel; L. vulpes (Olivier, 1807) for Bulgaria, Croatia, Serbia and Turkey. Keywords: Curculionidae, Larinus, new records, faunistic data. INTRODUCTION The weevil genus Larinus Dejean, 1821 (Coleoptera: Curculionidae: Lixinae) contains many species which are closely associated with thistles, knapweeds or other noxious weeds belonging to the tribe Cardueae (Asteraceae) in the Palaearctic (Ter-Minassian, 1967; Zwölfer et al., 1971).
    [Show full text]
  • Field Release of the Gall Mite, Aceria Drabae
    United States Department of Field release of the gall mite, Agriculture Aceria drabae (Acari: Marketing and Regulatory Eriophyidae), for classical Programs biological control of hoary Animal and Plant Health Inspection cress (Lepidium draba L., Service Lepidium chalapense L., and Lepidium appelianum Al- Shehbaz) (Brassicaceae), in the contiguous United States. Environmental Assessment, January 2018 Field release of the gall mite, Aceria drabae (Acari: Eriophyidae), for classical biological control of hoary cress (Lepidium draba L., Lepidium chalapense L., and Lepidium appelianum Al-Shehbaz) (Brassicaceae), in the contiguous United States. Environmental Assessment, January 2018 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action.
    [Show full text]
  • Asteraceae) from Central and Southeastern Europe
    ACTA BIOLOGICA CRACOVIENSIA Series Botanica 53/1: 102–110, 2011 DOI: 10.2478/v10182-011-0014-3 CHROMOSOME NUMBERS IN HIERACIUM AND PILOSELLA (ASTERACEAE) FROM CENTRAL AND SOUTHEASTERN EUROPE TOMASZ ILNICKI1* AND ZBIGNIEW SZELĄG2** 1Department of Plant Cytology and Embryology, Jagiellonian University, Grodzka 52, 31-044 Cracow, Poland, 2Institute of Botany, Jagiellonian University, Kopernika 31, 31-501 Cracow, Poland Received March 20, 2011; revision accepted April 29, 2011 Chromosome numbers of 46 Hieracium L. and Pilosella Vaill. taxa from Austria, Bulgaria, Czech Republic, Macedonia, Montenegro, Poland, Romania, Serbia and Slovakia are presented. Chromosomes numbers are given for the first time for Hieracium amphigenum Briq. 2n = 3x = 27, H. bohatschianum Zahn 2n = 4x = 36, H. borbasii R. Uechtr. 2n = 4x = 36, H. cernuum Friv. 2n = 2x = 18, H. hazslinszkyi Pax 2n = 3x = 27, H. mirekii Szeląg 2n = 4x = 36, H. polyphyllobasis (Nyár. & Zahn) Szeląg 2n = 3x = 27, H. porphyriticum A. Kern. 2n = 4x = 36, H. racemosum Waldst. & Kit. ex Willd. subsp. racemosum 2n = 3x = 27, H. scardicum Borm. & Zahn 2n = 4x = 36, H. sparsum subsp. ipekanum Rech. fil. & Zahn 2n = 4x = 36, H. sparsum subsp. peristeriense Behr & Zahn, H. sparsum subsp. squarrosobracchiatum Behr & al. 2n = 3x = 27, H. tomosense Simk. 2n = 4x = 36, H. tubulare Nyár. 2n = 4x = 36, H. werneri Szeląg 2n = 3x = 27 and Pilosella fusca subsp. subpe- dunculata (Zahn) Szeląg, as well as five species of Hieracium sect. Cernua R. Uechtr. not described to date and a hybrid between H. bifidum s. lat. and H. pojoritense Woł. Key words: Asteraceae, chromosome numbers, Europe, Hieracium, karyotypes, Pilosella. INTRODUCTION In the genus Pilosella, determining the mode of reproduction on the basis of ploidy level is more com- Hieracium L.
    [Show full text]
  • Appendix B Natural History and Control of Nonnative Invasive Species
    Appendix B: Natural History and Control of Nonnative Invasive Plants Found in Ten Northern Rocky Mountains National Parks Introduction The Invasive Plant Management Plan was written for the following ten parks (in this document, parks are referred to by the four letter acronyms in bold): the Bear Paw Battlefield-BEPA (MT, also known as Nez Perce National Historical Park); Big Hole National Battlefield-BIHO (MT); City of Rocks National Reserve-CIRO (ID); Craters of the Moon National Monument and Preserve-CRMO (ID); Fossil Butte National Monument-FOBU (WY); Golden Spike National Historic Site-GOSP (UT); Grant-Kohrs Ranch National Historic Site-GRKO (MT); Hagerman Fossil Beds National Monument-HAFO (ID); Little Bighorn Battlefield National Monument-LIBI (MT); and Minidoka National Historic Site-MIIN (ID). The following information is contained for each weed species covered in this document (1) Park presence: based on formal surveys or park representatives’ observations (2) Status: whether the plant is listed as noxious in ID, MT, UT, or WY (3) Identifying characteristics: key characteristics to aid identification, and where possible, unique features to help distinguish the weed from look-a-like species (4) Life cycle: annual, winter-annual, biennial, or perennial and season of flowering and fruit set (5) Spread: the most common method of spread and potential for long distance dispersal (6) Seeds per plant and seed longevity (when available) (7) Habitat (8) Control Options: recommendations on the effectiveness of a. Mechanical Control b. Cultural
    [Show full text]
  • Revista Botanica 2-2014.Indd
    Journal of Botany, Vol. VI, Nr. 2(9), Chisinau, 2014 1 ACADEMY OF SCIENCES OF MOLDOVA BOTANICAL GARDEN (INSTITUTE) JOURNAL OF BOTANY VOL. VI NR. 2(9) Chisinau, 2014 2 Journal of Botany, Vol. VI, Nr. 2(9), Chisinau, 2014 FOUNDER OF THE “JOURNAL OF BOTANY”: BOTANICAL GARDEN (INSTITUTE) OF THE ASM According to the decision of Supreme Council for Sciences and Technological Development of ASM and National Council for Accreditation and Attestation, nr. 288 of 28.11.2013 on the approval of the assessment and Classifi cation of scientifi c journals, “Journal of Botany” was granted the status of scientifi c publication of “B” Category. EDITORIAL BOARD OF THE „JOURNAL OF BOTANY” Ciubotaru Alexandru, acad., editor-in-chief, Botanical Garden (Institute) of the ASM Teleuţă Alexandru, Ph.D., associate editor, Botanical Garden (Institute) of the ASM Cutcovschi-Muştuc Alina, Ph.D., secretary, Botanical Garden (Institute) of the ASM Members: Duca Gheorghe, acad., President of the Academy of Sciences of Moldova Dediu Ion, corresponding member, Institute of Geography and Ecology of the ASM Şalaru Vasile, corresponding member, Moldova State University Tănase Cătălin, university professor, Botanical Garden „A. Fătu” of the „Al. I. Cuza” University, Iaşi, Romania Cristea Vasile, university professor, Botanical Garden „Alexandru Borza” of the „Babeş- Bolyai” University, Cluj-Napoca, Romania Toma Constantin, university professor, „Al. I. Cuza” University, Iaşi, Romania Sârbu Anca, university professor, Botanical Garden „D. Brîndza”, Bucharest, Romania Zaimenko Natalia, professor, dr. hab., M. M. Grishko National Botanical Garden of National Academy of Sciences of Ukraine Colţun Maricica, Ph. D., Botanical Garden (Institute) of the ASM Comanici Ion, university professor, Botanical Garden (Institute) of the ASM Ştefîrţă Ana, dr.
    [Show full text]
  • Impact of Biological Control on Two Knapweed Species in British Columbia
    Impact of Biological Control on Two Knapweed Research Report Species in British Columbia Don Gayton, FORREX & Val Miller, B.C. Ministry of Forests, Lands and Natural Resource Operations Abstract Diffuse and spotted knapweed ( Centaurea diffusa Lam and C. stoebe L.) are two closely re - lated invasives found in many parts of British Columbia’s Southern Interior, causing sub - stantial economic losses in rangelands. Beginning in 1970, the provincial government initiated a long-term biological control effort against the knapweeds, introducing 10 dif - ferent insect agents from 1970 to 1987. In an effort to evaluate the efficacy of the program, archival (1983–2008) data was amassed from 19 vegetation monitoring sites that contained knapweed. In 2010, these sites were relocated and re-monitored and cover values were an - alyzed. Diffuse knapweed showed significant declines at 14 of 15 sites; spotted knapweed declined at three of four sites. Possible alternative explanations for the decline are dis - cussed. Evidence strongly points to a suite of biocontrol agents (seed feeders and root feed - ers) as the primary drivers of knapweed decline in British Columbia’s Southern Interior. KEYWORDS : biological control; British Columbia; Centaurea ; knapweed; monitoring Introduction iffuse knapweed ( Centaurea diffusa Lam.) and spotted knapweed ( Centaurea stoebe L.) are two introduced, closely related invasive forbs. These species are most com - Dmon in the northwestern United States and in western Canada. Centaurea stoebe (also referred to as C. maculosa Lam. and C. biebersteinii DC) is particularly widespread, reported in 45 US states and all provinces of Canada (Marshall 2004; Zouhar 2001). The drought-tolerant C. diffusa has an altitudinal range of 150–900 m, whereas C.
    [Show full text]
  • Factors Influencing Wheat Curl Mite <I>Aceria Tosichella</I> Keifer
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 4-2020 Factors Influencing Wheat Curl Mite Aceria tosichella Keifer Dispersal Lindsay M. Overmyer University of Nebraska - Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons Overmyer, Lindsay M., "Factors Influencing Wheat Curl Mite Aceria tosichella Keifer Dispersal" (2020). Dissertations and Student Research in Entomology. 65. https://digitalcommons.unl.edu/entomologydiss/65 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FACTORS INFLUENCING WHEAT CURL MITE ACERIA TOSICHELLA KEIFER DISPERSAL by Lindsay M. Overmyer A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfilment of Requirements For the Degree of Master of Science Major: Entomology Under the Supervision of Professor Gary L. Hein Lincoln, Nebraska May 2020 FACTORS INFLUENCING WHEAT CURL MITE ACERIA TOSICHELLA KEIFER DISPERSAL Lindsay M. Overmyer, M.S. University of Nebraska, 2020 Advisor: Gary L. Hein The wheat curl mite (Aceria tosichella Keifer) (WCM) is a vector of three plant viruses to wheat (Triticum aestivum L.) including: Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and High Plains wheat mosaic virus. This wheat-mite- virus complex causes significant yield loss in winter wheat across the Great Plains. Management of WCM host plants during the time between wheat harvest and planting of the new wheat crop (the green bridge) is critical in reducing potential risk and loss from this complex.
    [Show full text]
  • Biological Control of Yellow Starthistle
    Biological Control of Yellow Starthistle Lincoln Smith, USDA-ARS-WRRC, 800 Buchanan St, Albany CA 94710 Joe Balciunas, USDA-ARS-WRRC, 800 Buchanan St, Albany CA 94710 Michael J. Pitcairn, California Dept. of Food and Agriculture, 3288 Meadowview Road, Sacramento, CA 95832 Yellow starthistle (Centaurea solstitialis L.) is an alien plant that probably originated from the eastern Mediterranean. It was first collected in California in 1869, and now infests 42% of the state’s townships. It interferes with land use such as grazing and recreation, displaces native species, and is toxic to horses (Sheley, et al. 1999 and papers cited therein). This weed is much less invasive in its land of origin. This is presumably because natural enemies, such as insects, plant diseases, animals or competing plants help to keep it under natural control. We are exploring for insects and pathogens that attack this plant. They are tested for host specificity to make sure they do not attack other plants. After evaluation and approval by state and federal agencies, these agents will be released to try to reestablish the natural control that occurs in the land of origin. So far, six species of insect biological control agents have been introduced to control yellow starthistle (Turner et al. 1995; Rees et al. 1996; Jette, et al. 1999). All six attack the seedheads. The most promising agent is the hairy weevil (Eustenopus villosus), which is well established in California and occurs in high densities, attacking 25 to 80% of seedheads. Adults damage young flower buds by feeding on them, and lay eggs on later-developing flower buds.
    [Show full text]