Revista Botanica 2-2014.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Euphorbia Subg
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ БОТАНИЧЕСКИЙ ИНСТИТУТ ИМ. В.Л. КОМАРОВА РОССИЙСКОЙ АКАДЕМИИ НАУК На правах рукописи Гельтман Дмитрий Викторович ПОДРОД ESULA РОДА EUPHORBIA (EUPHORBIACEAE): СИСТЕМА, ФИЛОГЕНИЯ, ГЕОГРАФИЧЕСКИЙ АНАЛИЗ 03.02.01 — ботаника ДИССЕРТАЦИЯ на соискание ученой степени доктора биологических наук САНКТ-ПЕТЕРБУРГ 2015 2 Оглавление Введение ......................................................................................................................................... 3 Глава 1. Род Euphorbia и основные проблемы его систематики ......................................... 9 1.1. Общая характеристика и систематическое положение .......................................... 9 1.2. Краткая история таксономического изучения и формирования системы рода ... 10 1.3. Основные проблемы систематики рода Euphorbia и его подрода Esula на рубеже XX–XXI вв. и пути их решения ..................................................................................... 15 Глава 2. Материал и методы исследования ........................................................................... 17 Глава 3. Построение системы подрода Esula рода Euphorbia на основе молекулярно- филогенетического подхода ...................................................................................................... 24 3.1. Краткая история молекулярно-филогенетического изучения рода Euphorbia и его подрода Esula ......................................................................................................... 24 3.2. Результаты молекулярно-филогенетического -
Contribution to Knowledge of the Mycobiota of Kampinos National Park
Acta Mycologica DOI: 10.5586/am.1116 ORIGINAL RESEARCH PAPER Publication history Received: 2018-09-29 Accepted: 2018-11-04 Contribution to knowledge of the Published: 2019-06-13 mycobiota of Kampinos National Park Handling editor Wojciech Pusz, Faculty of Life Sciences and Technology, (Poland): part 2 Wrocław University of Environmental and Life Sciences, Poland Błażej Gierczyk1*, Andrzej Szczepkowski2, Tomasz Ślusarczyk3, Authors’ contributions Anna Kujawa4 BG: feld research, identifcation 1 Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, of the specimens, writing of 61-614 Poznań, Poland the manuscript, preparation 2 Faculty of Forestry, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 of the drawings and maps; Warsaw, Poland AS: coordination of the work, 3 Naturalists’ Club, 1 Maja 22, 66-200 Świebodzin, Poland feld research, identifcation of 4 Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, the specimens, correction of 60-809 Poznań, Poland the manuscript, photographic documentation; AK: feld * Corresponding author. Email: [email protected] research, identifcation of the specimens, correction of the manuscript, photographic documentation; TŚ: feld Abstract research, identifcation of the Continuation of the mycological study of the fre-damaged pine forest in Kampinos specimens, correction of the National Park in central Poland in 2017 produced interesting new fndings. Among manuscript the taxa collected, 36 were new to the park, six had not been hitherto reported from Funding Poland (Calycellina araneocincta, Ciliolarina af. laetifca, Clitocybe metachroides, The studies were fnanced by Galerina cerina f. longicystis, Parasola cuniculorum, Pleonectria pinicola), and the The State Forests National Forest previous status of one taxon (Pleonectria cucurbitula) had been uncertain. -
Balkan Vegetation
Plant Formations in the Balkan BioProvince Peter Martin Rhind Balkan Mixed Deciduous Forest These forests vary enormously but usually include a variety of oak species such as Quercus cerris, Q. frainetto, Q. robur and Q. sessiliflora, and other broadleaved species like Acer campestris, Carpinus betulus, Castanea sative, Juglans regia, Ostrya carpinifolia and Tilia tomentosa. Balkan Montane Forest Above about 1000 m beech Fagus sylvatica forests often predominate, but beyond 1500 m up to about 1800 m various conifer communities form the main forest types. However, in some cases conifer and beech communities merge and both reach the tree line. The most important associates of beech include Acer platanoides, Betula verrucosa, Corylus colurna, Picea abies, Pyrus aucuparia and Ulmus scabra, while the shrub layer often consists of Alnus viridis, Euonymous latifolius, Pinus montana and Ruscus hypoglossum. The ground layer is not usually well developed and many of the herbaceous species are of central European distribution including Arabis turrita, Asperula muscosa, Cardamine bulbifera, Limodorum abortivum, Orthilia seconda and Saxifraga rotundifolia. Of the conifer forests, Pinus nigra (black pine) often forms the dominant species particularly in Bulgaria, Serbia and in the Rhodope massif. Associated trees may include Taxus buccata and the endemic Abies bovisii-regis (Macedonian fir), while the shrub layer typically includes Daphne blagayana, Erica carnea and the endemic Bruckenthalia spiculifolia (Ericaceae). In some areas there is a conifer forest above the black pine zone from about 1300 m to 2400 m in which the endemic Pinus heldreichii (Bosnian pine) predominates. It is often rather open possibly as a consequence of repeated fires. -
Hebelomina (Agaricales) Revisited and Abandoned
Plant Ecology and Evolution 151 (1): 96–109, 2018 https://doi.org/10.5091/plecevo.2018.1361 REGULAR PAPER Hebelomina (Agaricales) revisited and abandoned Ursula Eberhardt1,*, Nicole Schütz1, Cornelia Krause1 & Henry J. Beker2,3,4 1Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany 2Rue Père de Deken 19, B-1040 Bruxelles, Belgium 3Royal Holloway College, University of London, Egham, Surrey TW20 0EX, United Kingdom 4Plantentuin Meise, Nieuwelaan 38, B-1860 Meise, Belgium *Author for correspondence: [email protected] Background and aims – The genus Hebelomina was established in 1935 by Maire to accommodate the new species Hebelomina domardiana, a white-spored mushroom resembling a pale Hebeloma in all aspects other than its spores. Since that time a further five species have been ascribed to the genus and one similar species within the genus Hebeloma. In total, we have studied seventeen collections that have been assigned to these seven species of Hebelomina. We provide a synopsis of the available knowledge on Hebelomina species and Hebelomina-like collections and their taxonomic placement. Methods – Hebelomina-like collections and type collections of Hebelomina species were examined morphologically and molecularly. Ribosomal RNA sequence data were used to clarify the taxonomic placement of species and collections. Key results – Hebelomina is shown to be polyphyletic and members belong to four different genera (Gymnopilus, Hebeloma, Tubaria and incertae sedis), all members of different families and clades. All but one of the species are pigment-deviant forms of normally brown-spored taxa. The type of the genus had been transferred to Hebeloma, and Vesterholt and co-workers proposed that Hebelomina be given status as a subsection of Hebeloma. -
Euphorbia Virgata (Leafy Spurge) Predicted Suitable Habitat Modeling
Euphorbia virgata (Leafy Spurge) Predicted Suitable Habitat Modeling Distribution Status: Present State Rank: SNA Global Rank: GNRTNR Modeling Overview Created by: Braden Burkholder Creation Date: March 26, 2021 Evaluator: Bryce Maxell Evaluation Date: April 14, 2021 Inductive Model Goal: To predict the current distribution and relative suitability of general habitat for Euphorbia virgata at large spatial scales across its presumed current range in Montana. Inductive Model Performance: The model appears to adequately reflect the current distribution and relative suitability of general habitat for Euphorbia virgata at larger spatial scales across its presumed current range in Montana. Evaluation metrics indicate an acceptable model fit and the delineation of habitat suitability classes is well supported by the data. The model is presented as a reference, but more observation records, site-specific data, and/or other environmental layers may be needed to improve performance. Inductive Model Output: http://mtnhp.org/models/files/Euphorbia_virgata_PDEUP0Q0L2_20210326_modelHex.lpk Suggested Citation: Montana Natural Heritage Program. 2021. Euphorbia virgata (Leafy Spurge) predicted suitable habitat model created on March 26, 2021. Montana Natural Heritage Program, Helena, MT. 17 pp. Montana Field Guide Species Account: http://fieldguide.mt.gov/speciesDetail.aspx?elcode=PDEUP0Q0L2 Species Model Page: http://mtnhp.org/models/?elcode=PDEUP0Q0L2 page 1 of 17 Euphorbia virgata (Leafy Spurge) Predicted Suitable Habitat Modeling March 26, 2021 Inductive Modeling Model Limitations and Suggested Uses This model is based on statewide biotic and abiotic environmental layers originally mapped at a variety of spatial scales and standardized to 90×90-meter raster pixels. The spatial accuracy of the training and testing data are varied (typically 20-400 meters) and may result in additional statistical noise in the model. -
Abstract Book
International Association for Vegetation Science 61st Annual Symposium Natural Ecosystems as Benchmarks for Vegetation Science Bozeman, Montana, USA 22-27 July, 2018 ABSTRACTS Edited by Peter R. Minchin & David W. Roberts International Association for Vegetation Science 61st Annual Symposium “Natural Ecosystems as Benchmarks for Vegetation Science” Bozeman, Montana, USA, 22-27 July, 2018. Local Organizing Committee David W. Roberts, Montana State University (co-chair), [email protected]. Peter R. Minchin, Southern Illinois University Edwardsville (co- chair), [email protected]. Kent Houston, US Forest Service (retired) Stephen V. Cooper IV, Montana Natural Heritage (retired) Scientific Committee Alessandra Fidelis, Brazil Meelis Pärtel, Estonia Alessandro Chiarucci Milan Chytrý, Czech Republic Dave Roberts, USA Miquel de Cáceres, Spain Florian Jansen, Germany Monika Janišová, Slovak Republic James Moore, USA Pavel Krestov, Russia Jari Oksanen, Finland Peter Minchin, USA Javier Loidi, Spain Riccardo Guarino, Italy John Du Vall Hay, Brazil Scott Collins, USA Laco Mucina, Australia Scott Franklin, USA Loretta Battaglia, USA Susan Wiser, New Zealand Mark Fulton, USA Valério Pillar, Brazil Martin Diekmann, Germany © 2018, International Association for Vegetation Science (IAVS) Contents Plenary abstracts .......................................................................1 IAVS Honorary Member Award abstract ................................5 Oral and poster presentation abstracts ......................................6 Index by presenting author ...................................................272 IAVS 2018 Symposium, Bozeman - ABSTRACTS Opening Plenary, Monday 23 July, 9:00 AM, Ballroom A Natural ecosystems as an evolving focus of North American vegetation science Robert K. Peet Biology Department, University of North Carolina at Chapel Hill, USA Vegetation Science in North America has from the beginning had a strong focus on understanding natural ecosystems. In the early days ecologists like H.C. -
Changes Tricholomataceae, Clitocybeae Clitocybe (Fr.: Fr
PERS OONIA Published by Rijksherbarium / Hortus Botanicus, Leiden Volume 16, Part 2, pp. 225-232 (1996) Notulae ad Floram agaricinam neerlandicam XXIV-XXVIII. Some taxonomic and nomenclatural changes in the Tricholomataceae, tribus Clitocybeae Thomas+W. Kuyper Cli- Three new taxa and three new combinations are introduced in Tricholomataceae, tribus tocybeae. Taxonomic and nomenclatural comments on some other taxa are added. XXIV. A NOMENCLATURAL NOTE ON ARMILLARIA TABESCENS Armillaria tabescens Dennis al. The name of this species is cited as (Scop.: Fr.) et (Ter- double the tabescens morshuizen, 1995). However, this is incorrect. First, name Agaricus has never been sanctionedby Fries. Second, the combinationin Armillaria has to be attrib- uted to Emel (1921), as already noted by Dennis et al. (1960: 18) who were unable to confirmthis combination. Emel (1921: 50) in a dissertation that was probably not very widely distributed, in- tabescens. title of his dissertation troduced the combination Armillaria The (Le genre de la and remarks in the Armillaria, Fr. sa suppression systematique botanique), text does characters be main- (p. 75) that the genus Armillaria not possess enough constant to Emel did not the Under Art. 34.1. et tained, suggest that accept genus. (Greuter al., 1994) the name would therefore be invalid. However, Emel's remarks are better interpreted that he just considered the Friesian taxon Armillaria as unnatural (a view universally accepted nowadays) and that he proposed the species of that genus to be placed in other genera. However, as Art. 34.1. only refers to anticipation of futureacceptance of a taxon, and not listed combination to anticipation of future rejection of a taxon, and as Emel explicitly the A. -
High-Elevation Limits and the Ecology of High-Elevation Vascular Plants: Legacies from Alexander Von Humboldt1
a Frontiers of Biogeography 2021, 13.3, e53226 Frontiers of Biogeography REVIEW the scientific journal of the International Biogeography Society High-elevation limits and the ecology of high-elevation vascular plants: legacies from Alexander von Humboldt1 H. John B. Birks1,2* 1 Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen, PO Box 7803, Bergen, Norway; 2 Ecological Change Research Centre, University College London, Gower Street, London, WC1 6BT, UK. *Correspondence: H.J.B. Birks, [email protected] 1 This paper is part of an Elevational Gradients and Mountain Biodiversity Special Issue Abstract Highlights Alexander von Humboldt and Aimé Bonpland in their • The known uppermost elevation limits of vascular ‘Essay on the Geography of Plants’ discuss what was plants in 22 regions from northernmost Greenland known in 1807 about the elevational limits of vascular to Antarctica through the European Alps, North plants in the Andes, North America, and the European American Rockies, Andes, East and southern Africa, Alps and suggest what factors might influence these upper and South Island, New Zealand are collated to provide elevational limits. Here, in light of current knowledge a global view of high-elevation limits. and techniques, I consider which species are thought to be the highest vascular plants in twenty mountain • The relationships between potential climatic treeline, areas and two polar regions on Earth. I review how one upper limit of closed vegetation in tropical (Andes, can try to -
Vascular Plant Biodiversity of Floodplain Forest in Morava and Dyje Rivers Confluence (Forest District Soutok), Czech Republic
10.2478/jlecol-2018-0013 aaaJournal of Landscape Ecology (2018), Vol: 11 / No. 3. VASCULAR PLANT BIODIVERSITY OF FLOODPLAIN FOREST IN MORAVA AND DYJE RIVERS CONFLUENCE (FOREST DISTRICT SOUTOK), CZECH REPUBLIC PETR MADĚRA*, RADOMÍR ŘEPKA, TOMÁŠ KOUTECKÝ, JAN ŠEBESTA Faculty of Forestry and Wood Technology Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic, *Corresponding author e-mail: [email protected] Received: 21th November 2018, Accepted: 10th December 2018 ABSTRACT This paper presents an evaluation of full-area floristic investigation of floodplain forests in Soutok forest district (Židlochovice Forest State Enterprise) based on an individual forest stand inventory. The study area encompasses 5103 ha of forests, where 1186 segments were inventoried, and 71 223 single records about presence of vascular plant species were done. We found 761 taxa (species, subspecies and hybrids), out of which 655 were herbs, 106 woody plants, 156 were endangered species and 177 adventive species. The average area of a segment was 4.3 ha. The mean number of species per segment was 64.42 in a range of 4– 180. Keywords: biodiversity, vascular plants, floodplain forest, forest district Soutok, Morava and Dyje rivers, Czech Republic INTRODUCTION The area under study is composed not only from valuable floodplain forests (Horák, 1961; Klimo et al. 2008; Maděra et al. 2011, 2013; Řepka et al. 2015) but there occur also the continental floodplain meadows (Vicherek et al., 2000) with solitary oak trees (Maděra et al., 2007) creating famous -
The Mycological Society of San Francisco • Dec. 2015, Vol. 67:04
The Mycological Society of San Francisco • Dec. 2015, vol. 67:04 Table of Contents Mushroom of the Month by K. Litchfield 1 Mushroom of the Month: Quick Start Forays Amanita muscaria by P. Koski 1 The Santa Mushroom, Fly Agaric President Post by B. Wenck-Reilly 2 Hospitality / Holiday Dinner 2015 4 Ken Litchfield Culinary Corner by H. Lunan 5 Brain Chemistry by B. Sommer 6 This month’s mushroom profile is one of my favorites, De- Mendo 2015 Camp by C. Haney 7 cember’s Santa mushroom. While prevalent at other times MycoMendoMondo by W. So 9 of the year in other places with more extensive rainy sea- Announcements / Events 10 sons, in the SF bay area the height of its season is the holi- 2015 Fungus Fair poster & program 11 days. One of the most elegant, beautiful, and recognizable Fungal Jumble & Gadget Obs by W. So 14 mushrooms in the world, the Santa mushroom is not only Cultivation Quarters by K. Litchfield 15 cosmopolitan and common, it is rich in lore and stately in Mushroom Sightings by P. Pelous 16 demeanor, yet cuddly and not lugubrious, just like Santa Calendar 17 himself. Decked in cheery cherry red and decoupaged with puffs of fluffy white, the Santa’s cap jingles atop its ivory bearded veil leading down the long white chimney stipe to URBAN PARK QUICK START FORAYS the skirty cummerbund constricting the top of the bulbous November 14 Quick Start Foray Report jolly belly. by Paul Koski One of the many There was hope for finding lots of fungi after fruits of the roots a couple of rainy days in the week before the foray but of the pine, the after some preliminary scouting in Golden Gate Park, Santa’s red and not many mushrooms were showing up. -
Identification, Pathogenicity and Comparative Virulence of Fusarium Spp
Reprinted with author’s permission. (This is a prepublication version from the primary author, which was originally submitted to the journal “Biocontrol Science and Technology.” A revised manuscript was published in “Biocontrol Science and Technology,” June 1998. 8(2):313-319.) Identification, pathogenicity and comparative virulence of Fusarium spp. associated with diseased Euphorbia spp. in Europe ANTHONY J. CAESAR,2 GAETANO CAMPOBASSO,3 and GIANNI TERRAGITTI3 2Pest Management and Agricultural Systems Research Unit, Northern Plains Agricultural Research Laboratory, U.S.D.A., Agricultural Research Service, 1500 N Central Avenue, Sidney, MT 59270, U.S.A.; 3 U.S. Department of Agriculture, Agricultural Research Service European Biological Control Laboratory, Rome Substation, Rome, Italy. Abstract: Fusarium spp. isolated from diseased Euphorbia spp. in Europe were as- sessed for pathogenicity to North American leafy spurge (Euphorbia esula/virgata. Of the nine strains of Fusarium spp. isolated either from diseased E. stepposa or E. virgata in the Caucasus region of Russia and E. esula/virgata in southern France, respectively, all were pathogenic to leafy spurge. There were significant differences in virulence among strains. Four strains, including the two most virulent, were identified as F. ox- ysporum. Four of the five other strains were identified as F. solani and one was identified as F. proliferatum. Three of the four most virulent strains to leafy were isolated from E. stepposa. The most virulent strain was associ- ated with root damage caused by insect biological control agents, similar to a previous study on domestic strains of Fusarium spp. pathogenic to leafy spurge. Two strains identified as F. -
Moeszia9-10.Pdf
Tartalom Tanulmányok • Original papers .............................................................................................. 3 Contents Pál-Fám Ferenc, Benedek Lajos: Kucsmagombák és papsapkagombák Székelyföldön. Előfordulás, fajleírások, makroszkópikus határozókulcs, élőhelyi jellemzés .................................... 3 Ferenc Pál-Fám, Lajos Benedek: Morels and Elfin Saddles in Székelyland, Transylvania. Occurrence, Species Description, Macroscopic Key, Habitat Characterisation ........................... 13 Pál-Fám Ferenc, Benedek Lajos: A Kárpát-medence kucsmagombái és papsapkagombái képekben .................................................................................................................................... 18 Ferenc Pál-Fám, Lajos Benedek: Pictures of Morels and Elfin Saddles from the Carpathian Basin ....................................................................................................................... 18 Szász Balázs: Újabb adatok Olthévíz és környéke nagygombáinak ismeretéhez .......................... 28 Balázs Szász: New Data on Macrofungi of Hoghiz Region (Transylvania, Romania) ................. 42 Pál-Fám Ferenc, Szász Balázs, Szilvásy Edit, Benedek Lajos: Adatok a Baróti- és Bodoki-hegység nagygombáinak ismeretéhez ............................................................................ 44 Ferenc Pál-Fám, Balázs Szász, Edit Szilvásy, Lajos Benedek: Contribution to the Knowledge of Macrofungi of Baróti- and Bodoki Mts., Székelyland, Transylvania ..................... 53 Pál-Fám