Comprehensive Characterization of Multitissue Expression Landscape, Co-Expression Networks and Positive Selection in Pikeperch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improved Detection of Gene Fusions by Applying Statistical Methods Reveals New Oncogenic RNA Cancer Drivers
bioRxiv preprint doi: https://doi.org/10.1101/659078; this version posted June 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Improved detection of gene fusions by applying statistical methods reveals new oncogenic RNA cancer drivers Roozbeh Dehghannasiri1, Donald Eric Freeman1,2, Milos Jordanski3, Gillian L. Hsieh1, Ana Damljanovic4, Erik Lehnert4, Julia Salzman1,2,5* Author affiliation 1Department of Biochemistry, Stanford University, Stanford, CA 94305 2Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 3Department of Computer Science, University of Belgrade, Belgrade, Serbia 4Seven Bridges Genomics, Cambridge, MA 02142 5Stanford Cancer Institute, Stanford, CA 94305 *Corresponding author [email protected] Short Abstract: The extent to which gene fusions function as drivers of cancer remains a critical open question. Current algorithms do not sufficiently identify false-positive fusions arising during library preparation, sequencing, and alignment. Here, we introduce a new algorithm, DEEPEST, that uses statistical modeling to minimize false-positives while increasing the sensitivity of fusion detection. In 9,946 tumor RNA-sequencing datasets from The Cancer Genome Atlas (TCGA) across 33 tumor types, DEEPEST identifies 31,007 fusions, 30% more than identified by other methods, while calling ten-fold fewer false-positive fusions in non-transformed human tissues. We leverage the increased precision of DEEPEST to discover new cancer biology. For example, 888 new candidate oncogenes are identified based on over-representation in DEEPEST-Fusion calls, and 1,078 previously unreported fusions involving long intergenic noncoding RNAs partners, demonstrating a previously unappreciated prevalence and potential for function. -
Molecular Mechanisms in Muscular Dystrophy : a Gene Expression Profiling Study Turk, R
Molecular mechanisms in muscular dystrophy : a gene expression profiling study Turk, R. Citation Turk, R. (2006, September 27). Molecular mechanisms in muscular dystrophy : a gene expression profiling study. Retrieved from https://hdl.handle.net/1887/4577 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral License: thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/4577 Note: To cite this publication please use the final published version (if applicable). Molecular Mechanisms In Muscular Dystrophy A Gene Expression Profiling Study Molecular Mechanisms In Muscular Dystrophy A Gene Expression Profiling Study Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus Dr. D.D.Breimer, hoogleraar in de faculteit der Wiskunde en Natuurwetenschappen en die der Geneeskunde, volgens besluit van het College voor Promoties te verdedigen op woensdag 27 september 2006 klokke 15.00 uur door Rolf Turk Geboren te Leiden in 1975 Promotiecommissie Promotor Prof. Dr. G.J.B. van Ommen Co-promotores Dr. J.T. den Dunnen Dr. P.A.C. ‘t Hoen Referent Prof. Dr. R.M.W. Hofstra (Rijksuniversiteit Groningen) Overige leden Prof. Dr. M. Koenig (Université Louis Pasteur de Strasbourg) An experiment is a question which science poses to Nature, and a measurement is the recording of Nature’s answer. Max Planck Aan Maaike, Gerard en Annet Printed by: Drukkerij Duineveld ISBN-10: 90-9021042-3 ISBN-13: 978-90-9021042-1 Turk, Rolf Molecular mechanisms in muscular dystrophy. A gene expression profiling study. Thesis, Leiden University Medical Center September 27, 2006 © Rolf Turk No part of this thesis may be reproduced or transmitted in any form or by any means, without the written permission of the copyright owner Molecular Mechanisms In Muscular Dystrophies Preface 9 Chapter 1 Introduction 11 1. -
Cytogenetic and Molecular Characterization of the Macro- And
University of Ulm Department of Human Genetics Prof. Dr. med. Walther Vogel Cytogenetic and Molecular Characterization of the Macro- and Micro-inversions, which Distinguish the Human and the Chimpanzee Karyotypes - from Speciation to Polymorphism Thesis Applying for the Degree of Doctor of Human Biology (Dr. hum. biol.) Faculty of Medicine University of Ulm Presented by Justyna Monika Szamalek from Wrze śnia in Poland 2006 Amtierender Dekan: Prof. Dr. Klaus-Michael Debatin 1. Berichterstatter: Prof. Dr. med. Horst Hameister 2. Berichterstatter: Prof. Dr. med. Konstanze Döhner Tag der Promotion: 28.07.2006 Content Content 1. Introduction ...................................................................................................................7 1.1. Primate phylogeny........................................................................................................7 1.2. Africa as the place of human origin and the living area of the present-day chimpanzee populations .................................................................9 1.3. Cytogenetic and molecular differences between human and chimpanzee genomes.............................................................................................10 1.4. Cytogenetic and molecular differences between common chimpanzee and bonobo genomes................................................................................17 1.5. Theory of speciation .....................................................................................................18 1.6. Theory of selection -
Genome-Wide Expression Profiling Establishes Novel Modulatory Roles
Batra et al. BMC Genomics (2017) 18:252 DOI 10.1186/s12864-017-3635-4 RESEARCHARTICLE Open Access Genome-wide expression profiling establishes novel modulatory roles of vitamin C in THP-1 human monocytic cell line Sakshi Dhingra Batra, Malobi Nandi, Kriti Sikri and Jaya Sivaswami Tyagi* Abstract Background: Vitamin C (vit C) is an essential dietary nutrient, which is a potent antioxidant, a free radical scavenger and functions as a cofactor in many enzymatic reactions. Vit C is also considered to enhance the immune effector function of macrophages, which are regarded to be the first line of defence in response to any pathogen. The THP- 1 cell line is widely used for studying macrophage functions and for analyzing host cell-pathogen interactions. Results: We performed a genome-wide temporal gene expression and functional enrichment analysis of THP-1 cells treated with 100 μM of vit C, a physiologically relevant concentration of the vitamin. Modulatory effects of vitamin C on THP-1 cells were revealed by differential expression of genes starting from 8 h onwards. The number of differentially expressed genes peaked at the earliest time-point i.e. 8 h followed by temporal decline till 96 h. Further, functional enrichment analysis based on statistically stringent criteria revealed a gamut of functional responses, namely, ‘Regulation of gene expression’, ‘Signal transduction’, ‘Cell cycle’, ‘Immune system process’, ‘cAMP metabolic process’, ‘Cholesterol transport’ and ‘Ion homeostasis’. A comparative analysis of vit C-mediated modulation of gene expression data in THP-1cells and human skin fibroblasts disclosed an overlap in certain functional processes such as ‘Regulation of transcription’, ‘Cell cycle’ and ‘Extracellular matrix organization’, and THP-1 specific responses, namely, ‘Regulation of gene expression’ and ‘Ion homeostasis’. -
Evolution and Diversity of Copy Number Variation in the Great Ape Lineage
Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Evolution and diversity of copy number variation in the great ape lineage Peter H. Sudmant1, John Huddleston1,7, Claudia R. Catacchio2, Maika Malig1, LaDeana W. Hillier3, Carl Baker1, Kiana Mohajeri1, Ivanela Kondova4, Ronald E. Bontrop4, Stephan Persengiev4, Francesca Antonacci2, Mario Ventura2, Javier Prado-Martinez5, Tomas 5,6 1,7 Marques-Bonet , and Evan E. Eichler 1. Department of Genome Sciences, University of Washington, Seattle, WA, USA 2. University of Bari, Bari, Italy 3. The Genome Institute, Washington University School of Medicine, St. Louis, MO, USA 4. Department of Comparative Genetics, Biomedical Primate Research Centre, Rijswijk, The Netherlands 5. Institut de Biologia Evolutiva, (UPF-CSIC) Barcelona, Spain 6. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain 7. Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA Correspondence to: Evan Eichler Department of Genome Sciences University of Washington School of Medicine Foege S-413A, Box 355065 3720 15th Ave NE Seattle, WA 98195 E-mail: [email protected] 1 Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Copy number variation (CNV) contributes to the genetic basis of disease and has significantly restructured the genomes of humans and great apes. The diversity and rate of this process, however, has not been extensively explored among the great ape lineages. We analyzed 97 deeply sequenced great ape and human genomes and estimate that 16% (469 Mbp) of the hominid genome has been affected by recent copy number changes. -
Improved Detection of Gene Fusions by Applying Statistical Methods Reveals Oncogenic RNA Cancer Drivers Roozbeh Dehghannasiria, Donald E
Improved detection of gene fusions by applying statistical methods reveals oncogenic RNA cancer drivers Roozbeh Dehghannasiria, Donald E. Freemana,b, Milos Jordanskic, Gillian L. Hsieha, Ana Damljanovicd, Erik Lehnertd, and Julia Salzmana,b,e,1 aDepartment of Biochemistry, Stanford University, Stanford, CA 94305; bDepartment of Biomedical Data Science, Stanford University, Stanford, CA 94305; cDepartment of Computer Science, University of Belgrade, 11000 Belgrade, Serbia; dSeven Bridges Genomics Inc., Cambridge, MA 02142; and eStanford Cancer Institute, Stanford University, Stanford, CA 94305 Edited by Ali Torkamani, The Scripps Research Institute, La Jolla, CA, and accepted by Editorial Board Member Peter K. Vogt June 14, 2019 (received for review January 10, 2019) The extent to which gene fusions function as drivers of can- of multiple algorithms and filtering lists of fusions using manual cer remains a critical open question. Current algorithms do not approaches (13–15). These approaches lead to what third-party sufficiently identify false-positive fusions arising during library reviews agree is imprecise fusion discovery and bias against dis- preparation, sequencing, and alignment. Here, we introduce Data- covering novel oncogenes (15–17). This suboptimal performance Enriched Efficient PrEcise STatistical fusion detection (DEEPEST), becomes more problematic when fusion detection is deployed on an algorithm that uses statistical modeling to minimize false- large cancer sequencing datasets that contain thousands or tens positives while increasing the sensitivity of fusion detection. In of thousands of samples. In such scenarios, precise fusion detec- 9,946 tumor RNA-sequencing datasets from The Cancer Genome tion must overcome the problem of multiple hypothesis testing: Atlas (TCGA) across 33 tumor types, DEEPEST identifies 31,007 each algorithm is testing for fusions thousands of times, a regime fusions, 30% more than identified by other methods, while known to introduce FPs. -
High-Resolution Gene Maps of Horse Chromosomes 14 and 21: Additional Insights Into Evolution and Rearrangements of HSA5 Homologs in Mammals
Genomics 89 (2007) 89–112 www.elsevier.com/locate/ygeno High-resolution gene maps of horse chromosomes 14 and 21: Additional insights into evolution and rearrangements of HSA5 homologs in mammals Glenda Goh a,1, Terje Raudsepp a,1, Keith Durkin a, Michelle L. Wagner b, Alejandro A. Schäffer c, Richa Agarwala c, Teruaki Tozaki d, ⁎ James R. Mickelson b, Bhanu P. Chowdhary a,e, a Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA b Department of Veterinary Biosciences, University of Minnesota, 295f AS/VM, St. Paul, MN 55108, USA c National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20894, USA d Molecular Genetics Section, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan e Department of Animal Science, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843, USA Received 12 May 2006; accepted 19 June 2006 Available online 17 August 2006 Abstract High-resolution physically ordered gene maps for equine homologs of human chromosome 5 (HSA5), viz., horse chromosomes 14 and 21 (ECA14 and ECA21), were generated by adding 179 new loci (131 gene-specific and 48 microsatellites) to the existing maps of the two chromosomes. The loci were mapped primarily by genotyping on a 5000-rad horse×hamster radiation hybrid panel, of which 28 were mapped by fluorescence in situ hybridization. The approximately fivefold increase in the number of mapped markers on the two chromosomes improves the average resolution of the map to 1 marker/0.9 Mb. -
Effect of Prematurity on Genome Wide Methylation in the Placenta Jessica Schuster1, Alper Uzun2, Joan Stablia1, Christoph Schorl3, Mari Mori4 and James F
Schuster et al. BMC Medical Genetics (2019) 20:116 https://doi.org/10.1186/s12881-019-0835-6 RESEARCH ARTICLE Open Access Effect of prematurity on genome wide methylation in the placenta Jessica Schuster1, Alper Uzun2, Joan Stablia1, Christoph Schorl3, Mari Mori4 and James F. Padbury2,5* Abstract Background: Preterm birth is a significant clinical problem and an enormous burden on society, affecting one in eight pregnant women and their newborns. Despite decades of research, the molecular mechanism underlying its pathogenesis remains unclear. Many studies have shown that preterm birth is associated with health risks across the later life course. The “fetal origins” hypothesis postulates that adverse intrauterine exposures are associated with later disease susceptibility. Our recent studies have focused on the placental epigenome at term. We extended these studies to genome-wide placental DNA methylation across a wide range of gestational ages. We applied methylation dependent immunoprecipitation/DNA sequencing (MeDIP-seq) to 9 placentas with gestational age from 25 weeks to term to identify differentially methylated regions (DMRs). Results: Enrichment analysis revealed 427 DMRs with nominally significant differences in methylation between preterm and term placentas (p < 0.01) and 21 statistically significant DMRs after multiple comparison correction (FDR p < 0.05), of which 62% were hypo-methylated in preterm placentas vs term placentas. The majority of DMRs were in distal intergenic regions and introns. Significantly enriched pathways identified by Ingenuity Pathway Analysis (IPA) included Citrulline-Nitric Oxide Cycle and Fcy Receptor Mediated Phagocytosis in macrophages. The DMR gene set overlapped placental gene expression data, genes and pathways associated evolutionarily with preterm birth. -
Variation in Protein Coding Genes Identifies Information Flow
bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number. -
Entrez ID Gene Name Fold Change Q-Value Description
Entrez ID gene name fold change q-value description 4283 CXCL9 -7.25 5.28E-05 chemokine (C-X-C motif) ligand 9 3627 CXCL10 -6.88 6.58E-05 chemokine (C-X-C motif) ligand 10 6373 CXCL11 -5.65 3.69E-04 chemokine (C-X-C motif) ligand 11 405753 DUOXA2 -3.97 3.05E-06 dual oxidase maturation factor 2 4843 NOS2 -3.62 5.43E-03 nitric oxide synthase 2, inducible 50506 DUOX2 -3.24 5.01E-06 dual oxidase 2 6355 CCL8 -3.07 3.67E-03 chemokine (C-C motif) ligand 8 10964 IFI44L -3.06 4.43E-04 interferon-induced protein 44-like 115362 GBP5 -2.94 6.83E-04 guanylate binding protein 5 3620 IDO1 -2.91 5.65E-06 indoleamine 2,3-dioxygenase 1 8519 IFITM1 -2.67 5.65E-06 interferon induced transmembrane protein 1 3433 IFIT2 -2.61 2.28E-03 interferon-induced protein with tetratricopeptide repeats 2 54898 ELOVL2 -2.61 4.38E-07 ELOVL fatty acid elongase 2 2892 GRIA3 -2.60 3.06E-05 glutamate receptor, ionotropic, AMPA 3 6376 CX3CL1 -2.57 4.43E-04 chemokine (C-X3-C motif) ligand 1 7098 TLR3 -2.55 5.76E-06 toll-like receptor 3 79689 STEAP4 -2.50 8.35E-05 STEAP family member 4 3434 IFIT1 -2.48 2.64E-03 interferon-induced protein with tetratricopeptide repeats 1 4321 MMP12 -2.45 2.30E-04 matrix metallopeptidase 12 (macrophage elastase) 10826 FAXDC2 -2.42 5.01E-06 fatty acid hydroxylase domain containing 2 8626 TP63 -2.41 2.02E-05 tumor protein p63 64577 ALDH8A1 -2.41 6.05E-06 aldehyde dehydrogenase 8 family, member A1 8740 TNFSF14 -2.40 6.35E-05 tumor necrosis factor (ligand) superfamily, member 14 10417 SPON2 -2.39 2.46E-06 spondin 2, extracellular matrix protein 3437 -
Robles JTO Supplemental Digital Content 1
Supplementary Materials An Integrated Prognostic Classifier for Stage I Lung Adenocarcinoma based on mRNA, microRNA and DNA Methylation Biomarkers Ana I. Robles1, Eri Arai2, Ewy A. Mathé1, Hirokazu Okayama1, Aaron Schetter1, Derek Brown1, David Petersen3, Elise D. Bowman1, Rintaro Noro1, Judith A. Welsh1, Daniel C. Edelman3, Holly S. Stevenson3, Yonghong Wang3, Naoto Tsuchiya4, Takashi Kohno4, Vidar Skaug5, Steen Mollerup5, Aage Haugen5, Paul S. Meltzer3, Jun Yokota6, Yae Kanai2 and Curtis C. Harris1 Affiliations: 1Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 2Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 3Genetics Branch, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 4Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 5Department of Chemical and Biological Working Environment, National Institute of Occupational Health, NO-0033 Oslo, Norway. 6Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), 08916 Badalona (Barcelona), Spain. List of Supplementary Materials Supplementary Materials and Methods Fig. S1. Hierarchical clustering of based on CpG sites differentially-methylated in Stage I ADC compared to non-tumor adjacent tissues. Fig. S2. Confirmatory pyrosequencing analysis of DNA methylation at the HOXA9 locus in Stage I ADC from a subset of the NCI microarray cohort. 1 Fig. S3. Methylation Beta-values for HOXA9 probe cg26521404 in Stage I ADC samples from Japan. Fig. S4. Kaplan-Meier analysis of HOXA9 promoter methylation in a published cohort of Stage I lung ADC (J Clin Oncol 2013;31(32):4140-7). Fig. S5. Kaplan-Meier analysis of a combined prognostic biomarker in Stage I lung ADC. -
Androgen-Dependent Alternative Mrna Isoform Expression in Prostate Cancer Cells[Version 1; Peer Review: 3 Approved]
F1000Research 2018, 7:1189 Last updated: 21 AUG 2021 RESEARCH ARTICLE Androgen-dependent alternative mRNA isoform expression in prostate cancer cells [version 1; peer review: 3 approved] Jennifer Munkley 1, Teresa M. Maia2,3, Nekane Ibarluzea1,4,5, Karen E. Livermore1, Daniel Vodak6, Ingrid Ehrmann1, Katherine James7,8, Prabhakar Rajan9, Nuno L. Barbosa-Morais2, David J. Elliott1 1Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, Newcastle, NE1 3BZ, UK 2Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal 3VIB Proteomics Core, Albert Baertsoenkaai 3, Ghent, 9000, Belgium 4Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, 48903, Spain 5Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Valencia, 46010, Spain 6Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway 7Interdisciplinary Computing and Complex BioSystems Research Group, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK 8Life and Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK 9Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK v1 First published: 03 Aug 2018, 7:1189 Open Peer Review https://doi.org/10.12688/f1000research.15604.1 Latest published: 03 Aug 2018, 7:1189 https://doi.org/10.12688/f1000research.15604.1 Reviewer Status Invited Reviewers Abstract Background: Androgen steroid hormones are key drivers of prostate 1 2 3 cancer. Previous work has shown that androgens can drive the expression of alternative mRNA isoforms as well as transcriptional version 1 changes in prostate cancer cells. Yet to what extent androgens control 03 Aug 2018 report report report alternative mRNA isoforms and how these are expressed and differentially regulated in prostate tumours is unknown.