Modelling Riverflow in the Volta Basin of West Africa: a Data-Driven Framework

Total Page:16

File Type:pdf, Size:1020Kb

Modelling Riverflow in the Volta Basin of West Africa: a Data-Driven Framework MODELLING RIVERFLOW IN THE VOLTA BASIN OF WEST AFRICA: A DATA-DRIVEN FRAMEWORK Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus, prof. dr. ir. J.T. Fokkema, voorzitter van het College voor Promoties in het openbaar te verdedigen op woensdag 18 januari 2006 om 10.30 uur door Barnabas Akurigo AMISIGO Master of Science, University of Guelph geboren te Bolgatanga, Ghana Dit proefschrift is goedgekeurd door de promotor: Prof.dr.ir. N.C. van de Giesen Technische Universiteit Delft, The Netherlands Samenstelling promotiecommissie: Rector Magnificus Technische Universiteit Delft, voorzitter Prof. dr. ir. N.C. van de Giesen Technische Universiteit Delft, promotor Prof. dr. J.J. Bogardi United Nations University Prof. dr. ir. A.W. Heemink Technische Universiteit Delft Prof. dr. A.E. Mynett Technische Universiteit Delft / UNESCO IHE Prof. dr. ir. H.H.G. Savenije Technische Universiteit Delft / UNESCO IHE Prof. dr. ir. G.S. Stelling Technische Universiteit Delft Dissertation prepared at the Center for Development Research, University of Bonn, in the context of the GLOWA Volta Project "Sustainable water use under changing land use, rainfall reliability and water demands in the Volta Basin" financed by the Ministry of Science and Education (BMBF) of the Federal Republic of Germany. To my parents for their foresight, and to my wife Hawa and daughter Mmalebna ABSTRACT The 400,000 km2 Volta Basin is an international basin covering almost 28% of the West Coast. Basin of Africa. It extends from longitude 5o 30 W to 2o 00E and from latitude 5 30o N to 14o 30 N and is shared by the six West African countries Benin, Togo, Ghana, La Cote d’Ivoire, Burkina Faso and Mali. The water resources of this basin are under severe stress due to both human and natural causes. High population growth rate coupled with widespread and indiscriminate water mobilisation and use in the basin on the one hand, and high spatial and temporal variability of rainfall and high potential evapotranspiration on the other, are putting enormous pressure on the basin’s water resources. As a result, there are serious water resources management problems such as flooding, water shortage, water pollution and loss of aquatic biodiversity. It is, therefore, recognised that integrated transboundary water resources management is necessary and urgent to ensure environmental integrity and sustainable water use in the basin. Streamflow modelling and prediction are essential components of any water resources management framework developed for the water-allocation and -use managers in the basin. In this thesis, a riverflow modelling framework developed for monthly riverflow prediction in the Volta Basin is presented. By analysing available catchment rainfall, runoff and potential evapotranspiration series in the basin using methods such as correlation plots, autoregressive (AR) and autoregressive with exogenous input (ARX) modelling, it is shown that the monthly catchment rainfall-runoff process is better characterised by non-linear models. First, a spatio-temporal linear dynamic model employing the Kalman smoother and the Expectation-Maximisation (EM) algorithm was developed and applied to filling in short gaps in daily riverflow series in the basin. This model was found to be a very good and powerful tool for filling in such data gaps. Then, two non-linear modelling frameworks - a non-linear autoregressive and moving average with exogenous input (NARMAX) polynomial and a data-based mechanistic (DBM) modelling framework - were developed and applied to the monthly rainfall-runoff series in the basin for river catchment runoff prediction. The NARMAX model was able to capture much of the nonlinearity in the runoff generation process and provided good predictions of riverflow. However, it is a purely black-box formulation providing no physical interpretation of the runoff process in the basin. The DBM framework was very successful in representing the runoff mechanism in the basin, adequately predicting monthly river runoffs. Unlike the NARMAX models, the DBM framework is a grey-box that provided physically interpretable results at the catchment scale. Results from this modelling framework show that monthly runoff in the basin can be interpreted to occur in two pathways: a fast flow pathway and a slow, mainly delayed flow, pathway. Catchment effective rainfall in the basin was found to have a power law relationship with catchment runoff. In addition, the Identification of unit Hydrographs And Component flows from Rainfall, Evaporation and Streamflow (IHACRES) type effective rainfall-catchment wetness non-linear relationship in which the basin drying time constant is exponentially related to basin potential evapotranspiration, was found to be suitable for characterising the runoff processes in the basin. Therefore, it is recommended that data-driven approaches be considered as the most appropriate for riverflow modelling in the Volta Basin. This is due, in part, to the fact that the approaches provide very good results that are, to some extent, physically interpretable and also because the quality, quantity and diversity of hydrological data used for riverflow modelling in the basin are too poor to enable effective use of the more elaborate distributed hydrological models. TABLE OF CONTENTS 1 INTRODUCTION .................................................................................................. 1 1.1 Structure of the thesis .................................................................................. 3 1.2 Systems approach in hydrology and the river catchment as a system......... 5 1.2.1 System identification................................................................................ 7 1.2.2 Digital filters and the differential and difference equations description of dynamic systems................................................................................. 11 1.2.3 External model description ..................................................................... 12 1.2.4 State- space representation of the general models of dynamic systems . 13 1.2.5 Transfer function (TF) models of dynamic stochastic systems .............. 16 1.3 Background to the study............................................................................ 17 1.4 Research question and objectives.............................................................. 21 2 THE STUDY AREA............................................................................................. 22 2.1 Introduction ............................................................................................... 22 2.2 Climate....................................................................................................... 24 2.2.1 Rainfall ..................................................................................................24 2.2.2 Potential evapotranspiration....................................................................24 2.3 Land cover and use.................................................................................... 26 2.4 Hydrology.................................................................................................. 27 2.4.1 Drainage.................................................................................................. 27 2.4.2 Stream flow distribution ......................................................................... 29 2.5 Hydrogeology ............................................................................................ 29 2.5.1 Geology ..................................................................................................29 2.5.2 Groundwater occurrence and flow.......................................................... 30 2.5.3 Borehole yields....................................................................................... 31 2.6 Water use in the basin................................................................................ 32 2.7 Water resources management problems in the basin................................. 33 3 EXPLORATORY DATA ANALYSIS................................................................ 36 3.1 Introduction ............................................................................................... 36 3.2 Rainfall-runoff characteristics of the monthly riverflow data................... 43 3.2.1 Persistence in river runoff....................................................................... 55 3.2.2 Autoregressive and moving average modelling of monthly runoff........ 58 3.2.3 Non-linearity in monthly rainfall-runoff relationship............................. 69 3.3 Conclusions ............................................................................................... 73 4 SPATIO-TEMPORAL MODEL FOR FILLING GAPS IN DAILY STREAM FLOW SERIES.................................................................................... 74 4.1 Introduction ............................................................................................... 74 4.2 The discrete spatio-temporal dynamic modelling framework................... 76 4.3 Missing observations................................................................................. 84 4.4 System matrices parameterisation ............................................................. 84 4.5 Application of the modelling framework .................................................. 85 4.6 Results and discussion............................................................................... 87 4.7
Recommended publications
  • Feed the Future Ghana Agriculture and Natural Resources Management Project Annual Progress Report Fiscal Year 2017 | October 1, 2016 to December 31, 2016
    Feed the Future Ghana Agriculture and Natural Resources Management Project Annual Progress Report Fiscal Year 2017 | October 1, 2016 to December 31, 2016 Agreement Number: AID-641-A-16-00010 Submission Date: January 31, 2017 Submitted to: Gloria Odoom, Agreement Officer’s Representative Submitted by: Julie Fischer, Chief of Party Winrock International 2101 Riverfront Drive, Little Rock, Arkansas, USA Tel: +1 501 280 3000 Email: [email protected] DISCLAIMER The report was made possible through the generous support of the American people through the U.S. Agency for International Development (USAID) under the Feed the Future initiative. The contents are the responsibility of Winrock International and do not necessarily reflect the views of USAID or the United States Government. FtF Ghana AgNRM Quarterly Progress Report (FY 2017|Quarter 1) i ACTIVITY/MECHANISM Overview Activity/Mechanism Feed the Future Ghana Agriculture and Natural Resource Name: Management Activity/Mechanism Start Date and End May 2, 2016 – April 30, 2021 Date: Name of Prime Implementing Partner: Winrock International Agreement Number: AID-641-A-16-00010 Names of Sub- TechnoServe, Nature Conservation Research Centre, awardees: Center for Conflict Transformation and Peace Studies Government of Ghana | Ministry of Food and Agriculture Major Counterpart and Forestry Commission Organizations Geographic Coverage Upper East, Upper West and Northern Regions, Ghana, (States/Provinces and West Africa Countries) Reporting Period: October 1, 2016 – December 31, 2016 FtF Ghana AgNRM Quarterly Progress Report (FY 2017|Quarter 1) ii Table of Contents Acronyms and Abbreviations .................................................................................. iv 1. ACTIVITY IMPLEMENTATION PROGRESS ............................................... 1 1.1 Progress Narrative & Implementation Status..................................................................... 2 1.2 Implementation Challenges ...................................................................................................
    [Show full text]
  • Volta-Hycos Project
    WORLD METEOROLOGICAL ORGANISATION Weather • Climate • Water VOLTA-HYCOS PROJECT SUB-COMPONENT OF THE AOC-HYCOS PROJECT PROJECT DOCUMENT SEPTEMBER 2006 TABLE OF CONTENTS LIST OF ABBREVIATIONS SUMMARY…………………………………………………………………………………………….v 1 WORLD HYDROLOGICAL CYCLE OBSERVING SYSTEM (WHYCOS)……………1 2. BACKGROUNG TO DEVELOPMENT OF VOLTA-HYCOS…………………………... 3 2.1 AOC-HYCOS PILOT PROJECT............................................................................................... 3 2.2 OBJECTIVES OF AOC HYCOS PROJECT ................................................................................ 3 2.2.1 General objective........................................................................................................................ 3 2.2.2 Immediate objectives .................................................................................................................. 3 2.3 LESSONS LEARNT IN THE DEVELOPMENT OF AOC-HYCOS BASED ON LARGE BASINS......... 4 3. THE VOLTA BASIN FRAMEWORK……………………………………………………... 7 3.1 GEOGRAPHICAL ASPECTS....................................................................................................... 7 3.2 COUNTRIES OF THE VOLTA BASIN ......................................................................................... 8 3.3 RAINFALL............................................................................................................................. 10 3.4 POPULATION DISTRIBUTION IN THE VOLTA BASIN.............................................................. 11 3.5 SOCIO-ECONOMIC INDICATORS...........................................................................................
    [Show full text]
  • 2015 Annual Report.Cdr
    ENVIRONMENTAL PROTECTION AGENCY ANNUAL REPORT 2015 ANNUAL REPORT 2015 TABLE OF CONTENTS ACRONYMS i EXECUTIVE SUMMARY xv 1.0 INTRODUCTION 1 1.1 Declaration and Statutory Functions of EPA 1 1.1.1 Our Vision 1 1.1.2 Our Mission 1 1.1.3 Statutory Functions of EPA 1 1.1.4 Strategic Objectives 2 1.2 Rationale and Structure of Report 2 SECTION 1: STRATEGIC THEMES 4 2.0 POLICY, INSTITUTIONAL AND LEGAL REFORM 4 2.1 Alien Invasive Species Policy 4 2.2 Draft Policy and Legal Framework on Chemical Related Multilateral Environmental Agreements (MEAs) 4 2.3 Hazardous Waste Bill 4 2.4 Pesticide Regulations 4 2.5 Waste Regulations 4 2.6 Onshore Oil and Gas Guidelines 4 2.7 Offshore Oil and Gas Regulations 4 2.8 The Coastal and Marine Habitats Protection Regulations 4 2.9 Conversion of Environmental Quality Guidelines into Standards 5 2.10 Guidelines for Biodiversity Offset Business Scheme 5 2.11 Forest and Wood Industry Sector Guideline 5 3.0 ENVIRONMENTAL ASSESSMENT AND LEGAL COMPLIANCE 6 3.1 Environmental Assessment (EA) Administration 6 3.1.1 Applications processed and Permits issued (General) 6 3.1.2 Chemicals Management 7 3.1.3 Environmental Impact Assessment (EIA) Technical Reviews 8 3.1.4 Public hearing 9 3.1.5 Enhancing the Environmental Assessment Process 9 3.1.6 Complaints Investigation/Resolution 10 3.2 Compliance Monitoring 10 3.2.1 Compliance Monitoring and Enforcement 10 3.2.2 The Special Ministerial Compliance Exercise 12 3.2.3 Monitoring of Mining Projects 12 3.2.4 Monitoring of Aquaculture Projects 14 3.2.5 Compliance Monitoring of the
    [Show full text]
  • Comments on Selected Forest Reserves Visited in SW Ghana in 2008-2010: Wildlife (Especially Birds) and Conservation Status
    Comments on selected forest reserves visited in SW Ghana in 2008-2010: wildlife (especially birds) and conservation status Françoise Dowsett-Lemaire & Robert J. Dowsett A report prepared for the Wildlife Division, Forestry Commission, Accra, Ghana Dowsett-Lemaire Misc. Report 82 (20 11 ) Dowsett-Lemaire F. & Dowsett R.J. 2011. Comments on selected forest reserves vis ited in SW Ghana in 2008-2010: wildlife (especially birds) and conservation status Dowsett-Lemaire Misc. Rep. 82: 29 pp. E-mail : [email protected] Birds of forest reserves in SW Ghana -1- Dowsett-Lemaire Misc. Rep. 82 (2011) Comments on selected forest reserves visited in SW Ghana in 2008-2010: wildlife (especially birds) and conservation status by Françoise Dowsett-Lemaire & Robert J. Dowsett Acknowledgements We are very grateful to staff of the Forestry Commission (Managers of District offices, range supervisors and others) who often went out of their way to help us with directions, personnel to guide us and other advice. INTRODUCTION All wildlife reserves in the south-west of Ghana (Ankasa, Kakum, Bia, Owabi, Bomfobiri and Boabeng-Fiema) and a few forest reserves with special wildlife value (Atewa Range, Cape Three Points, Krokosua and Ayum/Subim) were visited from December 2004 to February 2005 when we were contracted to the Wildlife Di vision (Dowsett-Lemaire & Dowsett 2005). In 2008 we started a project to study the ecology of birds and map their distribution in the whole of Ghana; in the forest zone we also paid attention to mammals and tried to as sess changes in conservation status of various reserves since the publication of Hawthorne & Abu-Juam (1995).
    [Show full text]
  • Water Resources and Environmental Management in Ghana
    Journal of the Faculty of Environmental Science and Technology, Okayama University Vo1.9, No.I. pp.87-98. February 2004 Water Resources and Environmental Management in Ghana Kwabena KANKAM-YEBOAH*, Philip GYAU-BOAKYE**, Makoto NISHIGAKI*** and Mitsuru KOMATSU*** (Received December 3, 2003) Three principal river basins are found in Ghana and the Volta River Basin is the major one, covering about three-quarters of Ghana. The basin is shared with Mali, Burkina Faso, Cote d'lvoire, Togo and Benin. Water from the Volta River Basin is used for drinking water supply, generating hydro-electric power, irrigation, inland fisheries and lake transport. The sustainable management of the Volta River Basin is thus of great importance. Land use activities in the basin are thus closely monitored not only in Ghana, but also in the other riparian countries as well. This paper presents information and data on the water resources and environmental management of the Volta River Basin in Ghana. Key words: water resources, environmental management, Volta River Basin, Ghana, water utilization 1 INTRODUCTION both the forest and savannah zones since the early 1970s (Opoku-Ankomah and Amisigo, 1998; Paturel, et al. Ghana is covered by three main river basins. These 1997; Aka, et al. 1996). The mean annual temperatures are the Volta, South-Western and the Coastal Basins. The vary between 24.4 DC and 28.1 DC. Gyau-Boakye and Volta River Basin (Fig. 1) covers about 70 % of the total Tumbulto (2000) have observed that the mean annual surface area of the country and it is shared by six West temperature in the basin has increased by 1 DC between Africa countries, namely; Ghana, Mali, Burkina Faso, 1945 and 1993.
    [Show full text]
  • Open Whole.Kad.Final3re.Pdf
    The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences MANAGING WATER RESOURCES UNDER CLIMATE VARIABILITY AND CHANGE: PERSPECTIVES OF COMMUNITIES IN THE AFRAM PLAINS, GHANA A Thesis in Geography by Kathleen Ann Dietrich © 2008 Kathleen Ann Dietrich Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2008 The thesis of Kathleen Ann Dietrich was reviewed and approved* by the following: Petra Tschakert Assistant Professor of Geography Alliance for Earth Sciences, Engineering, and Development in Africa Thesis Adviser C. Gregory Knight Professor of Geography Karl Zimmerer Professor of Geography Head of the Department of Geography *Signatures are on file in the Graduate School iii ABSTRACT Climate variability and change alter the amount and timing of water resources available for rural communities in the Afram Plains district, Ghana. Given the fact that the district has been experiencing a historical and multi-scalar economic and political neglect, its communities face a particular vulnerability for accessing current and future water resources. Therefore, these communities must adapt their water management strategies to both future climate change and the socio-economic context. Using participatory methods and interviews, I explore the success of past and present water management strategies by three communities in the Afram Plains in order to establish potentially effective responses to future climate change. Currently, few strategies are linked to climate variability and change; however, the methods and results assist in giving voice to the participant communities by recognizing, sharing, and validating their experiences of multiple climatic and non-climatic vulnerabilities and the past, current, and future strategies which may enhance their adaptive capacity.
    [Show full text]
  • Ghana Demographic and Health Survey 2014 [FR307]
    Ghana 2014 Ghana Demographic and Health Survey Demographic and Health Survey 2014 Ghana Demographic and Health Survey 2014 Ghana Statistical Service Accra, Ghana Ghana Health Service Accra, Ghana The DHS Program ICF International Rockville, Maryland, USA October 2015 International Labour Organization This report summarises the findings of the 2014 Ghana Demographic and Health Survey (2014 GDHS), implemented by the Ghana Statistical Service (GSS), the Ghana Health Service (GHS), and the National Public Health Reference Laboratory (NPHRL) of the GHS. Financial support for the survey was provided by the United States Agency for International Development (USAID), the Global Fund to fight AIDS, Tuberculosis, and Malaria through the Ghana AIDS Commission (GAC) and the National Malaria Control Programme (NMCP), the United Nations Children’s Fund (UNICEF), the United Nations Development Programme (UNDP), the United Nations Population Fund (UNFPA), the International Labour Organization (ILO), the Danish International Development Agency (DANIDA), and the Government of Ghana. ICF International provided technical assistance through The DHS Program, a USAID-funded project offering support and technical assistance in the implementation of population and health surveys in countries worldwide. Additional information about the 2014 GDHS may be obtained from the Ghana Statistical Service, Head Office, P.O. Box GP 1098, Accra, Ghana; Telephone: 233-302-682-661/233-302-663-578; Fax: 233-302-664-301; E-mail: [email protected]. Information about The DHS Program may be obtained from ICF International, 530 Gaither Road, Suite 500, Rockville, MD 20850, USA; Telephone: +1-301-407-6500; Fax: +1-301-407-6501; E-mail: [email protected]; Internet: www.DHSprogram.com.
    [Show full text]
  • Impact of Climate Change and Variability on Hydropower in Ghana
    Impact of Climate Change and Variability on Hydropower in Ghana. Sylvester Afram Boadi1* & Kwadwo Owusu2 1Climate Change & Sustainable Development Programme, University of Ghana, P.O. Box LG 59, Legon. Accra, Ghana. Telephone Number: 0245726816. Institutional E-mail: [email protected] 2Climate Change & Sustainable Development Programme, University of Ghana, P.O. Box LG 59, Legon. Accra, Ghana. Telephone Number: 0279943213. E-mail: [email protected] 1 Abstract Ghana continues to rely heavily on hydropower for her electricity needs. This hydropower reliance cannot ensure sustainable development since there is a strong association between hydropower production and climate variability and change including ENSO related lake water levels reduction. Using regression analysis this study found that rainfall variability accounted for 21% of the inter- annual fluctuations in power generation from the Akosombo Hydroelectric power station between 1970 and 1990 while ENSO and lake water level accounted for 72.4% of the inter-annual fluctuations between 1991 and 2010. There is therefore the need to diversify power production to attain energy security in Ghana. Keywords: climate change and variability; El Niño-Southern Oscillation; hydropower; energy security; Ghana. 2 Background The impacts of climate variability and change are real and would continue to affect sensitive sectors of the global economy. Productive sectors such as agriculture, water, health, energy and transport among others bear the brunt of these variability and change in the world’s climate (IPCC, 2007). The reliance on climate sensitive sectors such as hydropower has become a challenge to sustainable development as a result of climate variability and change impacts on power generation (Okudzeto, Mariki, Paepe & Sedegah, 2014).
    [Show full text]
  • Ghana Water Resources Profile Overview Ghana Has Abundant Water Resources and Is Not Considered Water Stressed Overall
    WATER RESOURCES PROFILE SERIES The Water Resources Profile Series synthesizes information on water resources, water quality, the water-related dimen- sions of climate change, and water governance and provides an overview of the most critical water resources challenges and stress factors within USAID Water for the World Act High Priority Countries. The profile includes: a summary of avail- able surface and groundwater resources; analysis of surface and groundwater availability and quality challenges related to water and land use practices; discussion of climate change risks; and synthesis of governance issues affecting water resources management institutions and service providers. Ghana Water Resources Profile Overview Ghana has abundant water resources and is not considered water stressed overall. The total volume of freshwater withdrawn by major economic sectors amounts to 6.3 percent of its total resource endowment, which is lower than the water stress benchmark.i Total renewable water resources per person of 1,949 m3 is also above the Falkenmark Indexii threshold for water stress. However, water availability is influenced by management decisions and abstractions from upper-basin countries as almost half of its freshwater originates outside the country. The Volta Basin covers most of the country and is critical to hydroelectric generation, agriculture, and fisheries. However, water availability for hydropower generation and agriculture is vulnerable to drought and depends on upper basin dam releases and abstractions in Burkina Faso. Flood risks are amplified by uncoordinated floodgate releases from upstream dams. Transboundary cooperation is needed to reconcile basin development plans and address flood mitigation and drought contingencies in the Volta Basin. Informal gold mining, logging, and the expanding cocoa sector are increasing flood risks, erosion, and sedimentation in the Southwestern and Coastal Basins.
    [Show full text]
  • Aquaculture-Mediated Invasion of the Genetically Improved Farmed Tilapia (Gift) Into the Lower Volta Basin of Ghana
    Article Aquaculture-Mediated Invasion of the Genetically Improved Farmed Tilapia (Gift) into the Lower Volta Basin of Ghana Gifty Anane-Taabeah 1,2, Emmanuel A. Frimpong 2,* and Eric Hallerman 2 1 Department of Fisheries and Watershed Management, Kwame Nkrumah University of Science and Technology, PMB, University Post Office, Kumasi, Ghana; [email protected] 2 Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; [email protected] (E.A.F.); [email protected] (E.H.) * Correspondence: [email protected]; Tel.: +15-402-316-880 Received: 18 July 2019; Accepted: 30 September 2019; Published: 2 October 2019 Abstract: The need for improved aquaculture productivity has led to widespread pressure to introduce the Genetically Improved Farmed Tilapia (GIFT) strains of Nile tilapia (Oreochromis niloticus) into Africa. However, the physical and regulatory infrastructures for preventing the escape of farmed stocks into wild populations and ecosystems are generally lacking. This study characterized the genetic background of O. niloticus being farmed in Ghana and assessed the genetic effects of aquaculture on wild populations. We characterized O. niloticus collected in 2017 using mitochondrial and microsatellite DNA markers from 140 farmed individuals sampled from five major aquaculture facilities on the Volta Lake, and from 72 individuals sampled from the wild in the Lower Volta River downstream of the lake and the Black Volta tributary upstream of the lake. Our results revealed that two farms were culturing non-native O. niloticus stocks, which were distinct from the native Akosombo strain. The non-native tilapia stocks were identical to several GIFT strains, some of which showed introgression of mitochondrial DNA from non-native Oreochromis mossambicus.
    [Show full text]
  • Class G Tables of Geographic Cutter Numbers: Maps -- by Region Or Country -- Eastern Hemisphere -- Africa
    G8202 AFRICA. REGIONS, NATURAL FEATURES, ETC. G8202 .C5 Chad, Lake .N5 Nile River .N9 Nyasa, Lake .R8 Ruzizi River .S2 Sahara .S9 Sudan [Region] .T3 Tanganyika, Lake .T5 Tibesti Mountains .Z3 Zambezi River 2717 G8222 NORTH AFRICA. REGIONS, NATURAL FEATURES, G8222 ETC. .A8 Atlas Mountains 2718 G8232 MOROCCO. REGIONS, NATURAL FEATURES, ETC. G8232 .A5 Anti-Atlas Mountains .B3 Beni Amir .B4 Beni Mhammed .C5 Chaouia region .C6 Coasts .D7 Dra region .F48 Fezouata .G4 Gharb Plain .H5 High Atlas Mountains .I3 Ifni .K4 Kert Wadi .K82 Ktaoua .M5 Middle Atlas Mountains .M6 Mogador Bay .R5 Rif Mountains .S2 Sais Plain .S38 Sebou River .S4 Sehoul Forest .S59 Sidi Yahia az Za region .T2 Tafilalt .T27 Tangier, Bay of .T3 Tangier Peninsula .T47 Ternata .T6 Toubkal Mountain 2719 G8233 MOROCCO. PROVINCES G8233 .A2 Agadir .A3 Al-Homina .A4 Al-Jadida .B3 Beni-Mellal .F4 Fès .K6 Khouribga .K8 Ksar-es-Souk .M2 Marrakech .M4 Meknès .N2 Nador .O8 Ouarzazate .O9 Oujda .R2 Rabat .S2 Safi .S5 Settat .T2 Tangier Including the International Zone .T25 Tarfaya .T4 Taza .T5 Tetuan 2720 G8234 MOROCCO. CITIES AND TOWNS, ETC. G8234 .A2 Agadir .A3 Alcazarquivir .A5 Amizmiz .A7 Arzila .A75 Asilah .A8 Azemmour .A9 Azrou .B2 Ben Ahmet .B35 Ben Slimane .B37 Beni Mellal .B4 Berkane .B52 Berrechid .B6 Boujad .C3 Casablanca .C4 Ceuta .C5 Checkaouene [Tétouan] .D4 Demnate .E7 Erfond .E8 Essaouira .F3 Fedhala .F4 Fès .F5 Figurg .G8 Guercif .H3 Hajeb [Meknès] .H6 Hoceima .I3 Ifrane [Meknès] .J3 Jadida .K3 Kasba-Tadla .K37 Kelaa des Srarhna .K4 Kenitra .K43 Khenitra .K5 Khmissat .K6 Khouribga .L3 Larache .M2 Marrakech .M3 Mazagan .M38 Medina .M4 Meknès .M5 Melilla .M55 Midar .M7 Mogador .M75 Mohammedia .N3 Nador [Nador] .O7 Oued Zem .O9 Oujda .P4 Petitjean .P6 Port-Lyantey 2721 G8234 MOROCCO.
    [Show full text]
  • Modelling West African Total Precipitation Depth: a Statistical Approach
    AgiAl The Open Access Journal of Science and Technology Publishing House Vol. 3 (2015), Article ID 101120, 7 pages doi:10.11131/2015/101120 http://www.agialpress.com/ Research Article Modelling West African Total Precipitation Depth: A Statistical Approach S. Sovoe Environmental Protection Agency, Ho, Volta Region, Ghana Corresponding Author: S. Sovoe; email: [email protected] Received 27 August 2014; Accepted 29 December 2014 Academic Editor: Isidro A. Pérez Copyright © 2015 S. Sovoe. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract. Even though several reports over the past few decades indicate an increasing aridity over West Africa, attempts to establish the controlling factor(s) have not been successful. The traditional belief of the position of the Inter-tropical Convergence Zone (ITCZ) as the predominant factor over the region has been refuted by recent findings. Changes in major atmospheric circulations such as African Easterly Jet (AEJ) and Tropical Easterly Jet (TEJ) are being cited as major precipitation driving forces over the region. Thus, any attempt to predict long term precipitation events over the region using Global Circulation or Local Circulation Models could be flawed as the controlling factors are not fully elucidated yet. Successful prediction effort may require models which depend on past events as their inputs as in the case of time series models such as Autoregressive Integrated Moving Average (ARIMA) model. In this study, historical precipitation data was imported as time series data structure into an R programming language and was used to build appropriate Seasonal Multiplicative Autoregressive Integrated Moving Average model, ARIMA (푝, 푑, 푞)∗(푃 , 퐷, 푄).
    [Show full text]