Radiochemistry of Germanium

Total Page:16

File Type:pdf, Size:1020Kb

Radiochemistry of Germanium Jointly published by Journal of Radioanalytical and Nuclear Chemistry, Articles, Elsevier Science S. A., Lausanne and Vol. 202, Nos 1-2 (1996) 7-102 Akaddmiai Kiad6, Budapest Renew RADIOCHEMISTRY OF GERMANIUM S. MIRZADEH,* R. M. LAMBRECHT** *Nuclear Medicine Group, Oak Ridge National Laboratory, Oak Ridge, TN, 37830 (USA) **Biomedicine and Health, Australian Nuclear Science and Technology Organisation, Menai,NSW (Australia) (Received March 13, 1995) Contents 1. Some general information 9 1.1 Natural occurrence 9 1.2 Environmental concentrations 13 1.3 Toxicity 14 1.4 Applications 15 2, General review of the inorganic and analytical chemistry of germanium 16 2".1 Germanium metal 16 2.2 Germanium compounds 19 a. Hydrides 21 b. Halides 22 c. Oxides 23 d. Sulfides 23 e. Organometallic compounds 24 2.3 Electrochemistry 25 2.4 Detection of germanium 25 a. Activation analysis 26 3. Production of germanium radioisotopes 27 4= A summary of the chemical behavior of carrier-free germanium-68 32 5, Hot-atom chemistry of germanium 34 6. Separation methods 38 6.1 Volatilization and gas chromatography 39 6.2 Precipitation and coprecipitation 41 a. Reaction with hydrogen sulfide 41 b. Coprecipitation with acid-insoluble sulfides 42 c. Coprecipitation with hydroxides of group III elements 43 0236-5731196/US $ 32.0 Copyright 1996 Akad#miai Kiad6, Budapest All rights reserved S. M1RZADEH, R. M. LAMBRECHT: RADIOCHEMISTRY OF GERMANIUM 6.3 Extraction 44 a. Extraction with organic solvents 44 b. Extraction of germanium complexes 48 c. Extraction with hydroxyl-containing organic ligands 51 6.4 Ion-exchange chromatography 52 a. Cation exchange 53 b. Anion exchange 56 c. Adsorption on inorganic exchangers 59 d. Thin-layer and paper chromatography 62 6.5 Electrodeposition 66 7. Applied radiochemistry o! germanium 67 7.1 68Ge--~6eGagenerator in biomedical research 67 7.2 71Ga[v,fl]71Ge: A radiochemical detector for the solar neutrino 72 8. Selected radiochemical procedures 75 8.1 Separation of germanium radioisotopes from various media 76 a. Fission products 76 b. Proton-irradiated RbBr target 76 c. Proton-irradiated Ga metal target 78 d. Proton-irradiated Ga4Ni target 79 8,2 Rapid separation of germanium isotopes from fission products 80 83 Determination of germanium by neutron activation 81 8.4 Thin-layer chromatographic separation of carrier-free 77As from 77Ge 82 References 85 Since the publication of Radiochemistry of Germanium_ (NAS-NS-3043) in 1961, there have been significant developments on the subject. During the period from 1970 to 1980, the diagnostic utilization of the 68Ge--.6SGagenerator system in nuclear medicine stimulated research in the field. In addition, over the past 30 years there have been many advances in the analytical chemistry of germanium (Go), owing to the rapid increase in application of Ge in the electronics industry and, most recently, as an important component in infrared spectrometers. This latest review has been completely rewritten. A literature search has been completed through December of 1990. Literature for selected topics has been surveyed through September 1993. The first section contains general information about germanium and its radioisotopes, and relevant nuclear data in tabulated form. in the second section, a general review of the inorganic and analytical chemistry of Ge is presented. Following these two introductory sections, subsequent sections deal with the production and preparation of germanium radioisotopes, separation and determination of Ge, of particular interest to the radiochemist, and selected procedures for its determination in or separation from various media. The section on separation chemistry has been greatly expanded. The review includes sections on hot-atom chemistry and the chemical behavior of carrier-free 68Ge. A section entitled "Applied Radiochemistry of Germanium" deals specifically with 68Ge .._.68 Ga generator systems, the role of 71Ge in the detection of solar neutrinos, and the preparation of 68Ge positron sources for studying dislocations in metallic lattices and calibration of Positron Emission Tomography (PET) cameras. Two other noteworthy points follow. Throughout the text, the oxidation state of a metal ion having only one stable state, such as germanium, is not explicitly indicated. Therefore, "Go" typically represents Ge4+, Other ions such as arsenic and tin, however, are indicated with their appropriate oxidation states. The term "carrier-free" applies to radioactive preparations to which no isotopic carrier (stable isotopes) is intentionally added. S. MIRZADEH, R. M. LAMBRECHT: RADIOCHEMISTRYOF GERMANIUM 1. Some General Information 1~.1. Natural Occurrence 1.2. Environmental Concentrations 1.3. Toxicity 1.4. Applications 1.1 Natural Occurrence Germanium (Ge) is a semiconducting metalloid of the Group IVA elements. It was predicted and called eka-silicon by Mendeleef, and was discovered in 1886 by Clemens Winkler. It is grayish-white, lustrous and brittle like glass. It is diamond-cubic in structure when crystalline. Germanium and many of its alloys expand on solidification. There are five stable isotopes of germanium: 7~ (20.55%), 72Ge (27.37%), 73Ge (7.67%), 74Ge (36.74%) and 76Ge (7.67%). A recent measurement of the isotopic abundance of Ge in a range of terrestrial materials using solid-source mass spectrometry revealed no variations in isotopic abundances in any of the reagents or minerals analyzed. 1 Among the nineteen known radioisotopes of germanium, seven are proton-rich and decay with I~+ and/or electron capture (64Ge - 71Ge with 7~ being stable), and nine radioisotopes are neutron-rich and decay by iT (75Ge - 84Ge with 76Ge being stable). There are only four very short-lived metastable isotopes of germanium: 71rnGe, 75raGe, 77mGe and 79mGe. Of the four, the last three are neutron-rich. Germanium-68, with a half-life of 270.8:t:0.3 days, is the longest-lived radioisotope of germanium. A summary of the nuclear and decay data pertaining to germanium isotopes and their production is given in Tables 1.1 and 1.2. The neutron capture cross sections for germanium isotopes and a summary of the fission neutron-averaged cross sections for [n,p], [n,a] and [n,2n] reactions are given in Tables 1.3 and 1.4, respectively. The data have been taken from references 2-59. On a cosmic scale, germanium occurs as a trace element in iron meteorites, in stony meteorites, in the sun, and in the stars. The cosmic abundance of Ge is ~50 atoms per lx106 atoms of silicon. The crust of the earth is estimated to contain 1-2 g Ge per ton, or 1-2 ppm, so it is somewhat more abundant than gallium and lead, but less abundant than arsenic, beryllium, boron and bromine. Ge is not found in the free state on e~lrth, but always in combination with other elements. It may be found as argyrodite, a sulfide of germanium and silver, germanite, which contains 8% of the element, in zinc ores, and in other minerals. It also occurs in significant concentrations (up to 2-8 ppm) S. MIRZADEH, R. M. LAMBRECHT: RADIOCHEM]STRY OF GERMANIUM 09 (D 46 r~ O. ~ ~ E LLI~, > LLI~, ~) I',- 04 , , ~ , ~ ~ ~ ~, "0 0 E O v o4 (.(9 (.O O .-'2 O ~0 E 04 00 co r '-,O .=_ I.O (O O~ fo O~ 0,4 O') o eO 09 09 c~l 04 C~l 04 o e- "- E -o -':: ~ ~'~ "O e, (o cO QO tO t.O I'..- O') ~ I'-. (D 05 O tO ,,r- t",,I z T- t.O tO I'-.- OO CO CD I-- C (D tD ",.O tO .r r 1"-- 10 S. MIRZADEH, R. M, LAMBRECHT: RADIOCHEMISTRY OF GERMANIUM O~ O. 0 c~ tU~ > ~0~ ~ g~, O'~ t.O o>~ ~ ~ o~ r-- r e,i O'~ , + O') 0 O O v ,0J O I-- .m I--- o0 t,D "r "r to r r..,- o o,,I ~ r o") t'N c~l CN L= t- Z I ~-= E E mB ~ t.O r I'--- I'..- 1I S. MIRZADEH, R. M. LAMBRECHT: RAD1OCHEMISTRY OF GERMANIUM s s (N A > && c~o W~ o') 0 og 0 0 oo I- ,+ -I- + 0 CO 0 0 o , +o +o 0 v > 19 Q, u~ 0,) (0 o 0 , co ~ ,..o co a,. IM E < ~o I,N 0 0 > , O) 0') O) ~E i I i II O0 =O E o~ gl o. t~ tg~ (D t'~ t'~ O') 05 O z x (9 0~ e~ CO c'q t"o r~m s Fo t~ .el o 12 S. MIRZADEH, R. M. LAMBRECHT: RADIOCHEMISTRY OF GERMANIUM Table 1.2 Production reactions Atomic Production Atomic Production number reactions Ref. number reactions Ref. 64 64Zn[3He,3n] [28] 73m 73As (1~---.) [50] 54Fe[12C,2n] [29] 75 74Ge[n,y] [47] 65 64Zn(3He,2n) [30] 75As(n, p) [48] 4~ [31] 75m 74Ge[n,7] [47] 66 64Zn[a,2n] [32-34] 75As[n,p] [51] 64Zn(3He,n) [35] 76Ge(n,2n) [2] 56Fe(t2C,2n) [2] 77 76Ge[n,y] [47] 67 64Zn[a,n] [36] [37] 77m 7SGe[n,y] [47] 68 66Zn[a,2n] [38] 78 82Se[n,en] [2] Zn[a, xn] [39] fission [52] 69Ga[p,2n] [40] Ga[p ,xn] [41 ] 79a fission [53,54] Ge[p,pxn] [42] Y,Rb,Br,As[p,spall] [43,44] 79b [n,a], [55] fission [53-58] 69 69Ge[d,2n] [45] Co[ C,pn] [2] 81 fission [53-58] Ga[p,xn] [2] 7~ [2] 82 fission [53-58] 71 7~ [47] 83 fission [53-58] 71Ga[d,2n] [48] 72Ge[n,2n] [46,49] 84 fission [53-58] in many coals of the world, Germanium is recovered worldwide as a byproduct of production of other metals, primarily zinc, copper and lead. Production of germanium in the U.S.
Recommended publications
  • Germane Facts About Germanium Sesquioxide: I. Chemistry and Anticancer Properties
    THE JOURNAL OF ALTERNATIVE AND COMPLEMENTARY MEDICINE Volume 10, Number 2, 2004, pp. 337–344 ©Mary Ann Liebert, Inc. Germane Facts About Germanium Sesquioxide: I. Chemistry and Anticancer Properties BONNIEJ. KAPLAN, Ph.D., 1 W. WESLEYPARISH, Ph.D., 2 G. MERRILLANDRUS, Ph.D., 2 J. STEVENA. SIMPSON, Ph.D., M.D., 3 and CATHERINEJ. FIELD, Ph.D., R.D. 4 ABSTRACT This paper reviews the history, chemistry, safety, toxicity, and anticancer effects of the organogermanium compound bis (2-carboxyethylgermanium) sesquioxide (CEGS). A companion review follows, discussing the inaccuracies in the scientific record that have prematurely terminated research on clinical uses of CEGS. CEGS is a unique organogermanium compound first made by Mironov and coworkers in Russia and, shortly there- after, popularized by Asai and his colleagues in Japan. Low concentrations of germanium occur in nearly all soils, plants and animal life; natural occurrence of the CEGS form is postulated but not yet demonstrated. The literature demonstrating its anticancer effect is particularly strong: CEGS induces interferon- g (IFN-g), en- hances natural killer cell activity, and inhibits tumor and metastatic growth—effects often detectable after a single oral dose. In addition, oral consumption of CEGS is readily assimilated and rapidly cleared from the body without evidence of toxicity. Given these findings, the absence of human clinical trials of CEGS is un- expected. Possible explanations of why the convincing findings from animal research have not been used to support clinical trials are discussed. Clinical trials on CEGS are recommended. INTRODUCTION bispropionic acid; 3-oxygermylpropionic acid polymer; poly- trans-(2-carboxyethyl) germasesquioxane); proxigerma- n general, dietary supplements are an underinvestigated nium; repagermanium; and Serocion.
    [Show full text]
  • Physical and Chemical Properties of Germanium
    Physical And Chemical Properties Of Germanium Moneyed and amnesic Erasmus fertilise her fatuousness revitalise or burrow incommunicatively. Creditable Petr still climbs: regarding and lissome Lazarus bully-off quite punctiliously but slums her filoplume devotedly. Zane still defilade venomous while improvident Randell bloodiest that wonderers. Do you for this context of properties and physical explanation of Silicon is sincere to metals in its chemical behaviour. Arsenic is extremely toxic, RS, carbon is the tongue one considered a full nonmetal. In nature, which name a widely used azo dye. Basic physical and chemical properties of semiconductors are offset by the energy gap between valence conduction! Other metalloids on the periodic table are boron, Batis ZB, only Germanium and Antimony would be considered metals for the purposes of nomenclature. Storage temperature: no restrictions. At room temperature, the semiconducting elements are primarily nonmetallic in character. This application requires Javascript. It has also new found in stars and already the atmosphere of Jupiter. Wellings JS, it is used as an eyewash and insecticide. He has studied in Spain and Hungary and authored many research articles published in indexed journals and books. What are oral health benefits of pumpkins? The material on this site may not be reproduced, germanium, the radiation emitted from an active device makes it locatable. Classify each statement as an extensive property must an intensive property. In germanium and physical chemical properties of the border lines from the! The most electronegative elements are at the nod in the periodic table; these elements often react as oxidizing agents. Atomic Volume and Allotropy of the Elements.
    [Show full text]
  • The Photochemistry of Some Acyclic Ketones Containing a Silicon Or a Tin Atom
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 1965 THE PHOTOCHEMISTRY OF SOME ACYCLIC KETONES CONTAINING A SILICON OR A TIN ATOM PERRY LESTER MAXFIELD Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation MAXFIELD, PERRY LESTER, "THE PHOTOCHEMISTRY OF SOME ACYCLIC KETONES CONTAINING A SILICON OR A TIN ATOM" (1965). Doctoral Dissertations. 816. https://scholars.unh.edu/dissertation/816 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 6 6-5974 MAXFIELD, Perry Lester, 1933- THE PHOTOCHEMISTRY OF SOME ACYCLIC KETONES CONTAINING A SILICON OR A TIN ATOM. University of New Hampshire, Ph.D., 1965 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan THE PHOTOCHEMISTRY OF SOME ACYCLIC KETONES CONTAINING A SILICON OR A TIN ATOM BY PERRY LESTER MAXFIELD B. S., Brigham Young University, 1961 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Chemistry August, 1964 This thesis has been examined and approved. Date ACKNOWLEDGMENT I wish to express my gratitude to the Department of Chemistry of the University of New Hampshire for the help and guidance which I have received during my stay here. Acknowledg ment is also due the United States Department of Health, Edu­ cation, and Welfare for a National Defense Education Fellow­ ship which has been so helpful in financing the three years of study.
    [Show full text]
  • Kanker Begrijpen De Wijsheid Van Het Lichaam
    TherapieWijzer Kanker begrijpen De wijsheid van het lichaam voeding beweging leefstijl bioactieve stoffen supplementen niet-toxische therapieën chemo & straling ondersteunen bijwerkingen beperken Hilde Maris Referenties 1. Hoe ontstaat kanker? Alzoubi K, Khabour O, Hussain N, et al. Evaluation of vita- cine. 6th edition. Hamilton (ON): BC Decker; 2003. min B12 effects on DNA damage induced by pioglitazone. Liu HK, Wang Q, Li Y, et al. Inhibitory effects of gamma- Mutat Res. 2012 Oct 9;748(1-2):48-51. tocotrienol on invasion and metastasis of human gastric Azqueta A, Collins AR. Carotenoids and DNA damage. adenocarcinoma SGC-7901 cells. J Nutr Biochem. 2010 Mutat Res. 2012 May 1;733(1-2):4-13. Mar;21(3):206-13. Barrett JC. Mechanisms of multistep carcinogenesis and Liu R, Fu A, Hoffman AE, et al. Melatonin enhances DNA carcinogen risk assessment. Environ Health Perspect. repair capacity possibly by affecting genes involved in 1993 Apr;100:9-20. DNA damage responsive pathways. BMC Cell Biol. 2013 Bhat FA, Sharmila G, Balakrishnan S, et al. Querce- Jan 7;14:1. tin reverses EGF-induced epithelial to mesenchymal Lotan R1. Retinoids as modulators of tumor cells invasion transition and invasiveness in prostate cancer (PC-3) cell and metastasis. Semin Cancer Biol. 1991 Jun;2(3):197- line via EGFR/PI3K/Akt pathway. J Nutr Biochem. 2014 208. Nov;25(11):1132-9. Lyons NM, O’Brien NM. Modulatory effects of an algal Cash SW, Beresford SA, Vaughan TL, et al. Recent physi- extract containing astaxanthin on UVA-irradiated cells in cal activity in relation to DNA damage and repair using the culture.
    [Show full text]
  • Organometallic Compounds Suitable for Use in Vapor Deposition Processes
    Europäisches Patentamt *EP001464724A2* (19) European Patent Office Office européen des brevets (11) EP 1 464 724 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C23C 16/22, C07F 7/30, 06.10.2004 Bulletin 2004/41 C07F 7/02 (21) Application number: 04251948.8 (22) Date of filing: 01.04.2004 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Shenai-Khatkhate, Deodatta Vinayak HU IE IT LI LU MC NL PL PT RO SE SI SK TR Danvers Massachusetts 01923 (US) Designated Extension States: • Power, Michael Brendan AL HR LT LV MK Newburyport Massachusetts 01950 (US) (30) Priority: 05.04.2003 US 460791 P (74) Representative: Kent, Venetia Katherine 22.10.2003 US 513476 P Rohm and Haas (UK) Ltd European Patent Department (71) Applicant: Rohm and Haas Electronic Materials, 28th. Floor, City Point L.L.C. One Ropemaker Street Marlborough, Massachusetts 01752 (US) London EC2Y 9HS (GB) (54) Organometallic compounds suitable for use in vapor deposition processes (57) Organometallic compounds suitable for use as metallic precursors are also provided. Such Group IV vapor phase deposition precursors for Group IV metal- metal-containing films are particularly useful in the man- containing films are provided. Methods of depositing ufacture of electronic devices. Group IV metal-containing films using certain organo- EP 1 464 724 A2 Printed by Jouve, 75001 PARIS (FR) EP 1 464 724 A2 Description Background of the Invention 5 [0001] The present invention relates generally to the field of organometallic compounds.
    [Show full text]
  • Cosmogenic Production As a Background in Searching For
    Cosmogenic Production as a Background in Searching for Rare Physics Processes D.-M. Mei a , Z.-B. Yin a,b,c,1, S. R. Elliott d aDepartment of Physics, The University of South Dakota, Vermillion, South Dakota 57069 bInstitute of Particle Physics, Huazhong Normal University, Wuhan 430079, China cKey Laboratory of Quark & Lepton Physics (Huazhong Normal University), Ministry of Education, China dLos Alamos National Laboratory, Los Alamos, New Mexico 87545 Abstract We revisit calculations of the cosmogenic production rates for several long-lived iso- topes that are potential sources of background in searching for rare physics processes such as the detection of dark matter and neutrinoless double-beta decay. Using up- dated cosmic-ray neutron flux measurements, we use TALYS 1.0 to investigate the cosmogenic activation of stable isotopes of several detector targets and find that the cosmogenic isotopes produced inside the target materials and cryostat can result in large backgrounds for dark matter searches and neutrinoless double-beta decay. We use previously published low-background HPGe data to constrain the production of 3H on the surface and the upper limit is consistent with our calculation. We note that cosmogenic production of several isotopes in various targets can generate po- arXiv:0903.2273v1 [nucl-ex] 12 Mar 2009 tential backgrounds for dark matter detection and neutrinoless double-beta decay with a massive detector, thus great care should be taken to limit and/or deal with the cosmogenic activation of the targets. Key words: Cosmogenic activation, Dark matter detection, Double-beta decay PACS: 13.85.Tp, 23.40-s, 25.40.Sc, 28.41.Qb, 95.35.+d, 29.40.Wk Email address: [email protected] (D.-M.
    [Show full text]
  • Calculations
    A University of Sussex DPhil thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details I. Group 14 Metal Alkoxides: Synthesis and Reactivity Studies II. Synthesis of Novel Planar Chiral Complexes Based on [2.2]Paracyclophane Lorenzo Ferro DPhil Chemistry University of Sussex May 2011 I hereby declare that this thesis has not been and will not be, submitted in whole or in part to another University for the award of any other degree. Signature________________________________________ UNIVERSITY OF SUSSEX LORENZO FERRO, DPHIL CHEMISTRY I. GROUP 14 METAL ALKOXIDES: SYNTHESIS AND REACTIVITY STUDIES II. SYNTHESIS OF NOVEL PLANAR CHIRAL COMPLEXES BASED ON [2.2]PARACYCLOPHANE ABSTRACT I. A series of group 14 β-diketiminate alkoxides (BDI)EOR (BDI = i i s t [CH{(CH3)CN-2,6- Pr2C6H3}2; E = Ge, Sn, Pb; R = Pr, Bu, Bu) was synthesised and characterised. The reactivity towards aliphatic and unsaturated electrophiles was investigated. For the tin and lead systems, an unexpected trend was observed. For instance, they do not or very sluggishly react with aliphatic electrophiles, but readily activate carbon dioxide.
    [Show full text]
  • Oxidation-Reduction Alternating Copolymerization of Germylene and N-Phenyl-P-Quinoneimine
    Polymer Journal (2015) 47, 31–36 & 2015 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/15 www.nature.com/pj ORIGINAL ARTICLE Oxidation-reduction alternating copolymerization of germylene and N-phenyl-p-quinoneimine Satoru Iwata1, Mitsunori Abe1, Shin-ichiro Shoda1 and Shiro Kobayashi1,2 The germylenes bis[bis(trimethylsilyl)amido]germanium (1a) and bis[t-butyl-trimethylsilyl]amido]germanium (1b) were reacted with N-phenyl-p-quinoneimine (2) to give copolymers (3a and 3b) with alternating tetravalent germanium and p-aminophenol units. The copolymerization took place smoothly at 0 °C without added catalyst or initiator. 1 acted as a reductant monomer, and 2 acted as an oxidant monomer (oxidation-reduction alternating copolymerization). Product copolymers were obtained in very high yields and had high molecular weights. The copolymers were soluble in toluene, benzene, n-hexane and chloroform, whereas they were insoluble in acetonitrile and acetone. Additionally, they were stable toward hydrolytic degradation. Electron spin resonance (ESR) spectroscopic studies of the reaction suggested a structure of a stable germyl radical and a plausible mechanism of biradical copolymerization. Polymer Journal (2015) 47, 31–36; doi:10.1038/pj.2014.84; published online 8 October 2014 INTRODUCTION investigations.10 Five- and six-membered cyclic germylenes, conver- Divalent germanium compounds (germylenes) and their tin analogs sely, were copolymerized with p-benzoquinone derivatives in similar (stannylenes) continue to attract
    [Show full text]
  • Thesis and Characterisation of Novel Precursors for the CVD of Tin Sulfides and Related Materials
    University of Bath PHD The synthesis and characterisation of novel precursors for the CVD of tin sulfides and related materials Kana, Aliki Theodora Award date: 2002 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 08. Oct. 2021 THE SYNTHESIS AND CHARACTERISATION OF NOVEL PRECURSORS FOR THE CVD OF TIN SULFIDES AND RELATED MATERIALS Submitted by Aliki Theodora Kana for the degree of PhD of the University of Bath 2002 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.
    [Show full text]
  • Direct Measurement of the Neutron
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 1-9-2020 Stellar Nucleosynthesis: Direct Measurement of the Neutron- Capture Cross Sections of Stable Germanium Isotopes and Design of a Next Generation Ion Trap for the Study of Beta- Delayed Neutron Emission Alexander Laminack Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Instrumentation Commons, Nuclear Commons, Physical Processes Commons, and the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Laminack, Alexander, "Stellar Nucleosynthesis: Direct Measurement of the Neutron-Capture Cross Sections of Stable Germanium Isotopes and Design of a Next Generation Ion Trap for the Study of Beta- Delayed Neutron Emission" (2020). LSU Doctoral Dissertations. 5131. https://digitalcommons.lsu.edu/gradschool_dissertations/5131 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. STELLAR NUCLEOSYNTHESIS: DIRECT MEASUREMENT OF THE NEUTRON-CAPTURE CROSS SECTIONS OF STABLE GERMANIUM ISOTOPES AND DESIGN OF A NEXT GENERATION ION TRAP FOR THE STUDY OF β-DELAYED NEUTRON EMISSION A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics and Astronomy by Alexander Laminack B. S., The Unviersity of Alabama, 2015 May 2020 To my wife and son: Kristy Allen Alexander Laminack and Daniel Allen Laminack.
    [Show full text]
  • Book of Abstracts 26 - 28 May, 2021 Virtual Joint Conferences
    International Surfaces, Graphene Korea 2021 Coatings and Interfaces Conference International Conference BOOK OF ABSTRACTS 26 - 28 MAY, 2021 VIRTUAL JOINT CONFERENCES Organizer www.setcor.org SurfCoat / Graphene Korea 2021 Joint Virtual Conferences Preliminary Program 26 - 28 May 2021 (GMT + 2 Time Zone) 26 May, 2021 SurfCoat Korea 2021 Session I.A Surface treatments and coatings deposition, functionalization, modelling and characterization Session’s Chairs: Prof. Hee-Jung Im, Jeju National University, Rep. of Korea Prof. Christopher Berndt, Swinburne University of Technology, Australia Highly durable, transparent and superwetting multifunctional Prof. Jinglei Yang, The nanocoating Hong Kong University of 09:00 - 09:30 J. Yang Science and Technology, Hong Kong Icephobic materials: Current research advances and application Prof. Jie Tao, Nanjing 09:30 - 10:00 challenges University of Aeronautics J. Tao, Y. Shen and Z. Chen and Astronautics, China Trends and spray pattern flattening by optimizing nozzle shape Prof. Kazuhiko Sakaki, 10:00 - 10:30 in cold spray Shinshu University, Japan K. Sakaki 10:30 - 11:00 Morning Break High power impulse magnetron sputtering: a flexible tool for Prof. Tomas Kubart, 11:00 - 11:30 synthesis of high performance materials Uppsala University, T. Kubart Sweden Plasma Treatment of Polytetrafluoroethylene in Nitrogen with Wa- Ms. Sukma Wahyu 11:30 - 11:45 ter/Ethanol Vapor Dielectric Barrier Discharge Plasma Fitriani, Kochi University of S.W. Fitriani, H. Yajima, F. Hisroshi and A. Hatta Technology, Japan Cefazolin- chitosan composite coatings on titanium implant with Ms Hui-Min Huang, antibacterial ability National Kaohsiung 11:45 - 12:00 H-M. Huang University of Science and Technology, Taiwan 12:00 - 13:30 Lunch Break Graphene Korea 2021 Session I: Graphene and 2D Materials, Growth, synthesis, modification and functionalization and Characterization Session’s Chairs: Dr.
    [Show full text]
  • The New Nuclear Forensics: Analysis of Nuclear Material for Security
    THE NEW NUCLEAR FORENSICS Analysis of Nuclear Materials for Security Purposes edited by vitaly fedchenko The New Nuclear Forensics Analysis of Nuclear Materials for Security Purposes STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Sven-Olof Petersson, Chairman (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Jayantha Dhanapala (Sri Lanka) Ambassador Wolfgang Ischinger (Germany) Professor Mary Kaldor (United Kingdom) The Director DIRECTOR Dr Ian Anthony (United Kingdom) Signalistgatan 9 SE-169 70 Solna, Sweden Telephone: +46 8 655 97 00 Fax: +46 8 655 97 33 Email: [email protected] Internet: www.sipri.org The New Nuclear Forensics Analysis of Nuclear Materials for Security Purposes EDITED BY VITALY FEDCHENKO OXFORD UNIVERSITY PRESS 2015 1 Great Clarendon Street, Oxford OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © SIPRI 2015 The moral rights of the authors have been asserted All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of SIPRI, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organizations.
    [Show full text]