An Introduction to Nanoscience and Nanotechnology

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Nanoscience and Nanotechnology An Introduction to Nanoscience and Nanotechnology Alain Nouailhat This page intentionally left blank An Introduction to Nanoscience and Nanotechnology This page intentionally left blank An Introduction to Nanoscience and Nanotechnology Alain Nouailhat Part of this book adapted from “Introduction aux nanosciences et aux nanotechnologies” published in France by Hermes Science/Lavoisier in 2006 First published in Great Britain and the United States in 2008 by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 6 Fitzroy Square 111 River Street London W1T 5DX Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd, 2008 © LAVOISIER, 2006 The rights of Alain Nouailhat to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Cataloging-in-Publication Data Nouailhat, Alain. An introduction to nanoscience and nanotechnology / Alain Nouailhat. p. cm. "Part of this book adapted from "Introduction aux nanosciences et aux nanotechnologies" published in France by Hermes Science/Lavoisier in 2006." Includes bibliographical references. ISBN 978-1-84821-007-3 1. Nanoscience. 2. Nanotechnology. I. Title. QC176.8.N35N68 2007 620'.5--dc22 2007021734 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN: 978-1-84821-007-3 Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire. The Physicists “Leaning over the screens of powerful machines They watch the rise of a world previously unknown From within their instruments new phenomena appear.” (José Maria de Heredia, Les Conquérants, adapted by the author) This page intentionally left blank Table of Contents Foreword ...................................... xiii Acknowledgements ............................... xv Preface........................................ xvii Chapter 1. What are Nanos?......................... 1 1.1. What are we talking about?.................... 3 1.2. References............................... 7 1.2.1. Two basic facts ........................ 7 1.2.2. Two approaches ........................ 9 1.2.3. Two key points ........................ 11 1.3. Some bonus material for economists.............. 13 Chapter 2. Some Science to Get You Started.............. 15 2.1. Quantum physics .......................... 17 2.1.1. From the traditional world to the quantum world . 17 2.1.2. Two fundamental concepts................. 19 2.1.2.1. Wave-corpuscle duality ................ 19 2.1.2.2. Probability in the quantum world .......... 21 viii An Introduction to Nanoscience and Nanotechnology 2.2. The key players ........................... 22 2.2.1. The electron .......................... 22 2.2.1.1. The cornerstone of matter ............... 22 2.2.1.2. Electronic states ..................... 23 2.2.1.3. The quantification of energy ............. 24 2.2.1.4. Bonds ............................ 25 2.2.2. The photon ........................... 27 2.2.2.1. The wave.......................... 27 2.2.2.2. The energy grain ..................... 30 2.3. Molecules ............................... 34 2.3.1. From the smallest molecule to the largest and their spectacular properties.................. 34 2.3.2. Functionality .......................... 35 2.4. Solid matter .............................. 36 2.4.1. Insulators or conductors................... 36 2.4.2. Semi-conductors ....................... 37 2.4.2.1. Silicon crystal....................... 37 2.4.2.2 Electrons and holes.................... 40 2.4.2.3 Junctions .......................... 40 2.4.3. Nanomaterials ......................... 41 2.5. Quantum boxes: between the atom and the crystal..... 41 2.6. Some bonus material for physicists............... 42 2.6.1 Luminescence ......................... 42 2.6.2. The laser device ........................ 44 Chapter 3. The Revolution in Techniques Used in Observation and Imagery........................... 51 3.1. Observing with photons ...................... 53 3.1.1. The optical microscope in visible light ......... 53 3.1.2. X-ray machines ........................ 54 3.2. Observing with electrons ..................... 55 3.2.1. The transmission electron microscope (TEM) .... 55 3.2.2. The scanning electron microscope (SEM) ....... 56 Table of Contents ix 3.3. Touching the atoms ......................... 58 3.4. Observing how our brain functions............... 60 3.4.1. Nuclear magnetic resonance ................ 60 3.4.2. Functional magnetic resonance imaging ........ 61 3.5. Some bonus material for researchers.............. 62 Chapter 4. The Marriage of Software and Hardware........ 69 4.1. Small is beautiful .......................... 71 4.2. Miniaturization............................ 71 4.3. Integration............................... 72 4.3.1. The silicon planet ....................... 72 4.3.2. An expanding universe ................... 78 4.4. Programs................................ 82 4.5. Some bonus material for mathematicians........... 83 Chapter 5. Mechanics of the Living World ............... 89 5.1. Proteins – molecules with exceptional properties...... 93 5.1.1. The program of cellular production ........... 94 5.1.2. Reading instructions and the production of proteins................................ 95 5.1.3. How does it work? ...................... 99 5.1.4. Molecular disfunctioning .................. 100 5.1.4.1. External causes ...................... 100 5.1.4.2. Internal causes ...................... 100 5.2. Intervention of human beings .................. 101 5.2.1. Medication........................... 102 5.2.2. The creation of those famous GMOs (Genetically Modified Organisms)................ 102 5.2.3. Manipulation of embryos.................. 103 5.3. Some bonus material for biologists............... 103 x An Introduction to Nanoscience and Nanotechnology Chapter 6. The Uses of Nanotechnologies ................ 107 6.1. New objects.............................. 109 6.1.1. Carbon in all its states .................... 109 6.1.1.1. Nanodiamonds ...................... 110 6.1.1.2. Carbon nanotubes .................... 110 6.1.2. A handful of gold atoms .................. 116 6.2. Ground-breaking products .................... 116 6.2.1. Surface treatment ....................... 117 6.2.2. Incorporation in a composite environment....... 119 6.3. From micro to nanosystems ................... 120 6.3.1. Miniature components – MEMS ............. 120 6.3.1.1. A print head for inkjet printers ............ 120 6.3.1.2. Airbags ........................... 122 6.3.1.3. A microlens for miniaturized optics ........ 123 6.3.1.4. Magnetic disk readheads: quantum nanostructures...................... 124 6.3.2. Microsources of energy: key points for embedded systems........................ 124 6.3.3. Micromotors .......................... 125 6.4. A global integration......................... 132 6.5. Some bonus material for engineers ............... 139 Chapter 7. Nanos are Changing the World ............... 143 7.1. A simulation or a virtual world ................. 145 7.2. Understanding nature........................ 151 7.2.1. Understanding energy .................... 151 7.2.2. Understanding materials .................. 152 7.2.3. Understanding information................. 154 7.2.4. Understanding life ...................... 156 7.3. Watch out for nanomedicine ................... 159 7.4. Nanosciences and our future ................... 161 7.5. Essential ethics............................ 165 7.6. Conclusion .............................. 169 Table of Contents xi Appendices ..................................... 173 Appendix A. European Parliament Resolution on Nanosciences and Nanotechnologies .............. 175 Appendix B. Eight Guidelines on Nanotechnologies Issued by the CNRS Ethics Committee ............... 185 Abbreviations ................................... 191 Bibliography.................................... 195 Figures........................................ 197 Index ......................................... 205 This page intentionally left blank Foreword Alain Nouailhat’s book takes us on a journey to a newly discovered magical realm. This is the world of the small and the smallest parts, of micro and nanotechnologies. The discovery of this world is, of course, not a recent one, but one which began a long time ago. The ancient Greeks imagined the atom as the smallest unit which could not be split. There then followed a long evolution comprising several different stages before the eventual development of the quantum mechanics model. Recently, a very important step was taken to improve the technology of microscopes. At last we are able to see atoms (in some ways this was already possible with the invention of transmission electron microscopy). However, now we can also manipulate them individually, change their position one by one and use them to create a new code; this is a difficult task but nevertheless it is possible. In fact, we can only
Recommended publications
  • Meso/Micro/Nano Scale Technologies
    Meso/Micro/Nano Scale Technologies Clayton Teague, Chief, APTD, MEL John Evans, Chief, ISD, MEL June 8, 1999 Contents of Presentation • What we (MEL) have done in meso-scale area • What is nanotechnology • Nanotechnology is important • Principal message • Why is it important to industry and NIST? – Examples of industry/NIST work at all scales • Challenges for NIST • Long term needs at the nano-scale • Short term needs at the meso/micro-scales • Priorities • Ideas • Discussion topics Background • During past 9 months, MEL has explored measurements and standards needs of meso and micro-scale manufacturing • Visited 20 companies • Conducted and participated in three workshops jointly sponsored with DARPA and NSF • Organized informal NIST-wide co-ordinating group for meso/micro/nano scale activities • All feedback from these efforts points toward an exploding growth of nanotechnology • We see a continuum of needs for NIST efforts from the macro-scale to the nano-scale What is Nanotechnology? • Technology on the scale of atoms -100 pm- up to biomolecular systems as large as cells - 10’s mm • “Top-down” - achieving increased miniaturization through extension of existing microfabrication schemes • “Bottom-up” - capability to construct functional components, devices, and systems from building blocks of atoms and molecules Nanotechnology Strategies Nanotechnology is important! • “We’ve got to learn how to build machines, materials, and devices with the ultimate finesse that life has always used: atom by atom, on the same nanometer scale as the machinery in living cells.” Richard Smalley, Nobel Laureate, 1995 • “I believe nanoscience and nanotechnology will be central to the next epoch of the information age …” John Armstrong, formerly Chief Scientist of IBM, 1991 • “If I were asked for an area of science and engineering that will most likely produce the breakthroughs of tomorrow, I would point to nanoscale science and engineering.” Neal Lane, Director OSTP, 1998 • “Nanotechnology has given us the tools to make contact with the world of the molecule and the atom.
    [Show full text]
  • Fundamentals of Nanoelectronics (Fone)
    ESF EUROCORES Programme Fundamentals of NanoElectronics (FoNE) Highlights European Science Foundation (ESF) Physical and Engineering Sciences (PESC) The European Science Foundation (ESF) is an The Physical and Engineering Sciences are key drivers independent, non-governmental organisation, the for research and innovation, providing fundamental members of which are 78 national funding agencies, insights and creating new applications for mankind. research performing agencies, academies and learned The goal of the ESF Standing Committee for Physical societies from 30 countries. and Engineering Sciences (PESC) is to become the The strength of ESF lies in its influential membership pan-European platform for innovative research and and in its ability to bring together the different domains competitive new ideas while addressing societal of European science in order to meet the challenges of issues in a more effective and sustainable manner. the future. The Committee is a unique cross-disciplinary Since its establishment in 1974, ESF, which has its group, with networking activities comprising a good headquarters in Strasbourg with offices in Brussels mix of experimental and theoretical approaches. and Ostend, has assembled a host of organisations It distinguishes itself by focusing on fundamental that span all disciplines of science, to create a research and engineering. PESC covers the following common platform for cross-border cooperation in broad spectrum of fields: chemistry, mathematics, Europe. informatics and the computer sciences, physics, ESF is dedicated to promoting collaboration in fundamental engineering sciences and materials scientific research, funding of research and science sciences. policy across Europe. Through its activities and instruments ESF has made major contributions to science in a global context.
    [Show full text]
  • Nanoparticles, Nanocrystals, and Quantum Dots What They Are, Why They’Re Interesting, and What We Can Do with Them J
    Nanoparticles, nanocrystals, and quantum dots What they are, why they’re interesting, and what we can do with them J. Nadeau, Department of Biomedical Engineering [email protected] Colloidal nanocrystals of different materials… …And different geometries From: Science. 2005 January 28; 307(5709): 538544. Medieval Nanotechnology! The colors in some stained- glass windows from medieval cathedrals are probably due to nanocrystals of compouds of Zn, Cd, S, and Se. History of nanoparticles 1980 Ekimov observed quantum confinement on a sample of glass containing PbS. 1982 Brus L.’s group conducted CdS colloid preparation and investigation of band-edge luminescence properties. 1993 Murray C., Norris D., Bawendi M., Synthesis and Characterization of Nearly Monodisperse CdE (E=S, Se, Te) Semiconductor Nano- crystallites. 1995 Hines M., Guyot-Sionnest P., reported synthesis and Characterization of Strongly Luminescent ZnS-Capped CdSe Nanocrystals 1998 Alivisatos and Nie independently reported Bio-application for core shell dots. 2001 Nie’s group described Quantum dot-tagged microbeads for multiplexed optical coding of biomolecules. 2003 T. Sargent at UOT observed electroluminescence spanning 1000 – 1600 nm originating from PbS nanocrystals embedded in a polymer matrix. What is a quantum dot? • Synthesis • Quantum mechanics • Optical properties WhatWhat isis itit goodgood for?for? ••InterestingInteresting physicsphysics ••ApplicationsApplications inin optoelectronicsoptoelectronics ••ApplicationsApplications inin biologybiology Synthesis Quick
    [Show full text]
  • Graphene.Vortex Fluidics.Final
    Vortex fluidic exfoliation of graphite and boron nitride Author Chen, Xianjue, Dobson, John F, Raston, Colin L Published 2012 Journal Title Chemical Communications DOI https://doi.org/10.1039/C2CC17611D Copyright Statement © 2012 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/47070 Griffith Research Online https://research-repository.griffith.edu.au Dynamic Article Links ► Journal Name Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Vortex fluidic exfoliation of graphite and boron nitride Xianjue Chen,a John F. Dobson,b and Colin L. Rastona,* Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x 5 Graphite is exfoliated into graphene sheets by the shearing in vortex fluidic films of N-methyl-pyrrolidone (NMP), as a (a) (c) (d) controlled process for preparing oxide free graphene with minimal defects, and for the exfoliation of the corresponding boron nitride sheets. (b) 10 Solution based methods have been widely used for the synthesis !"#$%&'()*+, of graphene from graphite or graphite oxide,1 using high energy '-%.", sonication for the exfoliation process in generating mono- or 2-8 multi-layer structures. However, the associated cavitation process can result in damage to the graphene,2 which can affect Figure 1. (a) Schematic of the vortex fluidic device (10 mm diameter 9,10 o 15 its properties. Developing facile methods for accessing viable tube, 16 cm long, inclined at 45 , operating at 7000 and 8000 rpm for quantities of graphene devoid of such defects, and also of graphite and BN respectively).
    [Show full text]
  • DRAFT Nanotechnology Roadmap Technology Area 10
    National Aeronautics and Space Administration DRAFT NANoTechNology RoADmAp Technology Area 10 Michael A. Meador, Chair Bradley Files Jing Li Harish Manohara Dan Powell Emilie J. Siochi November • 2010 DRAFT This page is intentionally left blank DRAFT Table of Contents Foreword Executive Summary TA10-1 1. General Overview TA10-6 1.1. Technical Approach TA10-6 1.2. Benefits TA10-6 1.3. Applicability/Traceability to NASA Strategic Goals, AMPM, DRMs, DRAs TA10-7 1.4. Top Technical Challenges TA10-7 2. Detailed Portfolio Discussion TA10-8 2.1. Summary Description TA10-8 2.2. WBS Description TA10-8 2.2.1. Engineered Materials TA10-8 2.2.1.1. Lightweight Materials and Structures. TA10-8 2.2.1.2. Damage Tolerant Systems TA10-9 2.2.1.3. Coatings TA10-10 2.2.1.4. Adhesives TA10-10 2.2.1.5. Thermal Protection and Control TA10-10 2.2.1.6. Key Capabilities TA10-11 2.2.2. Energy Generation and Storage TA10-12 2.2.2.1. Energy Generation TA10-13 2.2.2.2. Energy Storage TA10-13 2.2.2.3. Energy Distribution TA10-14 2.2.2.4. Key Capabilities TA10-14 2.2.3. Propulsion TA10-14 2.2.3.1. Nanopropellants TA10-14 2.2.3.2. Propulsion Systems TA10-15 2.2.3.3. In-Space Propulsion TA10-16 2.2.3.4. Key Capabilities TA10-17 2.2.4. Electronics, Devices and Sensors TA10-17 2.2.4.1. Sensors and Actuators TA10-17 2.2.4.2. Electronics TA10-17 2.2.4.3.
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Enhancing Undergraduate Students' Learning and Research
    Paper ID #13595 Enhancing Undergraduate Students’ Learning and Research Experiences through Hands on Experiments on Bio-nanoengineering Dr. Narayan Bhattarai, North Carolina A&T State University Narayan Bhattarai is Assistant Professor of Bioengineering, Department of Chemical, Biological and Bioengineering, North Carolina A&T State University (NCAT). Dr. Bhattarai teaches biomaterials and nanotechnology to undergraduate and graduate students. He is principal investigator of NUE Enhancing Undergraduate Students’ Learning Experiences on Bio-Nanoengineering project at NCAT. Mrs. Courtney Lambeth, North Carolina A&T State University Mrs. Lambeth serves as the Educational Assessment and Administrative Coordinator for the Engineering Research Center for Revolutionizing Metallic Biomaterials at North Carolina Agricultural and Technical State University in Greensboro, North Carolina. Dr. Dhananjay Kumar, North Carolina A&T State University Dr. Cindy Waters, North Carolina A&T State University Her research team is skilled matching these newer manufacturing techniques to distinct material choices and the unique materials combination for specific applications. She is also renowned for her work in the Engineering Education realm working with faculty motivation for change and re-design of Material Science courses for more active pedagogies Dr. Devdas M. Pai, North Carolina A&T State University Devdas Pai is a Professor of Mechanical Engineering and Director of Education and Outreach of the Engineering Research Center for Revolutionizing Metallic Biomaterials at North Carolina A&T State University. His teaching and research is in the areas of manufacturing processes and materials. Dr. Matthew B. A. McCullough, North Carolina A&T State University An assistant professor in the department of Chemical, Biological, and Bioengineering, he has his B.S.
    [Show full text]
  • Nanotechnology and Picotechnology to Increase Tissue Growth: a Summary of in Vivo Studies
    Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies Ece Alpaslan1 and Thomas J Webster1,2 Author information ► Copyright and License information ► Go to: Abstract The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness) of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties), they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns. Keywords: nanomaterials, tissue engineering, toxicity Go to: Introduction Bone tissue and other organ dysfunction can be provoked by poor eating habits, stress, age-related diseases such as osteoarthritis or osteoporosis, as well as accidents.1 To date, common procedures to restore or enhance life expectancy involve medical device insertion or organ transplantation.1 However, due to the low number of donors and its high cost, organ transplantation is limited.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0265809 A1 M0ras Et Al
    US 2OO)4O265809A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0265809 A1 M0ras et al. (43) Pub. Date: Dec. 30, 2004 (54) POLYPEPTIDES DERIVED FROM RETINOIC Publication Classification ACID-RELATED ORPHAN RECEPTOR(ROIR) AND THEIR APPLICATIONS (51) Int. Cl.” ............................ C12Q 1/68; C07H 21/04; C07K 14/705 (76) Inventors: Dino Moras, Lampertheim (FR); (52) U.S. Cl. ......................... 435/6; 435/69.1; 435/320.1; Jean-Paul Renaud, Ostwald (FR); 435/325; 530/350; 536/23.5 Catherine Stehlin, Strasbourg (FR); Jean-Marie Strasbourg, Drusenheim (FR); Roland Schuele, Weisweil (DE); (57) ABSTRACT Eric Friedrich Greiner, Heidelberg (DE) The invention relates to polypeptides derived from the retinoic acid-related orphan receptor (ROR) in mammals, Correspondence Address: characterized in that they are delimited in their N-terminal ?RRET eXtremity by an amino-acid located between positions 1 to 2ND FLOOR 209, and in their C-terminal extremity by an amino-acid located between positions 450 to 452 of the rat RORß, o, or AIRLINGTON, VA 22202 (US) y, or by an amino-acid located at corresponding positions in nuclear receptor ROR of other Subtypes than C, ß and y, (21) Appl. No.: 10/477,116 and/or of the other mammals. The invention also relates to (22) PCT Filed: May 7, 2002 the use of these polypeptides, or of the molecular complexes 39 or the crystals containing them, for carrying out:—a process (86) PCT No.: PCT/EP02/05024 for the screening of a ROR-LBD ligand which is an agonist, or an antagonist of said receptor,—or a process for the (30) Foreign Application Priority Data analysis of the tridimensional structure of the complexes formed with said polypeptides, molecular complexes or May 7, 2001 (EP).......................................
    [Show full text]
  • Engineered Carbon Nanotubes and Graphene for Nanoelectronics And
    Engineered Carbon Nanotubes and Graphene for Nanoelectronics and Nanomechanics E. H. Yang Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, USA, 07030 ABSTRACT We are exploring nanoelectronic engineering areas based on low dimensional materials, including carbon nanotubes and graphene. Our primary research focus is investigating carbon nanotube and graphene architectures for field emission applications, energy harvesting and sensing. In a second effort, we are developing a high-throughput desktop nanolithography process. Lastly, we are studying nanomechanical actuators and associated nanoscale measurement techniques for re-configurable arrayed nanostructures with applications in antennas, remote detectors, and biomedical nanorobots. The devices we fabricate, assemble, manipulate, and characterize potentially have a wide range of applications including those that emerge as sensors, detectors, system-on-a-chip, system-in-a-package, programmable logic controls, energy storage systems, and all-electronic systems. INTRODUCTION A key attribute of modern warfare is the use of advanced electronics and information technologies. The ability to process, analyze, distribute and act upon information from sensors and other data at very high- speeds has given the US military unparalleled technological superiority and agility in the battlefield. While recent advances in materials and processing methods have led to the development of faster processors and high-speed devices, it is anticipated that future technological breakthroughs in these areas will increasingly be driven by advances in nanoelectronics. A vital enabler in generating significant improvements in nanoelectronics is graphene, a recently discovered nanoelectronic material. The outstanding electrical properties of both carbon nanotubes (CNTs) [1] and graphene [2] make them exceptional candidates for the development of novel electronic devices.
    [Show full text]
  • Designing a Nanoelectronic Circuit to Control a Millimeter-Scale Walking Robot
    Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 McLean, Virginia Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 MITRE Nanosystems Group e-mail: [email protected] WWW: http://www.mitre.org/tech/nanotech Sponsor MITRE MSR Program Project No. 51MSR89G Dept. W809 Approved for public release; distribution unlimited. Copyright © 2004 by The MITRE Corporation. All rights reserved. Gates, Alexander Abstract A novel nanoelectronic digital logic circuit was designed to control a millimeter-scale walking robot using a nanowire circuit architecture. This nanoelectronic circuit has a number of benefits, including extremely small size and relatively low power consumption. These make it ideal for controlling microelectromechnical systems (MEMS), such as a millirobot. Simulations were performed using a SPICE circuit simulator, and unique device models were constructed in this research to assess the function and integrity of the nanoelectronic circuit’s output. It was determined that the output signals predicted for the nanocircuit by these simulations meet the requirements of the design, although there was a minor signal stability issue. A proposal is made to ameliorate this potential problem. Based on this proposal and the results of the simulations, the nanoelectronic circuit designed in this research could be used to begin to address the broader issue of further miniaturizing circuit-micromachine systems. i Gates, Alexander I. Introduction The purpose of this paper is to describe the novel nanoelectronic digital logic circuit shown in Figure 1, which has been designed by this author to control a millimeter-scale walking robot.
    [Show full text]
  • Charge Transport in Semiconductors Assembled from Nanocrystal Quantum Dots
    ARTICLE https://doi.org/10.1038/s41467-020-16560-7 OPEN Charge transport in semiconductors assembled from nanocrystal quantum dots Nuri Yazdani1, Samuel Andermatt2, Maksym Yarema 1, Vasco Farto1, Mohammad Hossein Bani-Hashemian 2, Sebastian Volk1, Weyde M. M. Lin 1, Olesya Yarema 1, ✉ Mathieu Luisier 2 & Vanessa Wood 1 The potential of semiconductors assembled from nanocrystals has been demonstrated for a 1234567890():,; broad array of electronic and optoelectronic devices, including transistors, light emitting diodes, solar cells, photodetectors, thermoelectrics, and phase change memory cells. Despite the commercial success of nanocrystal quantum dots as optical absorbers and emitters, applications involving charge transport through nanocrystal semiconductors have eluded exploitation due to the inability to predictively control their electronic properties. Here, we perform large-scale, ab initio simulations to understand carrier transport, generation, and trapping in strongly confined nanocrystal quantum dot-based semiconductors from first principles. We use these findings to build a predictive model for charge transport in these materials, which we validate experimentally. Our insights provide a path for systematic engineering of these semiconductors, which in fact offer previously unexplored opportunities for tunability not achievable in other semiconductor systems. 1 Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland. 2 Nano ✉ TCAD Group, Department
    [Show full text]