<<

Contents

List of Acronyms xxxvii

Teaching (Nano) Materials xli

Learning (Nano) Materials xliii

Guessing (Nano) Materials xliv

About the Authors xlv

Acknowledgements l

Nanofood for Thought–Thinking about Nanochemistry, Nanoscience, and Nanosafety lii

Chapter 1 Nanochemistry Basics 3

1.1 The Roots of Nanochemistry in Materials Chemistry 3 1.2 Synthesis of Materials and 5 1.3 Materials Self-Assembly 9 1.4 Big Bang to the Universe 10 1.5 Why Nano? 10 1.6 What Do we Mean by Large and Small Nanomaterials? 11 1.7 Do it Yourself Quantum Mechanics 12 1.8 What is Nanochemistry? 13 1.9 Molecular vs. Materials Self-Assembly 13 1.10 What is Hierarchical Assembly? 14

Nanochemistry: A Chemical Approach to Nanomaterials By Geoffrey A. Ozin, Andre´C. Arsenault and Ludovico Cademartiri r Geoffrey A. Ozin, Andre´C. Arsenault and Ludovico Cademartiri 2009 Published by the Royal Society of Chemistry, www.rsc.org

xxiii xxiv Contents 1.11 Directing Self-Assembly 15 1.12 Supramolecular Vision 15 1.13 Genealogy of Self-Assembling Materials 16 1.14 Unlocking the Key to Porous Solids 19 1.15 Learning from Biominerals – Form is Function 22 1.16 Can You Curve a ? 24 1.17 Patterns, Patterns Everywhere 25 1.18 Synthetic Creations with Natural Form 26 1.19 Two-Dimensional Assemblies 28 1.20 SAMs and Soft Lithography 31 1.21 Clever Clusters 32 1.22 Extending the Prospects of Nanowires 34 1.23 Coercing Colloids 35 1.24 Mesoscale Self-Assembly 38 1.25 Materials Self-Assembly of Integrated Systems 40 References 41 Nanofood for Thought – Materials Chemistry, Nanochemistry, Genealogy, Materials Self-Assembly, Length Scales 53

Chapter 2 Chemical Patterning and Lithography 57

2.1 Lord’s Prayer on the Head of a Pin 57 2.2 Soft Lithography 58 2.3 What are Self-Assembled Monolayers? 60 2.4 The Science and Art of Soft Lithography 61 2.5 Patterning Wettability? 63 2.6 Condensation Figures 65 2.7 Microlens Arrays 65 2.8 Nanoring Arrays 67 2.9 SAM Registration 69 2.10 Patterning the Solid State 69 2.11 Primed for Printing Polymers 73 2.12 Beyond Molecules – Transfer Printing of Thin Films 74 2.13 Microcontact Printing Living Bacteria 75 2.14 Electrically Contacting SAMs 76 2.15 SAM Crystal Engineering 78 2.16 Learning From Nature’s Biocrystal Engineering 80 2.17 Wet Stamping – The Incredible Shrinking Liesegang Rings 83 2.18 Wet Etch Patterns 85 2.19 Colloidal Microsphere Patterns 87 2.20 SAM Patterned Opal Marble Arrays 88 Contents xxv 2.21 Switching SAM Function 89 2.22 Patterning by Photocatalysis 90 2.23 Reversibly Switching SAMs 91 2.24 Electrowettability Switch 92 2.25 Metamorphic Mold – Adjustable Microtopography PDMS 95 2.26 Sweet Chips 96 2.27 All Fall Down in a Row Lithography 97 2.28 Nanoskiving 99 2.29 Patterning Nanochannel Alumina Membranes With Single Channel Resolution 100 References 103 Nanofood for Thought – Soft Lithography, SAMs, Patterning 112

Chapter 3 Layer-by-Layer Self-Assembly 117

3.1 Building One Layer at a Time 117 3.2 Electrostatic Superlattices 117 3.3 Organic Polyelectrolyte Multilayers 119 3.4 Layer-by-Layer Smart Windows 120 3.5 How Thick is Thin? 121 3.6 Assembling Metallopolymers 122 3.7 Directly Imaging Polyelectrolyte Multilayers 122 3.8 Polyelectrolyte–Colloid Multilayers 124 3.9 Graded Composition LbL Films 125 3.10 LbL MEMS 126 3.11 Trapping Active Proteins 128 3.12 Protein Laden Porous LbL Multilayers 129 3.13 Layering on Curved Surfaces 130 3.14 Microcrystal Packaging – Polyelectrolyte Coated Crystal Drug Delivery Systems 132 3.15 Hydrolytically Degradable LbL Films for Drug Delivery 134 3.16 Nanobaloons – New Generation Ultrasound Contrast Agents 135 3.17 Crystal Engineering of Oriented Zeolite Film 138 3.18 Zeolite-Ordered Multicrystal Arrays 141 3.19 Crosslinked Crystal Arrays 142 3.20 Tunable Structural Color in Multilayer Bragg Stacks 143 3.21 2D LbL Structural Color 145 3.22 Layering with Topological Complexity 147 3.23 Patterned Multilayers 149 3.24 Non-Electrostatic Layer-by-Layer Assembly 150 xxvi Contents 3.25 Low-Pressure Layers 151 3.26 Layer-by-Layer Self-Limiting Reactions 152 References 152 Nanofood for Thought – Designer Monolayers, Multilayers, Materials Flatland 162

Chapter 4 Nanocontact Printing and Writing – Stamps and Tips 167

4.1 Sub-100 nm Soft Lithography 167 4.2 Extending Microcontact Printing 168 4.3 Putting on the Pressure 169 4.4 Defect Patterning – Topologically Directed Etching 171 4.5 Below 50 nm Nanocontact Printing 172 4.6 Nanocontact Writing – Dip Pen Nanolithography 173 4.7 DPN of Silicon 174 4.8 DPN on Glass 175 4.9 Nanoscale Writing on Semiconductor Nanowires 176 4.10 Sol–Gel DPN 177 4.11 Soft Patterning of Hard Magnets 178 4.12 Writing Molecular Recognition 179 4.13 DPN Written Protein Recognition Nanostructures 181 4.14 HIV Detection Using DPN Arrays 182 4.15 Patterning Bioconstructions 183 4.16 Eating Patterns – Enzyme DPN 185 4.17 Electrostatic DPN 186 4.18 Electrochemical DPN 186 4.19 SPM Nano––Electrochemistry 187 4.20 Beyond DPN – Electrowhittling Nanostructures 189 4.21 Nanospinning Fibers 190 4.22 OLED Tip – AFM with a Nanoscale Scanning Light Probe 191 4.23 Hot Tips – DPN Soldering Iron 193 4.24 Combi Nano – DPN Combinatorial Libraries 193 4.25 50,000 Tips Go Sailing by, Go Sailing by in the Morning 196 4.26 Nanoblotters 197 4.27 Nanoscale Patterning of PDMS Stamps the DPN Way 198 4.28 Scanning Probe Contact Printing (SP-CP) 200 4.29 Dip Pen Nanolithography Stamp TIP – Beyond DPN CP 202 4.30 Best of Both Worlds 203 4.31 The Nanogenie is out of the Bottle 203 Contents xxvii References 204 Nanofood for Thought – Sharper Chemical Patterning Tools 210

Chapter 5 Nanorod, Nanotube, Nanowire Self-Assembly 215

5.1 Building Block Assembly 215 5.2 Templating Nanowires 216 5.3 Modulated Diameter Gold Nanorods 217 5.4 Modulated Composition Nanorods 218 5.5 Barcoded Nanorod Orthogonal Self-Assembly 221 5.6 Nanodisk Codes 224 5.7 Sir SERS 226 5.8 Self-Assembling Nanorods 227 5.9 Magnetic Nanorods Bunch Up 229 5.10 Magnetic Nanorods and Magnetic Nanoclusters 230 5.11 An Irresistible Attraction for Biomolecules 232 5.12 Hierarchically Ordered Nanorods 233 5.13 Nanorod Devices 235 5.14 Nanotubes from Nanoporous Templates 236 5.15 Layer-by-Layer Nanotubes from Nanorods 238 5.16 Synthesis of Single Crystal Semiconductor Nanowires 239 5.17 Vapor–Liquid–Solid Synthesis of Nanowires 240 5.18 What Controls Nanowire-Oriented Growth? 241 5.19 Marrying Plasmonics and Catalytics 242 5.20 Nanowire Quantum Size Effects 244 5.21 Single-Source Precursors 245 5.22 Supercritical Fluid–Liquid–Solid Synthesis 245 5.23 Ultrathin Nanowires-Nanothermoelectrics 246 5.24 Zoo of Nanowire Compositions and Architectures 250 5.25 Got the Nanoneedle 251 5.26 Manipulating Nanowires 252 5.27 Blowing Nanotube and Nanowire Bubbles Everywhere 254 5.28 Crossed Semiconductor Nanowires – Smallest LED 257 5.29 Nanowire Diodes and Transistors 259 5.30 Nanowire Sensors 260 5.31 Catalytic Nanowire Electronics 261 5.32 Nanowire Heterostructures 262 5.33 Longitudinal Nanowire Superlattices 263 5.34 Nanoscale Ionics: Ion-Exchange of Nanorods 266 5.35 Axial Nanowire Heterostructures 269 5.36 Nanowires Branch Out 269 xxviii Contents 5.37 Coaxially Gated Nanowire Transistor 272 5.38 Vertical Nanowire Field Effect Transistors 273 5.39 Integrated Metal–Semiconductor Nanowires – Nanoscale Electrical Contacts 274 5.40 Photon-Driven Nanowire Laser 276 5.41 Electrically Driven Nanowire Laser 278 5.42 Nanowire UV Photodetectors 279 5.43 Simplifying Complex Nanowires 279 5.44 Nanowire Casting of Single-Crystal Nanotubes 281 5.45 Solution-Phase Routes to Nanowires 283 5.46 Spinning Nanowire Devices 285 5.47 Hollow Nanofibers by Electrospinning 286 5.48 Carbon Nanotubes 288 5.49 Carbon Nanotube Structure and Electrical Properties 289 5.50 Gone Ballistic 291 5.51 Carbon Nanotube Nanomechanics 292 5.52 Carbon Nanotube Chemistry 293 5.53 Carbon Nanotubes All in a Row 296 5.54 Carbon Nanotube Photonic Crystal 298 5.55 Putting Carbon Nanotubes Exactly Where You Want Them 300 5.56 The Nanowire Pitch Challenge 301 5.57 Integrated Nanowire Nanoelectronics 303 5.58 Silicon Nanowire Solar Cells – Self-Powered Nanoelectronics 305 5.59 See-Through Nanoelectronics Circuits 306 5.60 Piezoelectric Nanowire Electrical Nanogenerators 307 5.61 Carbon Nanotube Radio Receiver 310 5.62 Silicon Nanowire NEMS: Very High Frequency Resonators and Ultra High Sensitivity Mass Monitors 311 5.63 Nanowires that Never Forget 312 5.64 A Small Thought at the End of a Large Chapter 315 References 315 Nanofood for Thought – Wires, Rods, Tubes, Low Dimensionality 330

Chapter 6 Nanocrystal Synthesis and Self-Assembly 335

6.1 Building-Block Assembly 335 6.2 When is a Nanocrystal a Nanocluster or a ? 336 6.3 Synthesis of Capped Semiconductor Nanocrystals 336 6.4 Electrons and Holes in Nanocrystal Boxes 339 Contents xxix 6.5 Nanocluster Phase Transformations 342 6.6 Watching Nanocrystals Grow 343 6.7 Nanocrystals in Nanobeakers 345 6.8 Capped Gold Nanocrystals – Nanonugget Rush 346 6.9 At Last a Single Crystal X-Ray Diffraction Structure of a Thiolate Ligand-Capped Gold Nanocluster 348 6.10 Alkanethiolate Capped Nanoclusters Diagnostics 350 6.11 Periodic Table of Capped Nanocrystals 351 6.12 There’s Gold in Them Thar Hills! 352 6.13 Capped Nanocrystal Architectures and Morphologies 353 6.14 Alkanethiolate Capped Silver Nanocrystal Superlattice 353 6.15 Active Plasmonics – Tunable Silver Nanocrystal Superlattices 355 6.16 of Nanocrystals 357 6.17 Getting Nanocrystal Superlattices to Conduct 358 6.18 Synergy in Nano 360 6.19 What if you Don’t Like Organics? 360 6.20 Beyond Crystals of Nanocrystals – Binary Nanocrystal Superlattices 362 6.21 Capped Magnetic Nanocrystal Superlattice – High Density Data Storage Materials 363 6.22 Soft Lithography of Capped Nanocrystals 364 6.23 Organizing Nanocrystals by Evaporation 365 6.24 Pot of Gold at the Bottom of the Nanofunnel 366 6.25 Electroluminescent Semiconductor Nanocrystals 368 6.26 Full Color Nanocrystal-Polymer Composites 370 6.27 Flipping a Nanocrystal Switch 372 6.28 Photochromic Metal Nanocrystals 373 6.29 Water-Soluble Nanocrystals 374 6.30 Capped Semiconductor Nanocrystal Meets Biomolecule 377 6.31 Hot Nanorods Cure for Cancer 380 6.32 Origin of the Color of Nanoscopic Gold 381 6.33 Nanocrystal DNA Sensors – Besting the Best 383 6.34 Fingering Nanocrystals 385 6.35 DNA-Gold Senses Mercury 387 6.36 Nanocrystal Semiconductor Alloys and Beyond 387 6.37 Alloying Core–Shell Magnetic Nanocrystals 389 6.38 Nanocrystal Grows a Hole 390 6.39 Semiconductor Nanocrystals Extend and Branch Out 391 xxx Contents 6.40 Tetrapod of Tetrapods – Towards Inorganic Dendrimers 393 6.41 Nanocrystals Go Hyper 395 6.42 Golden Tips – Making Contact with Nanorods 397 6.43 Marriage of Convenience – Designed Assembly of Nanocrystal Dimers, Heterodimers, Heterotrimers and Chains 399 6.44 Carbon Nanoclusters – Buckyballs 409 6.45 Building Nanodevices with Buckyballs 410 6.46 Carbon Catalysis with Buckyball 411 References 412 Nanofood for Thought – Nanocrystals, Quantum Dots, Quantum Size Effects 426

Chapter 7 Microspheres – Colors from the Beaker 431

7.1 Nature’s Photonic Crystals 431 7.2 Photonic Crystals 432 7.3 Photonic Semiconductors 433 7.4 Defects, Defects, Defects 434 7.5 Computing with Light 435 7.6 Color Tunability 436 7.7 Transferring Nature’s Photonic Crystal Technology to the Chemistry Laboratory 436 7.8 Microsphere Building Blocks 437 7.9 Silica Microspheres 437 7.10 Latex Microspheres 438 7.11 Multi-Shell Microspheres 438 7.12 On The Fly: Microsphere Synthesis and Microbubble Generation in Microfluidic Reactors 439 7.13 Patterning Microspheres – Inside and Outside 444 7.14 Basics of Microsphere Self-Assembly 449 7.15 Microsphere Self-Assembly – Crystals and Films 450 7.16 Colloidal Crystalline Fluids 451 7.17 Beyond Face Centered Cubic Packing of Microspheres 452 7.18 Templates – Confinement and Epitaxy 454 7.19 Rolling Out the Opal Carpet of Many Colors 455 7.20 Photonic Crystal Marbles 457 7.21 Spotting Colloidal Crystals 460 7.22 Photonic Crystal Fibers 461 7.23 Optical Properties of Colloidal Crystals – Combined Bragg–Snell Laws 462 7.24 Basic Optical Properties of Colloidal Crystals 463 7.25 How Perfect is Perfect? 464 Contents xxxi 7.26 Cracking Controversy 466 7.27 Synthesizing a Full Photonic Band Gap 468 7.28 Escape from the Dielectric Microsphere Prison – Bottom-Up and Top-Down Synthesis of Monodispersed Metal Microspheres 469 7.29 Writing Defects 470 7.30 Getting Smart with Planar Defects 472 7.31 Getting Even Smarter with Planar Defects 474 7.32 Switching Light with Light 476 7.33 Thermochromic Colloidal Photonic Crystal Switch 477 7.34 Liquid Crystal Photonic Crystal 477 7.35 Internal Light Sources 480 7.36 Photonic Inks 481 7.37 Full-Color Photonic Crystal Display 482 7.38 Elastically Tunable Photonic Crystals – From Color Fingerprinting to Anti-Counterfeiting 484 7.39 Magnetically Tuneable Photonic Crystals – Magnetic Liquid Color 485 7.40 Electric Field Color Tuned Colloidal Crystal 487 7.41 Color Oscillator 488 7.42 Photonic Crystal Sensors 490 7.43 Colloidal Crystal Chromatography 491 7.44 Walking Macromolecules Through Colloidal Crystals 493 7.45 Slow Photons in the Fast Lane 496 7.46 Enhanced and Direction-Dependent Photocatalysis 497 7.47 Boosting Photoconductivity in a Silicon Solar Cell 499 7.48 Encrypted Colloidal Crystals 501 7.49 Medusa Chemistry – A Butterfly of Stone 503 7.50 Gazing in the Photonic Crystal Ball 504 References 506 Nanofood for Thought – Colloidal Assembly, Colloidal Crystals, Colloidal Crystal Devices, Structural Color 516

Chapter 8 Microporous and Mesoporous Materials from Soft Building Blocks 521

8.1 Escape from the Zeolite Prison 521 8.2 A Periodic Table of Materials Filled with Holes 522 8.3 Modular Self-Assembly of Microporous Materials 523 8.4 Hydrogen Storage Coordination Frameworks 525 8.5 Crystalline Organic Frameworks, COFs 526 8.6 Overview and Prospects of Microporous Materials 527 8.7 Mesoscale Soft Building Blocks 528 xxxii Contents 8.8 Mesogrowth – Interfaces and Mesoepitaxy 530 8.9 Mesogrowth and Topological Defects 532 8.10 Mesogrowth and the Micelle vs Liquid Crystal Templating Paradox 534 8.11 Meso-Opals 535 8.12 Mesoporous Materials by Design 538 8.13 Tuning Length Scales 538 8.14 Mesostructure and Dimensionality 540 8.15 Stand Up and Be Counted 541 8.16 Making Mesochannels Stand Up 543 8.17 When It Rains It Pours Vertical Mesochannels 543 8.18 Shock’em to Stand Up – Electrochemically Assisted Assembly of Periodic Mesoporous Silica Film with Orthogonal Channels 545 8.19 Mesomorphology – Spheres, Other Shapes 545 8.20 PMOs Shape Up for High Performance HPLC 548 8.21 Mesomorphology – Morphosynthesis of Curved Form 549 8.22 Mesomorphology – Chiral Mesoporous Silica 551 8.23 Mesomorphology – Patterned Films, Soft Lithography, Micromolding 552 8.24 Mesocomposition – Nature of Precursors 555 8.25 Sidearm Mesofunctionalization 555 8.26 Organics in the Backbone 557 8.27 One-Pot Synthesis of Periodic Mesoporous Polyphenolformaldehyde Materials and Carbon Copies 560 8.28 Mesopore Replication 560 8.29 Plastic Clones of Periodic Mesoporous Silica Shapes 563 8.30 Mesotexture 565 8.31 Nearly Crystalline Pore Walls In Periodic Mesoporous Silica 565 8.32 Guests in Mesopores 568 8.33 Mesoporous Silica Smart Drug Delivery 569 8.34 Permeating the Impermeable 571 8.35 Capped Nanocrystal Meets Surfactant Mesophase 571 8.36 Marking Time in Mesostructured Silica – New Approach to Optical Data Storage 573 8.37 Periodic Mesoporous Silica–Polymer Hybrids 575 8.38 Mesochemistry – Synthesis in ‘‘Intermediate’’ Dimensions 576 References 577 Nanofood for Thought – Soft Blocks Template Hard Precursors, Holey Materials 590 Contents xxxiii Chapter 9 Self-Assembling Block Copolymers 595

9.1 Polymers, Polymers Everywhere in Nanochemistry 595 9.2 Block Copolymer Self-Assembly – Chip Off the Old Block 595 9.3 Assembling Inorganic Polymers 598 9.4 Block Copolypeptides 598 9.5 Block Copolymer Biofactories 601 9.6 Block Copolymer Thin Films 602 9.7 Electrical Ordering 603 9.8 Spatial Confinement of Block Copolymers 604 9.9 3-D Block Copolymer Spatial Confinement 605 9.10 Nanoepitaxy 607 9.11 Making Micelles 608 9.12 Living Block Copolymers Give Birth to Living Block Copolymer Cylindrical Micelles 611 9.13 Nanoporous Antireflection Coatings Made by Layer-By-Layer Self-Assembly of Block Copolymer Micelles 612 9.14 Supramolecular Assemblies 613 9.15 Supramolecular Mushrooms 616 9.16 Structural Color from Lightscale Block Copolymers 618 9.17 1-D Block Copolymer Spatial Confinement – Hierarchical Bragg Mirrors 619 9.18 Color Tunable Block Copolymer Gel Bragg Mirror 620 9.19 Harnessing Rigid Rods 622 9.20 Nanostructured Ceramics 623 9.21 Nano-objects 624 9.22 Block Copolymer Lithography 626 9.23 Decorating Block Copolymers 627 9.24 A Case of Wettability 628 9.25 Nanowires from Block Copolymers 631 References 632 Nanofood for Thought – Block Copolymer Self-Assembling Nanostructures 639

Chapter 10 Biomaterials and Bioinspiration 643

10.1 Nature did it First 643 10.2 To Mimic or to Use? 644 10.3 Faux Fossils 646 10.4 Nature’s Siliceous Sculptures 647 xxxiv Contents 10.5 Ancient to Modern Synthetic Morphology 647 10.6 Biomimicry 648 10.7 Biological Lessons in Materials Design 650 10.8 Biomineralization and Biomimicry Analogies 650 10.9 Morphosynthesis – Inorganic Materials with Complex Form 652 10.10 Morphosynthesis-Echinoderm vs. Block Copolymer 655 10.11 Aluminophosphates Shape Up 656 10.12 Better Bones Through Chemistry 657 10.13 Mineralizing Nanofibers 659 10.14 Mimicking the Mosquito Eye – Synthetic Antifogging Surface 659 10.15 Bioinspiration-Chemically Driven Nanorod Motors 662 10.16 Bioinspiration-Learning from Nature 666 10.17 Bioinspiration-Viral Cage Directed Synthesis of Nanoclusters 667 10.18 Biomaterials – Using Nature for our Own Means 668 10.19 Viruses that Glitter 669 10.20 Polynucleotide Directed Nanocluster Assembly 669 10.21 DNA Coded Nanocluster Chains 671 10.22 Building with DNA 673 10.23 A Smile Written in your DNA 675 10.24 Bacteria Directed Materials Self-Assembly 676 10.25 Using a Virus that is Benign, to Align 678 10.26 Magnetic Spider Silk 680 10.27 Protein S-layer Masks 681 10.28 Fishy Top-Down Photonic Crystals 683 10.29 Polymer Life-Forms 685 10.30 Surface Binding Through Directed Evolution 686 10.31 Nanowire Evolution 688 10.32 Biomolecular Motors – Nanomachines Everywhere 689 10.33 How Biomotors Work 691 10.34 Kinesin – Walk Along 693 10.35 Muscle Powered Nanomachines 696 10.36 Bacteria Power 697 10.37 ATPase – Biomotor Nanopropellers 700 10.38 (Bio) Inspiration 701 References 702 Nanofood for Thought – Organic Matrix, Biomineralization, Biomimetics, Bioinspiration 714 Contents xxxv Chapter 11 Self-Assembly of Large Building Blocks 719

11.1 Self-assembling Supra-micron Shapes 719 11.2 Synthesis Using the ‘‘Capillary Bond’’ 720 11.3 Crystallizing Large Polyhedral-Shaped Building Blocks 721 11.4 Self-Assembling 2D and 3D Electrical Circuits and Devices 721 11.5 Crystallizing Micron-Sized Planar Building Blocks 722 11.6 Polyhedra with Patterned Faces that Autoconstruct 725 11.7 Large Sphere Building Block Self-Assemble into 3D Crystals 727 11.8 Synthetic MEMS? 728 11.9 Contact Electrification – Charging the Balls to Order 729 11.10 Magnetic Self-Assembly 730 11.11 Dynamic Self-Assembly 732 11.12 Autonomous Self-Assembly 735 11.13 Self-Assembly and Synthetic Life 736 References 737 Nanofood for Thought – Static and Dynamic, Capillary Bond, Shape Assembly 740

Chapter 12 Nano and Beyond 743

12.1 Assembling the Future 743 12.2 Do-It-Yourself Microfluidics 744 12.3 One Wire – One Solar Cell 744 12.4 Stretchy Silicon 744 12.5 Inhibiting HIV with Gold 745 12.6 Many-Face Nanocubes 746 12.7 Nanominerals 748 12.8 NanoRockets 748 12.9 Galvanized Nanostructures 749 12.10 Moving Cargoes at the Nanoscale 750 12.11 Writing 3D Gooey Inks 750 12.12 A Mask of Nanowires 751 12.13 Liquid Lasers 752 12.14 Remediating with Nanowires and Nanocrystals 752 12.15 Assemblying Nanocrystals via DNA 754 12.16 Graphene – The Prince of Electronics? 754 12.17 Self-Healing Materials 755 12.18 Multiferroics Down Below 755 xxxvi Contents 12.19 Materials Retro-assembly 756 12.20 Matter that Matters – Materials of the ‘‘Next Kind’’ 758 References 761 Nanofood for Thought – Nano Potpourri 763

Chapter 13 Nanochemistry Nanolabs 767

13.1 Luminescent Nanoring Array 768 13.2 Ferromagnetic Nanocrystal Array 769 13.3 Zeolite Membrane 769 13.4 Electrochromic Device 769 13.5 Size Reduction Soft-Lithography 769 13.6 Self-assembly of Barcoded Magnetic Nanorods 769 13.7 Carbon Nanotube Field Emitting Display 769 13.8 Photoconducting Selenium Nanowires 770 13.9 Metal Colloids 770 13.10 Metal–Nonmetal Transition 770 13.11 Near Infrared Emitting Quantum Dots 770 13.12 Nanocrystals in Nanobeakers 770 13.13 Colloidal Photonic Crystal Fingerprinting 770 13.14 Colloidal Crystal Capillary Column 771 13.15 Low Dielectric Constant Film 771 13.16 Block Copolymer Lithography 771 13.17 Virus Mineralization 771 13.18 Biological Structures and Templates 771 13.19 Mesoscopic Self-Assembly 772 13.20 Colloidal Crystal Shapes 772

Appendix A: Origin of the Term ‘‘Self-Assembly’’ 773

Appendix B: Origin of the Nanochemistry 779

Appendix C: Cytotoxicity of Nanoparticles 781

Subject Index 785