Extending the Role of Metadata in a Digital Library System*

Total Page:16

File Type:pdf, Size:1020Kb

Extending the Role of Metadata in a Digital Library System* Extending the Role of Metadata in a Digital Library System* Alexa T. McCray, Marie E. Gallagher, Michael A. Flannick National Library of Medicine Bethesda, MD, USA {mccray,gallagher,flannick}@nlm.nih.gov Abstract Metadata efforts often fall into the trap of We describe an approach to the development of a digital trying to create a universal metadata schema. library system that is founded on a number of basic Such efforts fail to recognize the basic nature principles. In particular, we discuss the critical role of of metadata: namely, that it is far too diverse metadata in all aspects of the system design. We begin by to fit into one useful taxonomy...the creation, describing how the notion of metadata is sometimes administration, and enhancement of individual interpreted and go on to discuss some of our early metadata forms should be left to the relevant experiences in a digital conversion project. We report on communities of expertise. Ideally this would the Profiles in Science project, which is making the occur within a framework that will support archival collections of prominent biomedical scientists interoperability across data and domains. available on the World Wide Web. We discuss the [4:277] principles that are used in our system design, illustrating Roszkowski and Lukas describe an approach for these throughout the discussion. Our approach has linking distributed collections of metadata so that they are involved interpreting metadata in its broadest sense. We searchable as a single collection [5], and Baldonado et al. capture data about the items in our digital collection for a describe an architecture that facilitates metadata a variety of purposes and use those data to drive the compatibility and interoperability [6]. Current entire system. Futher, we have designed our overall developments in metadata standardization, including system architecture such that it can accommodate interoperability issues, are reported regularly on the Web changes while still ensuring the persistence of the [7-9]. underlying data. 2. Lessons learned from an early digital library project 1. Introduction Some years ago, as an experiment in document Metadata in its broadest interpretation is data about management and conversion, we developed a digital data. The importance of metadata as an aid to resource library system of historical materials. Though our work discovery is acknowledged in the digital library on this system, which we began in 1992, pre-dated recent community. The Dublin Core initiative is a metadata research in digital libraries, we encountered many of the standardization effort whose goal it is "to define a core set same issues that currently face digital library projects, of elements for resource discovery" [1], and, in particular, particularly those that are involved in converting large to develop a set that "provides adequate data for Web collections of materials from paper to digital form. Often resource discovery and is simple for authors and content projects of this type bring together two worlds, the rich managers to create and maintain" [2:176]. Thiele in a world of archival practice and the world of emerging recent review article says of the Dublin Core: "The object technologies. While archivists generally operate at the is to develop a simple metadata set and associated syntax level of an entire collection, digital conversion projects that will be used by information producers and providers require careful attention to individual pages and to describe their networked resources, thereby improving documents. This has major implications for the way in their chance of discovery." [3]. which a collection is processed. Archivists traditionally Metadata interoperability is a closely related issue sort, organize, and catalogue a collection, producing as a and is also a focus of current metadata research. Daniel, in final product a finding aid. The finding aid imposes a discussing the Warwick Framework, says: structure on the collection and indicates, generally at the folder and box level, where the physical documents may * In: Proceedings of the IEEE Forum on Research and Technology Advances in Digital Libraries '99 be found. In digital conversion projects primary attention thesaurus, together with a controlled terminology that was is paid to the identification and management of special to the RMP documents. documents, with perhaps somewhat less attention being We scanned the documents, creating a digital master. paid to the overall structure of the collection. The physical The master copy is a high quality, lossless TIFF image location of the documents becomes of secondary concern from which other formats may be derived over time. (in some cases, the physical documents are even When the Web technology first became available, we destroyed), and of primary concern is the ability to locate created a Web-based version of the system. Our first the documents in a database or over a network. If the challenge was to make the TIFF images available through optical character recognition (OCR) is successful, then the Web without requiring users to acquire additional retrieval by key words can be somewhat effective. viewing software. We experimented with GIF derivatives However, if, as is often the case with older materials, the of the TIFF pages, but at full size these took an OCR is inadequate, and if the item being converted is a unacceptably long time to download, and at reduced size photograph or some other non-textual item, then some their quality was unacceptable. When the portable other method is needed, in any case, for finding the document format (PDF) became available, and, individual items in the collection. importantly, when the viewer became freely available as a Our early project involved historical materials from browser plug-in, we derived PDF images from the the Regional Medical Programs (RMPs) initiative whose original TIFF's and then made both versions available on goal it was to establish regional centers of excellence for the Web site [10]. health care throughout the United States involving medical schools, research institutions, and hospitals. The 3. A new challenge: metadata driven RMP archival materials span the entire history of the conversion project beginning with an initial report to President Johnson in 1964, through the active period of program Founded on our early experience with the RMP implementation, and to its termination in 1976. In program materials, we began a project in the spring of addition, materials from a conference held at the National 1997 whose goal it is to make the archival collections of Library of Medicine (NLM) in December 1991 are prominent biomedical scientists available on the World included. The material in the RMP collection presented us Wide Web. The site is designed for scientists, scholars, with a variety of challenges, either because the documents and students, all of whom may gain an appreciation of the were of very poor quality (including mimeographs, and, history of early scientific discoveries, and also share in in some cases, photocopies of mimeographs), or because the excitement of the scientific enterprise. The collections they were oddly sized (including folded pamphlets, have been donated to the NLM and contain published and oversized books, loose-leafed binders, pages from memo unpublished materials, including books, journal volumes, pads, etc.). In addition to the scanned documents, pamphlets, diaries, letters, manuscripts, photographs, interview transcripts, audio segments, photographs, and audio tapes and other audiovisual materials. The site was conference session transcripts are included in the officially launched in September 1998 [11]. The first database. collection on the site represents the work of Oswald We digitized some 1,500 documents, representing Theodore Avery (1877 - 1955), one of this country's first about 40,000 pages and developed what is now called molecular biologists, whose findings proved that the metadata for each of the items in the database. The genetic material is DNA. purpose of the metadata, which is made available as an Underlying the Profiles Web site is a system that is "index" record, was to ensure that documents could be designed to handle the entire life cycle of a large-scale retrieved even if the OCR was inadequate (which it often conversion project. Metadata forms the core of the was). The metadata also served to link the various forms system. It is the major component of the data input stage; of the same document (e.g., TIFF, OCR, etc.) to each it is used for generating various views for display on the other through the unique identifier that was assigned to Web; and it serves as the basis for search and retrieval. each document. Metadata templates, which were used to The primary principles underlying our system design standardize the information being collected, varied by are modularity, adherence to standards, and extensibility. document type. Thus, for example, published articles We create high quality original images and detailed would have information about authors, journal, publisher, metadata records. From these, we are able to place of publication, etc., while unpublished letters would automatically derive a variety of other image formats, and include information about the sender and the recipient. we are able to derive a variety of views for our Web site. Common to all document types would be information We automate whatever it is possible to automate, hoping about the contributor, number of pages, location of the thereby not only to ensure accuracy, consistency and physical document, scanning and index dates, and index efficiency, but also to contribute to ease of use. Creating a terms from NLM's Medical Subject Headings (MeSH) digital archive is a labor intensive effort, and we are attempting to design a system that minimizes the burden information and instructions for the scanner and feedback of routine data entry, allowing the archivists to to the archivist about problems encountered during the concentrate instead on the intellectual aspects of the tasks scanning process.
Recommended publications
  • Metadata for Semantic and Social Applications
    etadata is a key aspect of our evolving infrastructure for information management, social computing, and scientific collaboration. DC-2008M will focus on metadata challenges, solutions, and innovation in initiatives and activities underlying semantic and social applications. Metadata is part of the fabric of social computing, which includes the use of wikis, blogs, and tagging for collaboration and participation. Metadata also underlies the development of semantic applications, and the Semantic Web — the representation and integration of multimedia knowledge structures on the basis of semantic models. These two trends flow together in applications such as Wikipedia, where authors collectively create structured information that can be extracted and used to enhance access to and use of information sources. Recent discussion has focused on how existing bibliographic standards can be expressed as Semantic Metadata for Web vocabularies to facilitate the ingration of library and cultural heritage data with other types of data. Harnessing the efforts of content providers and end-users to link, tag, edit, and describe their Semantic and information in interoperable ways (”participatory metadata”) is a key step towards providing knowledge environments that are scalable, self-correcting, and evolvable. Social Applications DC-2008 will explore conceptual and practical issues in the development and deployment of semantic and social applications to meet the needs of specific communities of practice. Edited by Jane Greenberg and Wolfgang Klas DC-2008
    [Show full text]
  • Metadata and GIS
    Metadata and GIS ® An ESRI White Paper • October 2002 ESRI 380 New York St., Redlands, CA 92373-8100, USA • TEL 909-793-2853 • FAX 909-793-5953 • E-MAIL [email protected] • WEB www.esri.com Copyright © 2002 ESRI All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of ESRI. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. The information contained in this document is subject to change without notice. U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable. Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373- 8100, USA.
    [Show full text]
  • Provenance and Annotations for Linked Data
    Proc. Int’l Conf. on Dublin Core and Metadata Applications 2013 Provenance and Annotations for Linked Data Kai Eckert University of Mannheim, Germany [email protected] Abstract Provenance tracking for Linked Data requires the identification of Linked Data resources. Annotating Linked Data on the level of single statements requires the identification of these statements. The concept of a Provenance Context is introduced as the basis for a consistent data model for Linked Data that incorporates current best-practices and creates identity for every published Linked Dataset. A comparison of this model with the Dublin Core Abstract Model is provided to gain further understanding, how Linked Data affects the traditional view on metadata and to what extent our approach could help to mediate. Finally, a linking mechanism based on RDF reification is developed to annotate single statements within a Provenance Context. Keywords: Provenance; Annotations; RDF; Linked Data; DCAM; DM2E; 1. Introduction This paper addresses two challenges faced by many Linked Data applications: How to provide, access, and use provenance information about the data; and how to enable data annotations, i.e., further statements about the data, subsets of the data, or even single statements. Both challenges are related as both require the existence of identifiers for the data. We use the Linked Data infrastructure that is currently developed in the DM2E project as an example with typical use- cases and resulting requirements. 1.1. Foundations Linked Data, the publication of data on the Web, enables easy access to data and supports the reuse of data. The Hypertext Transfer Protocol (HTTP) is used to access a Uniform Resource Identifier (URI) and to retrieve data about the resource.
    [Show full text]
  • Creating Permissionless Blockchains of Metadata Records Dejah Rubel
    Articles No Need to Ask: Creating Permissionless Blockchains of Metadata Records Dejah Rubel ABSTRACT This article will describe how permissionless metadata blockchains could be created to overcome two significant limitations in current cataloging practices: centralization and a lack of traceability. The process would start by creating public and private keys, which could be managed using digital wallet software. After creating a genesis block, nodes would submit either a new record or modifications to a single record for validation. Validation would rely on a Federated Byzantine Agreement consensus algorithm because it offers the most flexibility for institutions to select authoritative peers. Only the top tier nodes would be required to store a copy of the entire blockchain thereby allowing other institutions to decide whether they prefer to use the abridged version or the full version. INTRODUCTION Several libraries and library vendors are investigating how blockchain could improve activities such as scholarly publishing, content dissemination, and copyright enforcement. A few organizations, such as Katalysis, are creating prototypes or alpha versions of blockchain platforms and products.1 Although there has been some discussion about using blockchains for metadata creation and management, only one company appears to be designing such a product. Therefore, this article will describe how permissionless blockchains of metadata records could be created, managed, and stored to overcome current challenges with metadata creation and management. LIMITATIONS OF CURRENT PRACTICES Metadata standards, processes, and systems are changing to meet twenty-first century information needs and expectations. There are two significant limitations, however, to our current metadata creation and modification practices that have not been addressed: centralization and traceability.
    [Show full text]
  • Rdfa in XHTML: Syntax and Processing Rdfa in XHTML: Syntax and Processing
    RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing A collection of attributes and processing rules for extending XHTML to support RDF W3C Recommendation 14 October 2008 This version: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014 Latest version: http://www.w3.org/TR/rdfa-syntax Previous version: http://www.w3.org/TR/2008/PR-rdfa-syntax-20080904 Diff from previous version: rdfa-syntax-diff.html Editors: Ben Adida, Creative Commons [email protected] Mark Birbeck, webBackplane [email protected] Shane McCarron, Applied Testing and Technology, Inc. [email protected] Steven Pemberton, CWI Please refer to the errata for this document, which may include some normative corrections. This document is also available in these non-normative formats: PostScript version, PDF version, ZIP archive, and Gzip’d TAR archive. The English version of this specification is the only normative version. Non-normative translations may also be available. Copyright © 2007-2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract The current Web is primarily made up of an enormous number of documents that have been created using HTML. These documents contain significant amounts of structured data, which is largely unavailable to tools and applications. When publishers can express this data more completely, and when tools can read it, a new world of user functionality becomes available, letting users transfer structured data between applications and web sites, and allowing browsing applications to improve the user experience: an event on a web page can be directly imported - 1 - How to Read this Document RDFa in XHTML: Syntax and Processing into a user’s desktop calendar; a license on a document can be detected so that users can be informed of their rights automatically; a photo’s creator, camera setting information, resolution, location and topic can be published as easily as the original photo itself, enabling structured search and sharing.
    [Show full text]
  • Studying Social Tagging and Folksonomy: a Review and Framework
    Studying Social Tagging and Folksonomy: A Review and Framework Item Type Journal Article (On-line/Unpaginated) Authors Trant, Jennifer Citation Studying Social Tagging and Folksonomy: A Review and Framework 2009-01, 10(1) Journal of Digital Information Journal Journal of Digital Information Download date 02/10/2021 03:25:18 Link to Item http://hdl.handle.net/10150/105375 Trant, Jennifer (2009) Studying Social Tagging and Folksonomy: A Review and Framework. Journal of Digital Information 10(1). Studying Social Tagging and Folksonomy: A Review and Framework J. Trant, University of Toronto / Archives & Museum Informatics 158 Lee Ave, Toronto, ON Canada M4E 2P3 jtrant [at] archimuse.com Abstract This paper reviews research into social tagging and folksonomy (as reflected in about 180 sources published through December 2007). Methods of researching the contribution of social tagging and folksonomy are described, and outstanding research questions are presented. This is a new area of research, where theoretical perspectives and relevant research methods are only now being defined. This paper provides a framework for the study of folksonomy, tagging and social tagging systems. Three broad approaches are identified, focusing first, on the folksonomy itself (and the role of tags in indexing and retrieval); secondly, on tagging (and the behaviour of users); and thirdly, on the nature of social tagging systems (as socio-technical frameworks). Keywords: Social tagging, folksonomy, tagging, literature review, research review 1. Introduction User-generated keywords – tags – have been suggested as a lightweight way of enhancing descriptions of on-line information resources, and improving their access through broader indexing. “Social Tagging” refers to the practice of publicly labeling or categorizing resources in a shared, on-line environment.
    [Show full text]
  • CODATA Workshop on Big Data Programme Book
    Sponsor I CODACODATA S UU Co-Sponsors Organizer Workshop on Big Data for International Scientific Programmes CONTENTS I. Sponsoring Organizations International Council for Science (ICSU) I. Sponsoring Organizations 2 The International Council for Science (ICSU) is a the international scientific community to II. Programme 7 non-governmental organization with a global strengthen international science for the benefit of membership of national scientific bodies society. (121members, representing 141 countries) and international scientific unions (31 members). ICSU: www.icsu.org III. Remarks and Abstracts 13 ICSU mobilizes the knowledge and resources of Committee on Data for Science and Technology (CODATA) IV. Short Biography of Speakers 28 I CODACODATA S UU V. Conference Venue Layout 41 CODATA, the ICSU Committee on Data for Science challenges and ‘hot topics’ at the frontiers and Technology, was established in 1966 to meet of data science (through CODATA Task a need for an international coordinating body to Groups and Working Groups and other improve the management and preservation of initiatives). VI. General Information 43 scientific data. CODATA has been at the forefront 3. Developing data strategies for international of data science and data policy issues since that science programmes and supporting ICSU date. activities such as Future Earth and Integrated About Beijing 43 Research on Disaster Risk (IRDR) to address CODATA supports ICSU’s mission of ‘strengthening data management needs. international science for the benefit of society’ by ‘promoting improved scientific and technical data Through events like the Workshop on Big Data for About the Workshop Venue 43 management and use’. CODATA achieves this International Scientific Programmes and mission through three strands of activity: SciDataCon 2014, CODATA collaborates with 1.
    [Show full text]
  • Metadata Creation Practices in Digital Repositories and Collections
    Metadata Creation Practices in Digital Repositories and Collections: Schemata, Jung-ran Park and Selection Criteria, and Interoperability Yuji Tosaka This study explores the current state of metadata-creation development of such a mediation mechanism calls for practices across digital repositories and collections by an empirical assessment of various issues surrounding metadata-creation practices. using data collected from a nationwide survey of mostly The critical issues concerning metadata practices cataloging and metadata professionals. Results show across distributed digital collections have been rela- that MARC, AACR2, and LCSH are the most widely tively unexplored. While examining learning objects and used metadata schema, content standard, and subject- e-prints communities of practice, Barton, Currier, and Hey point out the lack of formal investigation of the metadata- controlled vocabulary, respectively. Dublin Core (DC) is creation process.2 As will be discussed in the following the second most widely used metadata schema, followed section, some researchers have begun to assess the current by EAD, MODS, VRA, and TEI. Qualified DC’s wider state of descriptive practices, metadata schemata, and use vis-à-vis Unqualified DC (40.6 percent versus 25.4 content standards. However, the literature has not yet developed to a point where it affords a comprehensive percent) is noteworthy. The leading criteria in selecting picture. Given the propagation of metadata projects, it is metadata and controlled-vocabulary schemata are collec- important to continue to track changes in metadata-cre- tion-specific considerations, such as the types of resources, ation practices while they are still in constant flux. Such efforts are essential for adding new perspectives to digital nature of the collection, and needs of primary users and library research and practices in an environment where communities.
    [Show full text]
  • Geotagging Photos to Share Field Trips with the World During the Past Few
    Geotagging photos to share field trips with the world During the past few years, numerous new online tools for collaboration and community building have emerged, providing web-users with a tremendous capability to connect with and share a variety of resources. Coupled with this new technology is the ability to ‘geo-tag’ photos, i.e. give a digital photo a unique spatial location anywhere on the surface of the earth. More precisely geo-tagging is the process of adding geo-spatial identification or ‘metadata’ to various media such as websites, RSS feeds, or images. This data usually consists of latitude and longitude coordinates, though it can also include altitude and place names as well. Therefore adding geo-tags to photographs means adding details as to where as well as when they were taken. Geo-tagging didn’t really used to be an easy thing to do, but now even adding GPS data to Google Earth is fairly straightforward. The basics Creating geo-tagged images is quite straightforward and there are various types of software or websites that will help you ‘tag’ the photos (this is discussed later in the article). In essence, all you need to do is select a photo or group of photos, choose the "Place on map" command (or similar). Most programs will then prompt for an address or postcode. Alternatively a GPS device can be used to store ‘way points’ which represent coordinates of where images were taken. Some of the newest phones (Nokia N96 and i- Phone for instance) have automatic geo-tagging capabilities. These devices automatically add latitude and longitude metadata to the existing EXIF file which is already holds information about the picture such as camera, date, aperture settings etc.
    [Show full text]
  • Introduction to Ontology- Based Semantics Goals Service
    Goals • To provide some insight into the usefulness of ontologies Introduction to Ontology- • To provide an understanding of the based Semantics features of RDFS and OWL and their use in automated reasoning Semantic Web, ontologies, RDF, OWL, • To provide an outline of the N3 syntax N3 • Use N3 to express RDFS and OWL – sufficient for later examples and exercises on service semantics With thanks to Declan O’Sullivan @ David Lewis @ David Lewis Service Semantics Functional Semantics • WSDL provides the syntax we need for interoperating with a service, but little in the way of semantics • What do ‘origin’ and ‘destination’ strings • Examining this example raises many questions about represent? functional and non-functional semantics – Country, city, airport, restrictions (airline, national, <message name=“getcheapestFlightRequest"> regional)? <part name=“origin" type="xsd:string"/> <part name=“destination" type="xsd:string"/> • What does ‘flight’ string represent? <part name=“date" type="xsd:date"/> – Airline, flight number, plane type? </message> <message name=“getcheapestFlightResponse"> • What does ‘time’ string represent? <part name=“flight" type="xsd:string"/> <part name=“time" type="xsd:time"/> – Departure time? <part name=“cost” type=“xsd:float”/> </message> – Note xsd:time probably is adequate - supports time- <portType name=“cheapestFlight"> zone information <operation name="getCheapestFlight"> <input message=“getcheapestFlightRequest"/> • What does ‘cost’ float represent? <output message=“getcheapestFlightResponse"/> </operation>
    [Show full text]
  • Folksonomies - Cooperative Classification and Communication Through Shared Metadata
    Folksonomies - Cooperative Classification and Communication Through Shared Metadata Adam Mathes Computer Mediated Communication - LIS590CMC Graduate School of Library and Information Science University of Illinois Urbana-Champaign December 2004 Abstract This paper examines user-generated metadata as implemented and applied in two web services designed to share and organize digital me- dia to better understand grassroots classification. Metadata - data about data - allows systems to collocate related information, and helps users find relevant information. The creation of metadata has generally been approached in two ways: professional creation and author creation. In li- braries and other organizations, creating metadata, primarily in the form of catalog records, has traditionally been the domain of dedicated profes- sionals working with complex, detailed rule sets and vocabularies. The primary problem with this approach is scalability and its impracticality for the vast amounts of content being produced and used, especially on the World Wide Web. The apparatus and tools built around professional cataloging systems are generally too complicated for anyone without spe- cialized training and knowledge. A second approach is for metadata to be created by authors. The movement towards creator described docu- ments was heralded by SGML, the WWW, and the Dublin Core Metadata Initiative. There are problems with this approach as well - often due to inadequate or inaccurate description, or outright deception. This paper examines a third approach: user-created metadata, where users of the documents and media create metadata for their own individual use that is also shared throughout a community. 1 The Creation of Metadata: Professionals, Con- tent Creators, Users Metadata is often characterized as “data about data.” Metadata is information, often highly structured, about documents, books, articles, photographs, or other items that is designed to support specific functions.
    [Show full text]
  • XML Metadata Standards and Topic Maps Outline
    XML Metadata Standards and Topic Maps Erik Wilde 16.7.2001 XML Metadata Standards and Topic Maps 1 Outline what is XML? z a syntax (not a data model!) what is the data model behind XML? z XML Information Set (basically, trees...) what can be described with XML? z describing the content syntactically (schemas) z describing the content abstractly (metadata) XML metadata is outside of XML documents ISO Topic Maps z a "schema language" for meta data 16.7.2001 XML Metadata Standards and Topic Maps 2 1 Extensible Markup Language standardized by the W3C in February 1998 a subset (aka profile) of SGML (ISO 8879) coming from a document world z data are documents defined in syntax z no abstract data model problems in many real-world scenarios z how to compare XML documents z attribute order, white space, namespace prefixes, ... z how to search for data within documents z query languages operate on abstract data models z often data are not documents 16.7.2001 XML Metadata Standards and Topic Maps 3 Why XML at all? because it's simple z easily understandable, human-readable because of the available tools z it's easy to find (free) XML software because of improved interoperability z all others do it! z easy to interface with other XML applications because it's versatile z the data model behind XML is very versatile 16.7.2001 XML Metadata Standards and Topic Maps 4 2 XML Information Set several XML applications need a data model z style sheets for XML (CSS, XSL) z interfaces to programming languages (DOM) z XML transformation languages (XSLT) z XML
    [Show full text]