Statistical Modelling Predicts Almost Complete Loss of Major Periglacial Processes in Northern Europe by 2100

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Modelling Predicts Almost Complete Loss of Major Periglacial Processes in Northern Europe by 2100 ARTICLE DOI: 10.1038/s41467-017-00669-3 OPEN Statistical modelling predicts almost complete loss of major periglacial processes in Northern Europe by 2100 Juha Aalto1,2, Stephan Harrison3 & Miska Luoto1 The periglacial realm is a major part of the cryosphere, covering a quarter of Earth’s land surface. Cryogenic land surface processes (LSPs) control landscape development, ecosystem functioning and climate through biogeochemical feedbacks, but their response to con- temporary climate change is unclear. Here, by statistically modelling the current and future distributions of four major LSPs unique to periglacial regions at fine scale, we show funda- mental changes in the periglacial climate realm are inevitable with future climate change. Even with the most optimistic CO2 emissions scenario (Representative Concentration Pathway (RCP) 2.6) we predict a 72% reduction in the current periglacial climate realm by 2050 in our climatically sensitive northern Europe study area. These impacts are projected to be especially severe in high-latitude continental interiors. We further predict that by the end of the twenty-first century active periglacial LSPs will exist only at high elevations. These results forecast a future tipping point in the operation of cold-region LSP, and predict fun- damental landscape-level modifications in ground conditions and related atmospheric feedbacks. 1 Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2a, 00014 Helsinki, Finland. 2 Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland. 3 College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9EZ, UK. Correspondence and requests for materials should be addressed to J.A. (email: juha.aalto@helsinki.fi) NATURE COMMUNICATIONS | 8: 515 | DOI: 10.1038/s41467-017-00669-3 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00669-3 eriglacial environments with frost-induced and permafrost- vegetation community structure and productivity12, 13, hydrol- controlled land surfaces processes (LSPs) are vital compo- ogy14 and biogeochemical cycles7, 15, 16. Currently, the response P 1, 2 fi nents of the cryosphere . With current Arctic ampli ca- of periglacial LSPs to climate warming is highly uncertain. tion of climate warming3, substantial alterations in this sensitive Although a rapid response is expected7, because the broad-scale and important area of the Earth’s system are already observed2, distribution of cryogenic ground processes is coupled with cli- including glacier recession4, shrub expansion to alpine tundra5 matic gradients17, 18 and often, but not necessarily, with the and changes in permafrost thermal–hydrological regimes6. presence of permafrost1, 19, the details of this and timing are Importantly, these changes in ground conditions modify, among lacking. This strong LSP–climate response17, 20 is locally modified others, biogeochemical cycles (e.g., terrestrial CO and CH ) and by lithology and edaphic (reflecting, e.g., glaciation heritage)1, 11 2 – 4 reflectance (i.e., albedo) triggering climate feedbacks7 9. Thus, and topographical characteristics17, 21, 22. For example, gelifluc- better understanding of the response of the periglacial climate tion operates on inclined surfaces with frost-susceptible fine- realm to climate change is critical for assessing climate change grained soils, while cryoturbation features are common in flat mitigation, and extensive modelling studies at various geo- valley bottoms and mountain tops1, 17. The development of palsa graphical scales are urgently required7. mires through permafrost mounding is expected to occur on open The combined spatial extent of active cryogenic LSPs con- low-elevation peat lands where strong winds redistribute snow stitutes the periglacial climate realm1. This prevails across high allowing for a deep frost penetration10, 18. latitudes and elevations, at present covering ca. 25% of the Earth’s Here, we use remotely sensed and field-quantified data of LSPs terrestrial areas. Here, LSPs create surface geomorphological at an unprecedented scale focusing on active surface features features which are unique to periglacial regions including pat- related to cryoturbation, gelifluction, nivation and permafrost terned ground and hummocky terrain associated with cryo- peat mounding to investigate the current and future extent of the turbation, gelifluction terraces and lobes, nivation features periglacial climate realm across a high-latitude Fennoscandia associated with erosion by snow patches and palsa mires which region of ca. 78,000 km2 (Fig. 1). We argue that the absence of develop through permafrost mounding10 (Fig. 1). Periglacial LSPs deep permafrost (compared with, e.g., High Arctic Canada and play a crucial role by controlling denudation processes11, Siberia)23, 24 means that in general the thermal response of LSPs a, b Permafrost extent a b Continuous 70 °N Discontinuous Sporadic 50 °N Isolated Glacier Arctic ocean c Elevation (m a.s.l.) >1,200 800–1,200 68 °N 400–800 200–400 70 °N 50 °N 0–200 Sea level Atlantic ocean Observation 40 °W 20 °W 0 ° 20 °E 40 °E 20 °E 25 °E de1 m c 70 °N 1 m f g 68 °N 1 m 1 m 20 °E 25 °E Fig. 1 The location of the study domain and LSP observation sites in northernmost Europe. a, b The study area in relation to the circum-Arctic extent of permafrost23, 24 indicated as: continuous=90–100% of the area covered by permafrost, discontinuous=50–90%, sporadic=10–50% and isolated=0–10%, respectively. c The observation locations (n = 2,917) and the relief of the study area. Black rectangles in b, c depict the model prediction domain. Photos show examples of typical surface features of cryogenic land surface processes (scales are only directive): cryoturbation (d; small-scaled polygonal patterned soil) gelifluction (e; gelifluction lobes), nivation (f, snow accumulation sites) and permafrost mounding (g; palsas), respectively. Photos by J.A. and M.L. 2 NATURE COMMUNICATIONS | 8: 515 | DOI: 10.1038/s41467-017-00669-3 | www.nature.com/naturecommunications NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00669-3 ARTICLE abAUC = 0.80 ± 0.04; TSS = 0.48 ± 0.06 AUC = 0.92 ± 0.02; TSS = 0.71 ± 0.04 n = 873 n = 686 71 °N 70 °N 69 °N 21 °E 24 °E km 010050 cdAUC = 0.93 ± 0.01; TSS = 0.72 ± 0.03 AUC = 0.97 ± 0.01; TSS = 0.84 ± 0.03 n = 294 n = 420 Observed presence Modelled presence Modelled absence Fig. 2 The modelled baseline occurrences of the four LSPs based on majority vote ensemble. The n in the title denotes the number of observed presences (black dots), while all the observation sites (n = 2,917) are presented in Fig. 1c. The modelling performance is measured as the area under the curve of a receiver operating characteristic plot (AUC) and the true skill statistics (TSS). The evaluation statistics show the mean (±s.d.) over four modelling techniques and 100 cross-validation runs conducted for each LSP (a cryoturbation, b gelifluction, c nivation and d permafrost mounding) using a random sampling procedure to future climate change is likely to be rapid (perennial ground ice century, respectively) and two time periods (2040–2069 and enhances soil-ambient air decoupling25), and thus the region is 2070–2099), averaged over a large group (n = 23) of CMIP5 cli- representative of environments that are especially sensitive to mate simulations29. We show potential for a notable reduction in climate change26. Similar sensitive landscapes are expected to the current periglacial climate realm in our study area, and pre- prevail across broad high-latitude areas of discontinuous and dict that by the end of the twenty-first century active periglacial isolated permafrost, including large parts of Canada and Russia LSPs will exist only at high elevations. between 55 and 70° N latitudes. We relate the current occurrence of LSPs with climatic variables of freezing and thawing degree days (FDD and TDD, respectively), water and snow precipitation, Results local topography (potential radiation, slope angle and topo- Present distributions of cryogenic LSPs. Our forecasts of the graphic wetness) and soil characteristics (peat and rock cover)17. current LSPs show high agreement with the observations thus We use an ensemble modelling approach, where methodology- suggesting robust model transferability to similar environments related uncertainty can be controlled by merging predictions from (Fig. 2). The analysis of the current periglacial realm closely multiple statistical algorithms (regression and machine learning) corresponds to earlier definitions1, 20, 30, marking mean annual to a single agreement map27 (spatial resolution 50 m × 50 m; refer air temperature (MAAT) of +2 °C as a rough upper limit for to Methods for a description of data compilation and statistical cryogenic ground processes (Fig. 3). At present, cryoturbation, analysis). After investigating the baseline distributions (i.e., the gelifluction and nivation are active across a broad range of climate current climate of 1981–2010) of the LSPs, we develop climate conditions, while permafrost mounding is most concentrated projections forced by three Representative Concentration Path- with MAAT of ~ −2 °C and low to moderate annual precipitation 28 – way (RCP) scenarios (2.6, 4.5 and 8.5, roughly equal to CO2 sum (400 600 mm) (Fig. 3). The probability of active LSPs concentrations of 490, 650, 1,370 p.p.m. by the end of this increases towards cold air temperatures (Fig. 4). Permafrost NATURE COMMUNICATIONS | 8: 515 | DOI: 10.1038/s41467-017-00669-3 | www.nature.com/naturecommunications 3 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00669-3 Density 10 0.25 10 10 0.25 a b c 0.20 5 0.20 5 0.15 0.15 0.20 0 0 0.10 0.10 5 −5 0.05 −5 0.05 0.15 −10 0.00 −10 0.00 400 800 1,200 400 800 1,200 0 0.10 10 10 0.35 d 0.20 e 0.30 5 5 0.25 −5 0.15 0.20 Mean annual air temperature (°C) air temperature Mean annual 0.05 0 0 Mean annual air temperature (°C) air temperature Mean annual 0.10 0.15 0.10 −5 0.05 −5 0.05 −10 0.00 −10 0.00 −10 0.00 400 600 800 1,000 1,200 400 800 1,200 400 800 1,200 Mean annual precipitation (mm) Mean annual precipitation (mm) Baseline 2070−2099 RCP 2.6 2070−2099 RCP 4.5 2070−2099 RCP 8.5 Fig.
Recommended publications
  • View of Theoretical Approaches 51
    University of Alberta Caribou Hunting at Ice Patches: Seasonal Mobility and Long-term Land-Use in the Southwest Yukon By Vandy E. Bowyer A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Anthropology © Vandy E. Bowyer Spring 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. In memory of Tagish ABSTRACT Recently documented ice patch sites in the southwest Yukon are ideal for evaluating precontact hunter-gatherer land-use patterns in the western subarctic. Located in the alpine of the mountainous regions of the boreal forest, ice patches are associated with well preserved hunting equipment, caribou (Rangifer tarandus) dung and an abundance of faunal remains dating to over 8000 years ago. However, current models are inadequate for explaining caribou hunting at ice patches as they tend to emphasize large-scale communal hunts associated with latitudinal movements of caribou. Much less is known about the alititudinal movment of caribou and the associated hunting forays to ice patches in the alpine.
    [Show full text]
  • Surficial Geology Investigations in Wellesley Basin and Nisling Range, Southwest Yukon J.D
    Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon J.D. Bond, P.S. Lipovsky and P. von Gaza Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon Jeffrey D. Bond1 and Panya S. Lipovsky2 Yukon Geological Survey Peter von Gaza3 Geomatics Yukon Bond, J.D., Lipovsky, P.S. and von Gaza, P., 2008. Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon. In: Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.), Yukon Geological Survey, p. 125-138. ABSTRACT Results of surficial geology investigations in Wellesley basin and the Nisling Range can be summarized into four main highlights, which have implications for exploration, development and infrastructure in the region: 1) in contrast to previous glacial-limit mapping for the St. Elias Mountains lobe, no evidence for the late Pliocene/early Pleistocene pre-Reid glacial limits was found in the study area; 2) placer potential was identified along the Reid glacial limit where a significant drainage diversion occurred for Grayling Creek; 3) widespread permafrost was encountered in the study area including near-continuous veneers of sheet-wash; and 4) a monitoring program was initiated at a recently active landslide which has potential to develop into a catastrophic failure that could damage the White River bridge on the Alaska Highway. RÉSUMÉ Les résultats d’études géologiques des formations superficielles dans le bassin de Wellesley et la chaîne Nisling peuvent être résumés en quatre principaux faits saillants qui ont des répercussions pour l’exploration, la mise en valeur et l’infrastructure de la région.
    [Show full text]
  • Cold-Climate Landform Patterns in the Sudetes. Effects of Lithology, Relief and Glacial History
    ACTA UNIVERSITATIS CAROLINAE 2000 GEOGRAPHICA, XXXV, SUPPLEMENTUM, PAG. 185–210 Cold-climate landform patterns in the Sudetes. Effects of lithology, relief and glacial history ANDRZEJ TRACZYK, PIOTR MIGOŃ University of Wrocław, Department of Geography, Wrocław, Poland ABSTRACT The Sudetes have the whole range of landforms and deposits, traditionally described as periglacial. These include blockfields and blockslopes, frost-riven cliffs, tors and cryoplanation terraces, solifluction mantles, rock glaciers, talus slopes and patterned ground and loess covers. This paper examines the influence, which lithology and structure, inherited relief and time may have had on their development. It appears that different rock types support different associations of cold climate landforms. Rock glaciers, blockfields and blockstreams develop on massive, well-jointed rocks. Cryogenic terraces, rock steps, patterned ground and heterogenic solifluction mantles are typical for most metamorphic rocks. No distinctive landforms occur on rocks breaking down through microgelivation. The variety of slope form is largely inherited from pre- Pleistocene times and includes convex-concave, stepped, pediment-like, gravitational rectilinear and concave free face-talus slopes. In spite of ubiquitous solifluction and permafrost creep no uniform characteristic ‘periglacial’ slope profile has been created. Mid-Pleistocene trimline has been identified on nunataks in the formerly glaciated part of the Sudetes and in their foreland. Hence it is proposed that rock-cut periglacial relief of the Sudetes is the cumulative effect of many successive cold periods during the Pleistocene and the last glacial period alone was of relatively minor importance. By contrast, slope cover deposits are usually of the Last Glacial age. Key words: cold-climate landforms, the Sudetes 1.
    [Show full text]
  • Glacial Processes and Landforms
    Glacial Processes and Landforms I. INTRODUCTION A. Definitions 1. Glacier- a thick mass of flowing/moving ice a. glaciers originate on land from the compaction and recrystallization of snow, thus are generated in areas favored by a climate in which seasonal snow accumulation is greater than seasonal melting (1) polar regions (2) high altitude/mountainous regions 2. Snowfield- a region that displays a net annual accumulation of snow a. snowline- imaginary line defining the limits of snow accumulation in a snowfield. (1) above which continuous, positive snow cover 3. Water balance- in general the hydrologic cycle involves water evaporated from sea, carried to land, precipitation, water carried back to sea via rivers and underground a. water becomes locked up or frozen in glaciers, thus temporarily removed from the hydrologic cycle (1) thus in times of great accumulation of glacial ice, sea level would tend to be lower than in times of no glacial ice. II. FORMATION OF GLACIAL ICE A. Process: Formation of glacial ice: snow crystallizes from atmospheric moisture, accumulates on surface of earth. As snow is accumulated, snow crystals become compacted > in density, with air forced out of pack. 1. Snow accumulates seasonally: delicate frozen crystal structure a. Low density: ~0.1 gm/cu. cm b. Transformation: snow compaction, pressure solution of flakes, percolation of meltwater c. Freezing and recrystallization > density 2. Firn- compacted snow with D = 0.5D water a. With further compaction, D >, firn ---------ice. b. Crystal fabrics oriented and aligned under weight of compaction 3. Ice: compacted firn with density approaching 1 gm/cu. cm a.
    [Show full text]
  • Oliva Vieira 2017.Pdf
    Catena 149 (2017) 637–647 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena Soil temperatures in an Atlantic high mountain environment: The Forcadona buried ice patch (Picos de Europa, NW Spain) Jesús Ruiz-Fernández a,⁎,MarcOlivab, Filip Hrbáček c, Gonçalo Vieira b, Cristina García-Hernández a a Department of Geography, University of Oviedo, Oviedo, Spain b Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, Lisbon, Portugal c Department of Geography, Masaryk University, Brno, Czech Republic article info abstract Article history: The present study focuses on the analysis of the ground and near-rock surface air thermal conditions at the Received 15 February 2016 Forcadona glacial cirque (2227 m a.s.l.) located in the Western Massif of the Picos de Europa, Spain. Temperatures Received in revised form 13 June 2016 have been monitored in three distinct geomorphological and topographical sites in the Forcadona area over the Accepted 27 June 2016 period 2006–11. The Forcadona buried ice patch is the remnant of a Little Ice Age glacier located in the bottom of a Available online 1 August 2016 glacial cirque. Its location in a deep cirque determines abundant snow accumulation, with snow cover between 8 and 12 months. The presence of snow favours stable soil temperatures and geomorphic stability. Similarly to Keywords: fi Soil temperatures other Cantabrian Mountains, the annual thermal regime of the soil is de ned by two seasonal periods (continu- Cirque wall temperatures ous thaw with daily oscillations and isothermal regime), as well as two short transition periods.
    [Show full text]
  • Periglacial Processes, Features & Landscape Development 3.1.4.3/4
    Periglacial processes, features & landscape development 3.1.4.3/4 Glacial Systems and landscapes What you need to know Where periglacial landscapes are found and what their key characteristics are The range of processes operating in a periglacial landscape How a range of periglacial landforms develop and what their characteristics are The relationship between process, time, landforms and landscapes in periglacial settings Introduction A periglacial environment used to refer to places which were near to or at the edge of ice sheets and glaciers. However, this has now been changed and refers to areas with permafrost that also experience a seasonal change in temperature, occasionally rising above 0 degrees Celsius. But they are characterised by permanently low temperatures. Location of periglacial areas Due to periglacial environments now referring to places with permafrost as well as edges of glaciers, this can account for one third of the Earth’s surface. Far northern and southern hemisphere regions are classed as containing periglacial areas, particularly in the countries of Canada, USA (Alaska) and Russia. Permafrost is where the soil, rock and moisture content below the surface remains permanently frozen throughout the entire year. It can be subdivided into the following: • Continuous (unbroken stretches of permafrost) • extensive discontinuous (predominantly permafrost with localised melts) • sporadic discontinuous (largely thawed ground with permafrost zones) • isolated (discrete pockets of permafrost) • subsea (permafrost occupying sea bed) Whilst permafrost is not needed in the development of all periglacial landforms, most periglacial regions have permafrost beneath them and it can influence the processes that create the landforms. Many locations within SAMPLEextensive discontinuous and sporadic discontinuous permafrost will thaw in the summer months.
    [Show full text]
  • Structures Caused by Repeated Freezing and Thawing in Various Loamy Sediments: a Comparison of Active, Fossil and Experimental Data
    EARTH SURFACE PROCESSES AND LANDFORMS, VOL. 9,553-565 (1984) STRUCTURES CAUSED BY REPEATED FREEZING AND THAWING IN VARIOUS LOAMY SEDIMENTS: A COMPARISON OF ACTIVE, FOSSIL AND EXPERIMENTAL DATA BRIGITTE VAN VLIET-LANOE AND JEAN-PIERRE COWARD Centre de Giomorphologie du C.N.R.S., Rue des Tilieuis, 14000 Caen, France AND ALBERT PISSART Laboratoire de Giographie Physique et Giofogie du Quarernaire. Universiti de Li2ge, 7 place du XX Aolit. 4000 Liege, Belgique ABSTRACT In this paper, the authors present the results of both macroscopic and microscopic investigations on structure development created by repeated ice lensing in various loamy experiments. Experimental data are compared with observations performed on active forms in High Arctic and Alpine Mountain environments. Those observations are also compared with phenomena observed in fossil periglacial formations of Western Europe. Platy and short prismatic structure formation is bonded to the hydraulic and thermal conditions during ice segr%ation. When a long series of alternating freezing and thawing affects platy structures, the fabric evolves, also being influenced by slope and drainage conditions: cryoturbations, frostcreep, and gelifluction can appear. They are characterized by specific microfabrics which are better developed with an increasing number of cycles: this is clear in experiments where hydraulic and thermal parameters are better controlled. Vesicles are also a prominent characteristic of the surface horizon in experiments and arctic soils. The genesis of vesicles is discussed on the basis of new observations and is related to the mechanical collapse of frost-created aggregates under the mechanical work of soil air escape during soil saturation by water at thaw.
    [Show full text]
  • Permafrost Soils and Carbon Cycling
    SOIL, 1, 147–171, 2015 www.soil-journal.net/1/147/2015/ doi:10.5194/soil-1-147-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Permafrost soils and carbon cycling C. L. Ping1, J. D. Jastrow2, M. T. Jorgenson3, G. J. Michaelson1, and Y. L. Shur4 1Agricultural and Forestry Experiment Station, Palmer Research Center, University of Alaska Fairbanks, 1509 South Georgeson Road, Palmer, AK 99645, USA 2Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA 3Alaska Ecoscience, Fairbanks, AK 99775, USA 4Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA Correspondence to: C. L. Ping ([email protected]) Received: 4 October 2014 – Published in SOIL Discuss.: 30 October 2014 Revised: – – Accepted: 24 December 2014 – Published: 5 February 2015 Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environ- ment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enor- mous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region’s soil or- ganic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile.
    [Show full text]
  • A Changing Arctic: Ecological Consequences for Tundra, Streams and Lakes
    A CHANGING ARCTIC: ECOLOGICAL CONSEQUENCES FOR TUNDRA, STREAMS AND LAKES Edited by John E. Hobbie George W. Kling Chapter 1. Introduction Chapter 2. Climate and Hydrometeorology of the Toolik Lake Region and the Kuparuk River Basin: Past, Present, and Future Chapter 3. Glacial History and Long-Term Ecology of the Toolik Lake Region Chapter 4. Late-Quaternary Environmental and Ecological History of the Arctic Foothills, Northern Alaska Chapter 5. Terrestrial Ecosystems Chapter 6. Land-Water Interactions Research Chapter 7. Ecology of Streams of the Toolik Region Chapter 8. The Response of Arctic-LTER Lakes to Environmental Change Chapter 9. Mercury in the Alaskan Arctic Chapter 10. Ecological consequences of present and future change 1 <1>Chapter 1. Introduction John E. Hobbie <1>Description of the Arctic LTER site and project Toolik, the field site of the Arctic Long Term Ecological Research (LTER) project, lies 170 km south of Prudhoe Bay in the foothills of Alaska’s North Slope near the Toolik Field Station (TFS) of the University of Alaska Fairbanks (Fig. 1.1).[INSERT FIGURE 1.1 HERE] The project goal is to describe the communities of organisms and their ecology, to measure changes that are occurring, and to predict the ecology of this region in the next century. Research at the Toolik Lake site began in the summer of 1975 when the completion of the gravel road alongside the Trans-Alaska Pipeline, now called the Dalton Highway, opened the road-less North Slope for research. This book synthesizes the research results from this site since 1975, as supported by various government agencies but mainly by the U.S.
    [Show full text]
  • The International Structure of a Pala and a Peat Plateau in The
    Document generated on 10/03/2021 5:54 p.m. Géographie physique et Quaternaire The international structure of a pala and a peat plateau in the Rivière Boniface region, Québec: Interferences on the formation of ice segregation mounds La structure interne d’une palse et d’un plateau palsique dans la région de la rivière Boniface (Québec) : implications générales pour la formation des buttes à glace de ségrégation. Die innere Struktur von einer Palse und einem Torfplateau in der Rivière Boniface-Region, Québec: Schlussfolgerungen über die Bildung von Eisabsonderungshügeln. Michel Allard and Luc Rousseau Volume 53, Number 3, 1999 Article abstract The internal structure of a 5.7 m high palsa was studied through a pattern of URI: https://id.erudit.org/iderudit/004760ar closely spaced drill holes in permafrost along two orthogonal section lines. DOI: https://doi.org/10.7202/004760ar Holes were also drilled on a 1.3 m high peat plateau along a topographic transect for comparison purposes. The morphology of the palsa closely reflects See table of contents the shape of the ice-rich core heaved by the growth of thick ice lenses in thick marine clay silts of the Tyrrell Sea. During and since palsa growth, the sand and peat covering was deformed by gelifluction and sliding and was also partly Publisher(s) eroded by overland flow and wind. Palsa growth was accompanied by the formation of numerous ice-filled fault planes in the frozen sediments. The peat Les Presses de l'Université de Montréal plateau was heaved to a lower height through the formation of thin ice lenses in an underlying layer of sandy silt only 1.4 m thick; this sediment is believed ISSN to be of intertidal origin.
    [Show full text]
  • Modelling Gelifluction Processes: the Significance of Frost Heave and Slope Gradient
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Modelling gelifluction processes: the significance of frost heave and slope gradient C. Harris & J.S. Smith Department of Earth Sciences, Cardiff University, Cardiff, United Kingdom ABSTRACT: In this paper we describe laboratory modelling of gelifluction processes using the geotechnical centrifuge technique. Frozen 1/10 scale planar slope models were frozen from the surface downwards on the lab- oratory floor and thawed, also from the surface downwards, under gravitational acceleration of 10 gravities. A natural sandy silt soil formed the base test material and slope models at gradients 4°, 8°, 12° and 16° were. Each slope model was subjected to four cycles of freezing and thawing except for the 16° model, which failed during the first thaw cycle. During thaw, soil temperatures and pore water pressures were recorded continuously, together with soil thaw settlement and surface displacement. Following each experiment, models were sectioned to observe displacement columns embedded within the soil mass, which showed the profiles of soil movement and allowed volumetric displacements to be calculated. It is shown that both frost heave and slope gradient strongly affect rates of surface movement. 1 INTRODUCTION Table 1. Soil properties, Prawle test soil. Clay (%) Silt (%) Sand (%) LL (%) PI (%) ␾Ј° cЈ(kPa) This paper describes scaled centrifuge modelling of gelifluction processes. Gelifluction and frost creep are 5 16 79 18 4 35 2 dominant in a wide range of arctic and alpine environ- ments (e.g. Mackay 1981, Washburn 1967, 1999, Gorbunov & Seversky 1999, Matsuoka & Hirakawa 2000), and rates depend on many environmental fac- movement deposits at Prawle Point, Devon, England tors, including slope gradient, soil moisture con- (Table 1).
    [Show full text]
  • Chapter 8. Glacioaeolian Processes, Sediments, and Landforms
    CHAPTER GLACIOAEOLIAN PROCESSES, SEDIMENTS, AND LANDFORMS 8 E. Derbyshire1 and L.A. Owen2 1Royal Holloway, University of London, Surrey, United Kingdom, 2University of Cincinnati, Cincinnati, OH, United States 8.1 INTRODUCTION The frequently strong association of aeolian processes with present and former glaciation has been recognized for over 80 years from field observations (Hogbom, 1923). Bullard and Austin (2011) point out that the interaction between glacial dynamics, glaciofluvial, and aeolian transport in proglacial landscapes plays an important role, not only in local environmental systems, but also in the global context by affecting the amount of dust generated and transported. Moreover, glacial outwash plains have been cited as a significant source of dust in the Southern Hemisphere (Sugden et al., 2009) and must also have been important dust sources in the northern hemisphere (Bullard and Austin, 2011). Cold climate aeolian processes and landforms have been widely acknowledged in proglacial and paraglacial geomorphology (e.g., Ballantyne, 2002; Seppa¨la¨, 2004). However, relatively little work has been undertaken on glacioaeolian processes, sediments, and landforms compared to other glacial systems. The ISI Web of Science does not even provide one reference to the term ‘glacioaeolian’ and Google Scholar provides a mere 61 references. Variations on the spell- ing of glacioaeolian, including glacioeolian, glacio-aeolian, glacio aeolian, and glacio-eolian yield less than 40 citations. Even the international journal Aeolian Research provides only one reference to the term glacioaeolian. A search of glacial aeolian yields 924 and 35,300 citations in the ISI Web of Science and Google Scholar, respectively. However, this includes reference to aeolian sedi- ments that are not of glacial origin, but were deposited during a glacial event.
    [Show full text]