Publications of the Astronomical Society of the Pacific 101: 787-810, September 1989

Total Page:16

File Type:pdf, Size:1020Kb

Publications of the Astronomical Society of the Pacific 101: 787-810, September 1989 Publications of the Astronomical Society of the Pacific 101: 787-810, September 1989 BOLOMETRIC LUMINOSITIES AND COLORS FOR Κ AND M DWARFS AND THE SUBLUMINOUS STARS OF THE HALO JESSE L. GREENSTEIN Palomar Observatory and Department of Astronomy, California Institute of Technology Pasadena, California 91125 Received 198 ABSTRACT This review deals with the H-R diagrams of dM, sdK, and sdM proper-motion stars. It depends heavily on the rapid growth in precision of small parallaxes, combining them with various photome- try to produce different types of H-R diagrams. Given my multichannel spectrophotometry and published mid-infrared filter photometry, a method for integrating energy distributions (including blanketing) by using discrete weights is developed. The bolometric corrections are evaluated at various wavelengths; an easy method is proposed for obtaining luminosities even if the star lacks infrared data. The various color-luminosity diagrams show that the high-velocity, low-metallicity stars of the halo are clearly subluminous. They are found to be bluer and brighter than low-mass OD m analogs; the apparent cutoff in the halo is close to Mbol = 12 . Well-known OD stars are far redder, reaching Mbol = 13?7. In both populations, the lowest luminosities observed are near those predicted with an energy-generation cutoff at low masses. A crucial test is proposed—examining the faintest stars in metal-poor globular clusters, where the predicted cutoff is accessible with the space telescope. Comparison of disk and halo stars with the theoretical model interiors for low-mass stars proves difficult, problems arising from a still poorly known effective temperature scale. The observed speed of halo stars, exceeding 425 km s1, confirms that the escape velocity from the Galaxy is high. Key words: stars: luminosities-stars: subdwarfs-stars: high velocity 1. Introduction reduced proper motion, H, were observed. Of 450 stars, Accumulation of data on the faint red stars makes it now 275 had usable parallaxes; 140 of these had published IR possible to study some of the physical properties of dK magnitudes, so 140 bolometric magnitudes could have and dM stars of various populations. I here analyze a been determined by integrating the full flux distribution. combination of my multichannel spectrophotometer A simplified method exists, discussed below; I here deter- (MCSP) observations, published mid-IR magnitudes, and mine Mbol for 71 stars with full data which then serve to parallaxes that lead to the relation between bolometric calibrate bolometric corrections to be applied. Many of these stars are close neighbors; for them other data will be magnitude Mbol and various colors. An MCSP observing program with the Hale 5-meter reflector, completed in found in the Gliese (1969) and Gliese and Jahreiss (1979) 1979, gave data on 450 proper-motion stars selected by catalogs. Sample MCSP energy distributions are in size of their reduced proper motions (H = m + 5 + Greenstein (1978); a preliminary review, in Greenstein 5 log μ). These are mostly from the Lowell Observatory (1989), outlines broadly a range of observational and theo- Proper Motion Survey (Giclas, Burnham, and Thomas retical problems of the lower main sequence as I now view 1971, 1978); those catalogs were complete to mpg = 16?5 them. A valuable, and much broader, general review with and motions of 0'/26 per annum but do not cover the entire extensive bibliography is Liebert and Probst (1987). sky. I observed all Lowell northern stars with μ > Γ.Ό The sample is not ideal for studies requiring statistical together with a random selection with 0'/5 < μ < Γ.Ό completeness but was not thought to be seriously biased selected by large H, some at negative declinations. The except by the magnitude limit of the Lowell catalogs. program was in part a search for new, faint yellow and red With one goal study of halo dwarfs special emphasis was degenerates and colors LC = 1,2 were preferentially placed on selection for high tangential motion {vt ^ 150 selected in the sample with motions less than 1". This km s1). Unfortunately, few such stars prove to have proved fortunate, supplying many subdwarfs. Some published IR data; at a given color, old-disk outnumber fainter LHS stars (Luyten 1979), of particularly large halo stars by ~ 1000, the latter will be 5m fainter (and, 787 © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System 788 JESSE L. GREENSTEIN therefore, missing from various source lists). It appears, working on these important problems. Perhaps the data in fact, that published IR data have been not only severely here presented will help stimulate their labor. brightness limited but particularly rare for high-velocity stars. In the direct determination of bolometric luminosi- 2. Sources of Data ties I have included almost every known high-velocity The MGSP provides an overabundance of data, 64 or northern star with complete data, some fainter LHS stars, 128 points; limiting measurements to seven representa- and a few candidate "brown dwarfs". To balance these a tive points proves adequate. These were selected as spots group of high-velocity stars was added, whose Mbol could with least possible blanketing in data taken at 80 A or be calibrated by a method based on those stars having IR 160 A resolution. Table 1 gives the nomenclature, origi- data. Early discussions of subluminous red stars are Eg- nally chosen for my work on the white dwarfs, but with gen (1968, 1969) and Greenstein (1969). some points shifted onto maxima between TiO bands. The work of Berriman and Reid (1987, hereafter BR) These points are identified either by names or by fre- marks an important step forward in the technique of using quency, the latter always given in square brackets [ ], mid-IR information to obtain Mbol. Their modest-resolu- with units inverse microns. The peaks were selected near tion IR spectroscopy demonstrated the existence of H2O central wavelengths of common broad-band systems. My bands with strengths like those predicted by Mould s R is at a narrow, only partly clear peak; is at the most (1976a,¿) model atmospheres. These bands affect Mbol nearly clear peak in the red, but possibly affected by Ha significantly; allowance for H2O is made by BR and in the emission; Β has been shifted to avoid 4227 A of Ga I. present study, thus improving the Greenstein, Neuge- Mould (1976a, 1978) used some of these same high bauer, and Becklin (1970) least-squares blackbody fit, a spots to compute "continuum" fluxes in his models to ν ^ method also used by Veeder (1974). We must look at this [1.712]. The data reductions were on the original Oke- in some detail since the temperature scale for the dM's Schild AB69 system, but corrections to AB79 are negligi- remains an elusive, most important problem. How signif- ble on the scale of colors of red stars. (A word of excuse icant is a least-squares blackbody fit for temperature, may be in order; over 100 tapes of my MGSP observations given the severely nonblackbody shape of the energy were lost during a building modernization, so rereduction distributions? In the use of L = L may be obtained was impossible. Digital and graphical outputs were, for- accurately by integration of the fluxes. But depressed tunately, preserved. All data had to be typed into the fluxes in bands and lines affect the shape strongly enough computer. Such are the hazards of electronic data re- that decisions must be made how to weight data points in trieval.) The AB system gives fluxes in meaningful energy determining reff. Specifically, BR determine Teíí, fitting units, millijanskies or cgs. But the IR magnitudes are Planck curves of equal area; I quote "normalized to the published on scales with Vega set at 0m; the Gal tech flux density at 2.2 μιη (assumed to measure the stellar calibration to place them on an energy scale, additive to continuum)". An approximately equivalent method of fix- filter magnitudes (see Table 1), give AB such that, like the ing the temperature is to compute with the Planck func- MGSP magnitudes, fluxes are derived from: tion, BV{T), a bandwidth Δν(Γ) such that, after assuming logio/v^ -0.4 XABV +6.56 . (1) that the observed flux FK = BK{T), the correct luminosity, 26 -1 2 -1 L = FKX Δν(Τ), is obtained. It proved difficult in practice Here fluxes are in mjy, i.e., HT ergs s cnT Hz . On to obtain a useful parameter Δν to describe adequately this physical scale, in which the mid-IR magnitudes are the mid-IR fluxes, from the limited observations made written in lower case, colors are {j — h) = {J — H) — 0?46; through filters at arbitrary fixed intervals. The blackbody energy distribution narrows at low temperatures, table 1 through the exp — (hv/kT) factor, and might be fitted if Nomenclature and Properties of Standard Wavelength Bands used in Multichannel Spectrophotooetry; Calibration enough spectrophotometric data (low resolution) were of the Mid-IR Filter Bands to the AB Scale available. An empirical Δ ν is also affected by the (largely IR AB Relation nU unknown) shape of infrared absorption bands. Formal (microns) (inverse errors of the BR fits are satisfactorily small, ± 110 K, but microns) the systematic errors in Te{[ may be appreciably larger, M m nFtt+3.42 4.8 0.208 L 1 1=1.+2.79 3.5 .286 given the restriction on the least-squares method im- Κ k ksR+l.87 2.2 .454 posed by the heavy weight ascribed the 2.2-μιη data. A H h h=H+1.36 1.65 .606 J j jeJ+0.90 1.25 .800 direct fit to theoretical model atmospheres including I* 1.00 1.000 H2O, TiO, MgH, and CaH bands and the myriads of I 0.8265 1.21 R 0.7102 1.408 atomic lines would be ideal; ample data exist to justify R* 0.6579 1.52 V 0.5405 1.85 such a program.
Recommended publications
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • CARMENES Input Catalogue of M Dwarfs IV. New Rotation Periods from Photometric Time Series
    Astronomy & Astrophysics manuscript no. pk30 c ESO 2018 October 9, 2018 CARMENES input catalogue of M dwarfs IV. New rotation periods from photometric time series E. D´ıezAlonso1;2;3, J. A. Caballero4, D. Montes1, F. J. de Cos Juez2, S. Dreizler5, F. Dubois6, S. V. Jeffers5, S. Lalitha5, R. Naves7, A. Reiners5, I. Ribas8;9, S. Vanaverbeke10;6, P. J. Amado11, V. J. S. B´ejar12;13, M. Cort´es-Contreras4, E. Herrero8;9, D. Hidalgo12;13;1, M. K¨urster14, L. Logie6, A. Quirrenbach15, S. Rau6, W. Seifert15, P. Sch¨ofer5, and L. Tal-Or5;16 1 Departamento de Astrof´ısicay Ciencias de la Atm´osfera, Facultad de Ciencias F´ısicas,Universidad Complutense de Madrid, E-280140 Madrid, Spain; e-mail: [email protected] 2 Departamento de Explotaci´ony Prospecci´onde Minas, Escuela de Minas, Energ´ıay Materiales, Universidad de Oviedo, E-33003 Oviedo, Asturias, Spain 3 Observatorio Astron´omicoCarda, Villaviciosa, Asturias, Spain (MPC Z76) 4 Centro de Astrobiolog´ıa(CSIC-INTA), Campus ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Ca~nada,Madrid, Spain 5 Institut f¨ur Astrophysik, Georg-August-Universit¨at G¨ottingen, Friedrich-Hund-Platz 1, D-37077 G¨ottingen, Germany 6 AstroLAB IRIS, Provinciaal Domein \De Palingbeek", Verbrandemolenstraat 5, B-8902 Zillebeke, Ieper, Belgium 7 Observatorio Astron´omicoNaves, Cabrils, Barcelona, Spain (MPC 213) 8 Institut de Ci`enciesde l'Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, E-08193 Bellaterra, Barcelona, Spain 9 Institut d'Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain 10
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • IV. New Rotation Periods from Photometric Time Series?
    A&A 621, A126 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833316 & c ESO 2019 Astrophysics CARMENES input catalogue of M dwarfs IV. New rotation periods from photometric time series? E. Díez Alonso1,2,3 , J. A. Caballero4, D. Montes1, F. J. de Cos Juez2, S. Dreizler5, F. Dubois6, S. V. Jeffers5, S. Lalitha5, R. Naves7, A. Reiners5, I. Ribas8,9, S. Vanaverbeke10,6, P. J. Amado11, V. J. S. Béjar12,13, M. Cortés-Contreras4, E. Herrero8,9, D. Hidalgo12,13,1 , M. Kürster14, L. Logie6, A. Quirrenbach15, S. Rau6, W. Seifert15, P. Schöfer5, and L. Tal-Or5,16 1 Departamento de Astrofísica y Ciencias de la Atmósfera, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 280140 Madrid, Spain e-mail: [email protected] 2 Departamento de Explotación y Prospección de Minas, Escuela de Minas, Energía y Materiales, Universidad de Oviedo, 33003 Oviedo, Asturias, Spain 3 Observatorio Astronómico Carda, MPC Z76 Villaviciosa, Asturias, Spain 4 Centro de Astrobiología (CSIC-INTA), Campus ESAC, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 5 Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 6 AstroLAB IRIS, Provinciaal Domein “De Palingbeek”, Verbrandemolenstraat 5, 8902 Zillebeke, Ieper, Belgium 7 Observatorio Astronómico Naves, (MPC 213) Cabrils, Barcelona, Spain 8 Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, 08193 Bellaterra, Barcelona, Spain 9 Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
    [Show full text]
  • Introduction to ASTR 565 Stellar Structure and Evolution
    Introduction to ASTR 565 Stellar Structure and Evolution Jason Jackiewicz Department of Astronomy New Mexico State University August 22, 2019 Main goal Structure of stars Evolution of stars Applications to observations Overview of course Outline 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Order in the H-R Diagram!! Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Motivation: Understanding the H-R Diagram Introduction to ASTR 565 Jason Jackiewicz HRD (2) HRD (3) Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Basic structure - highly non-linear solution Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Massive-star nuclear burning Introduction
    [Show full text]
  • Arxiv:2004.11418V2 [Astro-Ph.SR] 15 Jun 2020
    Radio Observations of Magnetic Cataclysmic Variables Paul Barrett∗ George Washington University, Washington DC, 20052, USA Christopher Dieck United States Naval Observatory, Washington DC 20392, USA Anthony J. Beasley National Radio Astronomy Observatory, Charlottesville, VA 22903, USA Paul A. Mason New Mexico State University, Las Cruces, NM, 88003, USA Picture Rocks Observatory, 1025 S. Solano, Suite D, Las Cruces, NM 88001, USA Kulinder P. Singh Indian Institute of Science Education and Research Mohali, Manauli, PO 140306, India Abstract The NSF's Karl G. Jansky Very Large Array (VLA) is used to observe 122 magnetic cataclysmic variables (MCVs) during three observing semesters (13B, 15A, and 18A). We report radio detections of 33 stars with fluxes in the range 6{8031 µJy. Twenty-eight stars are new radio sources, increasing the number of radio detected MCVs to more that 40. A surprising result is that about three-quarters (24 of 33 stars) of the detections show highly circularly polarized radio emission of short duration, which is characteristic of electron cyclotron maser emission. We argue that this emission originates from the lower corona of the donor star, and not from a region between the two stars. Maser emission enables a more direct estimate of the mean coronal magnetic field of the donor star, which we estimate to be 1{4 kG assuming a magnetic filling factor of 50%. A two-sample Kolmogorov-Smirnov test supports the conclusion that the distribution function of radio detected MCVs with orbital periods between 1.5{ 5 hours is similar to that of all MCVs. This result implies that rapidly-rotating arXiv:2004.11418v2 [astro-ph.SR] 15 Jun 2020 (Pspin < 10 days), fully convective stars can sustain strong magnetic dynamos.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • 10 Meter Sub-Orbital Large Balloon Reflector (LBR)
    LBR 10 meter Sub-Orbital Large Balloon Reflector (LBR) Step I Phase B Report 31 May 2014 PI: Christopher K. Walker University of Arizona 1 LBR I COVER PAGE AND PROJECT SUMMARY The realization of a large, space-based 10 meter class telescope for far-infrared/THz studies has long been a goal of NASA. Such a telescope could study the origins of stars, planets, molecular clouds, and galaxies; providing a much needed means of following-up on tantalizing results from recent successful missions such as Spitzer, Herschel, and SOFIA. Indeed, Herschel began its life in the US space program as the Large Deployable Reflector (LDR) – to be assembled in low Earth orbit by shuttle astronauts. Escalating costs and smaller federal budget allocations resulted in a downsizing of the mission. However, by combining successful suborbital balloon and ground-based telescope technologies, the dream of a 10 meter class telescope free of ~99% of the Earth’s atmospheric absorption in the far-infrared can be realized. The same telescope can also be used to perform sensitive, high spectral and spatial resolution limb sounding studies of the Earth’s atmosphere in greenhouse gases such as CO, ClO, O3, and water, as well as serve as a high flying hub for any number of telecommunications and surveillance activities. Flight times of 100+ days will be possible, with instruments having mass and power requirements in excess of ~500 kg and ~1 kW. Here we present the results of our NIAC Step 1, Phase B design study where each key aspect of the LBR concept is discussed and recommendations made for further study in Phase II.
    [Show full text]
  • Transits of Mercury, 1605–2999 CE
    Appendix A Transits of Mercury, 1605–2999 CE Date (TT) Int. Offset Date (TT) Int. Offset Date (TT) Int. Offset 1605 Nov 01.84 7.0 −0.884 2065 Nov 11.84 3.5 +0.187 2542 May 17.36 9.5 −0.716 1615 May 03.42 9.5 +0.493 2078 Nov 14.57 13.0 +0.695 2545 Nov 18.57 3.5 +0.331 1618 Nov 04.57 3.5 −0.364 2085 Nov 07.57 7.0 −0.742 2558 Nov 21.31 13.0 +0.841 1628 May 05.73 9.5 −0.601 2095 May 08.88 9.5 +0.326 2565 Nov 14.31 7.0 −0.599 1631 Nov 07.31 3.5 +0.150 2098 Nov 10.31 3.5 −0.222 2575 May 15.34 9.5 +0.157 1644 Nov 09.04 13.0 +0.661 2108 May 12.18 9.5 −0.763 2578 Nov 17.04 3.5 −0.078 1651 Nov 03.04 7.0 −0.774 2111 Nov 14.04 3.5 +0.292 2588 May 17.64 9.5 −0.932 1661 May 03.70 9.5 +0.277 2124 Nov 15.77 13.0 +0.803 2591 Nov 19.77 3.5 +0.438 1664 Nov 04.77 3.5 −0.258 2131 Nov 09.77 7.0 −0.634 2604 Nov 22.51 13.0 +0.947 1674 May 07.01 9.5 −0.816 2141 May 10.16 9.5 +0.114 2608 May 13.34 3.5 +1.010 1677 Nov 07.51 3.5 +0.256 2144 Nov 11.50 3.5 −0.116 2611 Nov 16.50 3.5 −0.490 1690 Nov 10.24 13.0 +0.765 2154 May 13.46 9.5 −0.979 2621 May 16.62 9.5 −0.055 1697 Nov 03.24 7.0 −0.668 2157 Nov 14.24 3.5 +0.399 2624 Nov 18.24 3.5 +0.030 1707 May 05.98 9.5 +0.067 2170 Nov 16.97 13.0 +0.907 2637 Nov 20.97 13.0 +0.543 1710 Nov 06.97 3.5 −0.150 2174 May 08.15 3.5 +0.972 2644 Nov 13.96 7.0 −0.906 1723 Nov 09.71 13.0 +0.361 2177 Nov 09.97 3.5 −0.526 2654 May 14.61 9.5 +0.805 1736 Nov 11.44 13.0 +0.869 2187 May 11.44 9.5 −0.101 2657 Nov 16.70 3.5 −0.381 1740 May 02.96 3.5 +0.934 2190 Nov 12.70 3.5 −0.009 2667 May 17.89 9.5 −0.265 1743 Nov 05.44 3.5 −0.560 2203 Nov
    [Show full text]
  • Appendix II. Publications
    Appendix II. Publications Gemini Staff Publications Papers in Peer­Reviewed Journals: Bauer, Amanda[4]. A young, dusty, compact radio source within a Lyα halo. Monthly Notices of the Royal Astronomical Society, 389:792-798. September, 2008. Trancho, G.[4]. The early expansion of cluster cores. Monthly Notices of the Royal Astronomical Society, 389:223-230. September, 2008. Stephens, A. W.[11]. Massive stars exploding in a He-rich circumstellar medium - III. SN 2006jc: infrared echoes from new and old dust in the progenitor CSM. Monthly Notices of the Royal Astronomical Society, 389:141-155. September, 2008. Serio, Andrew W.[1]. The variation of Io's auroral footprint brightness with the location of Io in the plasma torus. Icarus, 197:368-374. September, 2008. Radomski, James T.[5]. Understanding the 8 µm versus Paα Relationship on Subarcsecond Scales in Luminous Infrared Galaxies. The Astrophysical Journal, 685:211-224. September, 2008. Volk, K.[47]. Spitzer Survey of the Large Magellanic Cloud, Surveying the Agents of a Galaxy's Evolution (sage). IV. Dust Properties in the Interstellar Medium. The Astronomical Journal, 136:919-945. September, 2008. Díaz, R. J.[3]. Discovery of a [WO] central star in the planetary nebula Th 2-A. Astronomy and Astrophysics, 488:245-247. September, 2008. Schiavon, Ricardo P.[2]. Measuring Ages and Elemental Abundances from Unresolved Stellar Populations: Fe, Mg, C, N, and Ca. The Astrophysical Journal Supplement Series, 177:446- 464. August, 2008. Song, Inseok[3]. Gas and Dust Associated with the Strange, Isolated Star BP Piscium. The Astrophysical Journal, 683:1085-1103. August, 2008. Roth, Katherine C.[22].
    [Show full text]
  • Theory of Stellar Atmospheres
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. EXTENDED BIBLIOGRAPHY References [1] D. Abbott. The terminal velocities of stellar winds from early{type stars. Astrophys. J., 225, 893, 1978. [2] D. Abbott. The theory of radiatively driven stellar winds. I. A physical interpretation. Astrophys. J., 242, 1183, 1980. [3] D. Abbott. The theory of radiatively driven stellar winds. II. The line acceleration. Astrophys. J., 259, 282, 1982. [4] D. Abbott. The theory of radiation driven stellar winds and the Wolf{ Rayet phenomenon. In de Loore and Willis [938], page 185. Astrophys. J., 259, 282, 1982. [5] D. Abbott. Current problems of line formation in early{type stars. In Beckman and Crivellari [358], page 279. [6] D. Abbott and P. Conti. Wolf{Rayet stars. Ann. Rev. Astr. Astrophys., 25, 113, 1987. [7] D. Abbott and D. Hummer. Photospheres of hot stars. I. Wind blan- keted model atmospheres. Astrophys. J., 294, 286, 1985. [8] D. Abbott and L. Lucy. Multiline transfer and the dynamics of stellar winds. Astrophys. J., 288, 679, 1985. [9] D. Abbott, C. Telesco, and S. Wolff. 2 to 20 micron observations of mass loss from early{type stars. Astrophys. J., 279, 225, 1984. [10] C. Abia, B. Rebolo, J. Beckman, and L. Crivellari. Abundances of light metals and N I in a sample of disc stars. Astr. Astrophys., 206, 100, 1988. [11] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. (Washington, DC: U.S. Government Printing Office), 1972.
    [Show full text]
  • NSO Scientific Papers 1985-1999
    NSO Publications, 1985-1999 NSO Publications, 1985-1999 Sorted Alphabetically by Author Abdelatif, T.E. 1985, Umbral Oscillations as a Probe of Sunspot Structure. PhD Thesis (University of Rochester) Abdelatif, T.E., Lites, B.W., and Thomas, J.H. 1984, in Small-Scale Dynamical Processes in Quiet Stellar Atmospheres: Workshop Proceedings, Sunspot, New Mexico, 25-29 Jul. 1983. S.L. Keil, ed., 141-147: Oscillations in a Sunspot and the Surrounding Photosphere Abdelatif, T.E., Lites, B.W., and Thomas, J.H. 1986, Astrophys. J. 311, 1015-1024: The Interaction of Solar P-Modes with a Sunspot. I. Observations Abrams, D., and Kumar, P. 1996, Astrophys. J. 472, 882-890: Asymmetries of Solar p-Mode Line Profiles Abrams, M.C., Davis, S.P., Rao, M.L., and Engleman, R. 1990, Astrophys. J. 363, 326-330: Highly Excited Rotational States of the Meinel System of OH Abrams, M.C., Davis, S.P., Rao, M.L., Engleman, R., and Brault, J.W. 1994, Astrophys. J. Suppl. Ser. 93, 351-395: High-Resolution Fourier Transform Spectroscopy of the Meinel System of OH Acton, D.S. 1989, in High Spatial Resolution Solar Observations: Proceedings of the Tenth Sacramento Peak Summer Symposium, Sunspot, New Mexico, 22-26 August, 1988. O. Von der Luhe, ed., 71-86: Results from the Lockheed Solar Adaptive Optics System Acton, D.S. 1990, Real-Time Solar Imaging with a 19-Segment Active Mirror System: a Study of the Standard Atmospheric Turbulence Model. PhD Thesis (Texas Tech University). Acton, D.S. 1994, in Real-Time and Post-Facto Solar Image Correction.
    [Show full text]