Clustered Topological

Total Page:16

File Type:pdf, Size:1020Kb

Clustered Topological Cluster #30 HYG 739 6.7 6.1 HD 404 7.6 HD 2824 HYG 778 3.7 HD 2937 4.2 2.3 HD 2936 2.3 0.0 HYG 2544 4.6 4.9 HD 2827 2.6 6.7 HD 2903 2.6 51 Psc 7.5 HD 511 6.1 6.1 6.6 5.7 6.6 6.7 7.5 5.9 Cluster #8 HD 2888 5.9 0.0 Kormoran System Gl 22 A Cluster #30 HYG 2541 HYG 2522 5.9 3.7 5.9 4.8 3.7 4.9 HD 544 HD 2851 6.9 0.0 5.9 HD 2946 6.9 HD 2874 5.9 7.2 7.2 HD 2989 7.2 HYG 2523 7.2 7.67.6 5.9 7.2 Iota UrsaeIota Majoris Ursae B Majoris A 7.2 0.0 HD 2911 7.7 0.0 0.0 0.0 0.0 Iota Ursae MajorisIota 7.4C Ursae7.4 Majoris D 7.4 7.4 DM+36 1970 0.0 7.4 7.4 1.7 1.7 Cluster #13 7.4 7.4 7.7 7.7 DM+42 1956 A 1.7 1.71.7 Gam3Oct DM+421.7 1956 B HD 2840 0.01.7 1.7 6.2 6.2 6.2HD 2789 6.2 DM-56Heidelsheimat 328 System 0.0 0.0 HD 2970 HYG 2518 0.0 5.6 6.7 3.2 HD 2901 5.6 7.4 3.2 7.4 HD 567 7.17.4 5.7 5.7 7.1 4.7 7.4 7.4 5.7 5.7 DM-68 47 7.4 5.2 7.1 5.1 HD 626 5.45.4 5.2 7.1 5.1 7.6 DM+43 1953 5.8 6.1 HD 471 3.6 6.7 HYG 2576 6.7 DM+46 1551 6.4 7.4 Gl 7 G 195-19 Syuhlahm System 6.7 Daikoku System 5.4 5.4 5.9 5.6 3.0 5.2 5.2 HD 2890 7.6 6.6 6.4 4.0 HD 615 DM+67 552 B 6.3 7.5 0.0 7.7 DM+48 1829 4.8 DM+67 552 A 7.7 7.1 L49 19 6.8 52 Psc 5.3 4.2 7.1 6.5 4.2 5.0 7.1 6.5 5.7 5.7 6.5 5.85.7 5.8 HD 2931 HD 3012 6.0 DM+63 869 HD 2952 2.6 6.0 0.0 2.6 DM+46 1635 5.5 7.4 4.1 4.1 6.0 DM+56 1459 DM+71 482 B HD 3034 5.6 5.6 5.5 7.4 0.0 0.0 5.6 5.6 HD 2998 HYG 2594 5.1 6.3 0.0 DM+56 1458 DM+71 482 A 5.1 3.5 HD 3011 Cluster #17 3.63.5 G 44-42 AC+70 4336 3.6 0.1 7.5 HD 559 6.0 7.6 AC+70 4337 7.6 3.1 Gamma Pavonis 5.6 DM+39 2376A Cluster #18 0.0 Cluster #38 DM+39 2376B DM+53 1320 6.2 0.0 LP658 2 6.2 DM+53 1321 DM+22 2302 47 uma 2.0 5.7 6.9 6.9 Austin's World System AC+12 1800-213 7.1 5.5 6.9 6.9 6.8 6.2 6.2 6.1 Ross 619 5.7 6.7 DM+31 2240DM+31 B 2240 A 3.6 3.4 0.0 5.7 YZ Canis Minoris HD 2925 5.0 DM-21 1377 6.9 6.9 LP425-140 6.7 6.9 6.9 7.3 6.7 HYG 2588 6.7 6.7 6.7 Ross 627 7.1 7.1 Neubayern System 7.4 7.4 4.7 4.2 4.2 7.0 7.0 7.1 AugereauWX System Ursae Majoris 7.4 0.0 7.1 7.5 5.8 7.6 DM-7 781BDM-7Montana 781C System HD 604 0.0 0.0 0.0 HD 632 6.2 Nyotekundu System 4.0Bessieres A 0.0 6.2 0.0 4.0 HD 3000 Bessieres B 3.9 6.4 Ross 614Ross B 614 A 0.0 6.4 6.7 Beta Leonis 7.6 Ross 128 6.7 3.6 7.5 7.2 5.8 5.8 3.7 3.7 3.6 Cluster #39 3.7 3.7 HD 652 Core DM+5 1668 B Kie-Yuma 0.1 4.3 4.34.3 0.0 DM+5 1668 A 4.3 5.6 5.65.6 5.6 5.6 1.2 Xi Ursae Majoris0.0 C 4.4 4.3 1.21.1 0.0 4.4 4.5 HD 2995 4.5 1.1 Xi Ursae Majoris0.0 B Paulo System 5.0 5.0 Proxima Centauri 0.0 0.0 5.0 5.0 TiraneAlpha System Centauri0.2 B Xi Ursae Majoris D 0.0 0.2 Alpha Canis Minoris B 5.4 5.7 2.9 4.8 Wolf 424Wolf B 424 A 5.75.7 0.0 4.8 2.9 Queen Alice's Star 5.7 4.8 6.3 2.9 5.0 5.2 4.8 6.3 2.9 Cluster #24 DM+50 18325.0 5.2 6.3 5.0 5.2 HD 3019 5.9 Kapteyn's Star HYG 2571 6.3 5.05.0 DM+27 28217 7.5 DukouEpsilon System Eridani B 5.0 Alpha Canis Majoris A 0.0 5.0 7.5 Joi System 5.0 6.5 0.0 6.4 6.4 DM+66 717 Alpha Canis Majoris B HD 2770 5.5 7.2 Berthier System 4.8 2.4 7.2 2.4 Haifeng System 7.6 5.4 5.4 7.0 7.5 Sans Souci System Catherine's Star 3.4 5.7 7.3 7.3 7.0 6.1 0.0 5.7 6.3 Henry's Star 5.3 5.3 HD 585 7.2 7.1 HD 2907 3.2 7.6 6.5 5.2 5.2 7.6 5.2 5.2 7.6 7.3 4.4 Barnard's star 7.6 HD 2929 6.5 6.2 7.2 6.8 4.7 5.1 4.5 C1 6.8 DM+55 1519G 197-50 Kwantung System 5.3 7.1 7.3 HD 681 0.1 4.5 6.0 DM+15 2620 7.6 7.7 6.0 7.3 Stark System HD 2964 HD 3101 7.4 7.3 HD 3025 DM+45 2014 AC+13 14332 6.8 2.9 0.0 2.9 HD 3095 6.4 HD 3160 AC+66 3955 Qinyuan System 5.9 4.0 15Kap Cas 7.3 3.5 6.3 0.0 4.0 HD 3020 UV Ceti DM+42 2296 7.0 Beta Canum Venaticorum 7.0 Van Maanens Star 5.3 5.7 7.4 1.9 Kimanjano System 5.4 5.4 4.9 7.4 4.8 Cluster #34 5.3 HD 3024 4.8 4.9 6.5 HYG 2598 6.5 6.6 HD 3087 DM+34 2323 7.5 7.5 5.6 5.6 HD 236462 7.6 7.6 HYG 899 7.1 6.5 6.9 4.4 7.1 HD 3076 HD 874 Hunjiang System Vogelheim System 6.7 6.7 6.8 7.4 6.1 3.0 HD 3144 DM+48 2108BDM+48 2108A 7.4 0.0 7.5 5.5 4.1 DM+1 4774 Nous Voila System 6.1 3.5 3.5 5.2 5.2 7.0 5.6 7.4 7.7 6.7 HD 758 Lacaille 9352 7.4 6.2 6.9 6.9 HYG 2650 7.6 7.6 7.6 DM+19 5116 A 6.6 DM+46 1889 4.6 GrosshiddenhafenDM+35 System 2436B 4.2 6.8 6.8 7.1 6.1 0.0 Chengdu System NN 3012 7.2 6.6 HD 3062 2.5 L789 6 5.7 4.9 HD 743 2.5 7.0 6.0 6.0 7.3 6.8 5.1 3.6 HD 3059 HD 734 Dunkelheim System 3.6 DM-15 6290 HD 3033 6.0 6.06.0 6.0 5.4 HD 2983 4.7 4.9 4.9 HYG 897 7.3 DM+15 4733 A 7.1 0.0 7.5 DM+15 4733 B DM+27Hochbaden 2296 System 0.0 4.3 7.7 HD 730 HD 3093 3.2 5.7 5.7 HYG 909 5.3 HD 749 4.8 4.84.8 4.8 6.9 HD 669 Wiseman System 1.8 6.2 HD 688 2.0 Aurore System 0.0 2.0 4.5 6.37.3 Eta Bootis B 6.2 6.6 5.0 6.7 5.2 Cluster #47 6.6 4.3 5.5 7.6 6.7 6.0 HD 711 5.2 4.7 7.6 Beta Virginis Ross 119 5.1 HD 757 7.7 HD 740 3.4 1.2 HD 3015 HD 793 3.8 3.8 HD 2993 0.0 6.9 HD 2973 5.9 HD 3032 3.9 Doris System 6.7 4.5 4.5 AC+17 534-105 HYG 946 6.6 HD 738 1.0 7.3 HD 698 7.4 6.4 6.5HD 3047 Cluster #41 7.4 6.1 Xiuning System 6.1 6.8 7.0 Cold Mountain System 3.4 5.2 HD 3061 5.8 HD 745 HYG 2647 6.9 5.8 6.1 Wolf 414 Serurier System HD 3084 6.1 7.1 7.1 6.3 3.5 Arich Porrima 7.1 7.3 DM+9 2636 0.0 Wolf 437 3.6 7.4 6.9 6.7 7.0 HD 769 5.0 Gamma Virginis B 7.4 6.7 7.0 5.2 HD 3030 6.1 HD 3057 7.7 1.7 Wolf 433 4.6 7.1 7.6 AC+10 95-26 DM-46 11540 3.4 7.6 D'Artagnon System 6.3 5.2 5.3 3.4 0.8 5.5 7.7 5.0 6.1 Davout System HD 2939 2.7 5.6 6.6 7.6 7.5 7.1 6.8 6.16.1 0.0 DM+27 2055 6.2 DM+0 2989 6.1 HD 3085 HYG 997 6.2 6.6 DM+16 2404 6.4 DM-20 4123 DM-40 9712 6.1 7.0 Broward System 3.7 6.4 7.4 0.0 6.4 6.7 7.0 0.0 DM-45 13677 DM-20 2125 7.6 3.8 4.2 DM-12 4523 B 3.8 7.5 HD 3022 HD 236464 7.6 4.2 3.3 3.5 DM-11 3759 L347 14 3.5 3.0 7.5 6.1 4.8 Wolf 461 A 4.3 DM-36 13940 A HD 3055 7.5 DM+11 2576 A 6.4 4.3 0.0 0.0 6.0 0.0 6.4 DM-36 13940 B Wolf 461 B 5.8 HD 3109 DM+11 2576 B 6.4 3.8 5.7 2.9 5.8 6.6 3.8 5.7 2.9 5.8 7.7 7.3 DM+13 2618 7.2 6.6 Wolf 457 7.3 7.2 6.2 Wolf 489 5.9 7.3 6.56.6 5.9 6.5 4.3 4.5 6.5 Ross 974 4.6 6.5 7.0 Alpha Aquilae HD 3054 6.8 4.6 7.4 7.0 6.8 7.2 7.4 DM+17 2611 A 7.4 7.2 7.3 0.0 7.4 36 Oph 5.7 4.3 7.3 7.4 DM+17 2611 B 0.0 7.3 7.4 DM-26 120260.1 B 6.2 7.4 0.1 6.2 DM-26 12036 C 5.2 DM-7 4003 7.4 3.7 7.1 5.1 5.2 3.7 7.1 DM-46 11370 A 70 Ophiuchi70 Ophiuchi A DM+2 B 3482 6.6 6.30.0 0.0 0.0 0.0 HD 3260 HD 232137 7.1 7.1 DM-46 11370 B DM+10 2531 6.66.6 6.3 0.0 7.6 6.66.66.6 6.3 6.1 6.4 5.9 7.5 5.9 5.9 HD 3197 6.1 6.76.66.6 6.36.4 6.1 5.9 5.9 5.9 4.8 6.6 5.16.4 4.5 DM-37 10765 A 6.1 6.7 DM+4 4048 7.4 5.1 7.5 7.5 7.5 Ross 486 A 0.0 6.76.6 0.0 4.5 5.1 7.5 7.5 7.5 HD 3040 0.0 DM-37 10765 B 6.6 5.1 VB 10 Ross 486 B 5.4 7.5 7.5 7.5 5.4 7.4 7.4 7.4 Clarkesstar System DM-34 11626 A HD 3110 5.0 5.4 7.4 7.4 7.4 0.0 0.0 5.4 7.0 DM-8 43520.07.0 DM-34 116260.0 B 4.2 7.6 0.10.0 0.0 4.2 7.6 VB 0.18 DM-34 11626 C 0.1 7.3 Wolf 6290.1 A 6.5 5.5 HD 3279 6.4 6.5 7.3 0.0 6.4 Wolf 629 B 6.6 7.2 7.2 7.2 L339 19 4.7 HD 3136 0.0 HD 3245 HYG 2748 HD 3175 7.6 4.5 6.6 6.6 DM-1 2892 7.6 6.6 6.6 7.6 6.9 6.6 7.1 5.7 7.6 7.5 6.5 7.6 HD 3236 2.6 6.5 2.6 HD 952 3.1 5.2 6.54.4 4.4 2.5 4.4 DM-3 3508 A 5.2 HD 919 0.0 6.2 5.2 DM-3 35080.6 B Ross 848 DM-3 4233 0.6 HD 947 4.8 7.1 7.0 King System 6.2 7.1 6.2 Cluster #35 6.1 Cluster #28 HYG 1076 Ellis System 0.0 6.0 4.6 HYG 2722 HD 1016 6.2 0.0 HD 3203 HYG 2773 4.7 HYG 1077 4.7 6.9 3.4 6.9 3.4 AC-12 2306 5.6 DM+45 2505 0.0 6.8 6.2 Red Speck System 5.9 HYG 2724 Ross 845 HD 916 14 Cet 4.3 Wolf 534 HD 3184 5.8 7.1 HD 912 HD 3301 7.5 7.5 7.3 2.6 HD 975 HD 3222 7.6 7.6 7.6 7.6 7.6 7.6 7.7 Alpha Lyrae HD 953 HD 3259 4.3 HD 973 4.1 7.5 4.0 7.1 5.9 4.1 AC+32 54804 A 0.0 7.3 AC+32 54804 B 7.0 7.0 7.0 4.7 4.7 4.5 HD 1022 HD 236469 HYG 2744 7.4 5.5 5.5 5.4 Cluster #47 Hermes SystemMu HerculisMu HerculisC B 6.2 5.5 7.2 0.0 0.0 0.0 Alpha Bootis HD 974 4.3 4.3 7.5 6.8 4.3 7.5 New Melbourne System 7.5 6.3 6.1 AC+20 1463-148 HD 3148 HD 3204 0.0 7.1 Botany Bay System AC+20 1463-154 7.2 Kingsland System1.2 4.5 1.2 0.0 6.2 7.4 2.1 Zeta Herculis B 6.2 7.4 6.1 4.1 6.1 7.4 Ross 165 B 5.3 5.7 6.4 0.0 HD 3213 4.6 5.7 Ross 165 A Ross 52 A HYG 1143 0.0 7.4 6.7 7.4 4.1 Ross 52 B 6.7 7.2 4.4 6.4 6.7 HYG 1158 6.4 5.5 ISO 417 4.9 4.7 4.4 5.6 4.9 DM+16 2708 6.8 6.6 6.3 6.6 5.5 5.6 5.6 4.8 5.6 5.6 HD 1011 HYG 1184 5.1 HD 1023 6.6 5.9 Ross 863 HD 3244 5.2 5.2 6.9 5.9 6.9 AC-7 342-397AC-7 342-402 5.9 0.0 6.9 3.6 4.7 6.1 DM+25 3173 4.3 3.4 Shsh'ah - Wet One 6.1 3.4 0.0 3.0 HD 1020 DM+19 2881 B 7.6 7.6 6.6 6.4 6.4 7.5 7.7 Ross 868 HD 988 7.7 5.7 6.5 2.8 DM+16 2658 7.5 5.7 L997 21 6.7 7.5 HD 997 DM+24 2733B 7.7 4.4 7.5 Gahshak'ah - Dimly Sparkling One 7.3 AC+2 2155-242 2.8 6.7 1.9 AC+18 1890-112 6.5 35 Psc 5.8 6.7 1.9 0.0 4.7 L1346 53 7.6 HYG 1195 2.05.9 L1272 21 4.7 7.6 HD 1047 7.3 HYG 1211 4.1 HYG 12245.1 6.8 7.2 4.5 5.1 6.5 DM+24 2733A5.5 Ross 867 6.5 6.7 6.4 3.4 6.7 DM+24 2786B 3.4 7.6 6.6 4.7 0.0 4.4 DM+25 2874 AC+8 142 393 Lambda Serpenti 7.7 4.8 Shghgh'ah - Promising One 4.4 HYG 2817 6.1 6.9 7.7 5.9 6.5 7.7 6.9 5.9 7.7 7.0 6.3 6.3 3.7 HD 1075 7.6 7.7 0.0 2.5 3.9 7.1 5.7 HD 1077 HD 3329 5.9 2.5 HD 3191 5.7 5.8 1.2 3.0 4.5 5.8 3.0 7.0 HD 1089 HYG 1203 5.1 HD 3316HYG 2812 7.0 HYG 2800 0.0 DM+5 3993 HD 3273 4.2 4.2 He'ah 1.4 3.0 3.0 7.2 7.6 Cluster #33 23 Lib HYG 1220 2.5 3.2 1.9 5.0 5.0 DM+43 2796 5.1HD 3358 Ka'vak'ah! HD 236471 7.1 HD 1107 HD 1117 5.0 5.0 5.6 5.7 5.4 7.7 7.1 HYG 2802 7.5 6.6 5.2 6.6 7.2 5.9 5.2 7.5 HD 3294 7.2 4.6 4.1 5.1 5.2 5.2 DM+52 2294 4.7 7.2 HD 3365 7.2 HD 3340 HD 3162 0.0 Da've'ah - Dry One 5.3 0.0 HD 3374 5.3 6.4 6.4 5.7 4.0 HYG 2833 6.3 HD 3257 HD 232148 4.0 2.8 3.8 3.8 0.0 7.7 HYG 2793 7.7 7.6 4.9 K!lik'nu'ah Highland System DM+45 2743 VB 9 7.4 7.4 0.0 HYG 2821 HD 3540 7.6 7.6 7.6 3.7 3.7 DM+51 2402DM+51 A 2402 B 0.0 7.1 6.2 AC+22 308-605 6.9 6.7 6.4 4.7 5.7 5.7 HD 3295 7.5 7.5 6.2 HD 1112 4.6 7.2 6.8 6.8 Cluster #13 Cluster #25
Recommended publications
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • CARMENES Input Catalogue of M Dwarfs IV. New Rotation Periods from Photometric Time Series
    Astronomy & Astrophysics manuscript no. pk30 c ESO 2018 October 9, 2018 CARMENES input catalogue of M dwarfs IV. New rotation periods from photometric time series E. D´ıezAlonso1;2;3, J. A. Caballero4, D. Montes1, F. J. de Cos Juez2, S. Dreizler5, F. Dubois6, S. V. Jeffers5, S. Lalitha5, R. Naves7, A. Reiners5, I. Ribas8;9, S. Vanaverbeke10;6, P. J. Amado11, V. J. S. B´ejar12;13, M. Cort´es-Contreras4, E. Herrero8;9, D. Hidalgo12;13;1, M. K¨urster14, L. Logie6, A. Quirrenbach15, S. Rau6, W. Seifert15, P. Sch¨ofer5, and L. Tal-Or5;16 1 Departamento de Astrof´ısicay Ciencias de la Atm´osfera, Facultad de Ciencias F´ısicas,Universidad Complutense de Madrid, E-280140 Madrid, Spain; e-mail: [email protected] 2 Departamento de Explotaci´ony Prospecci´onde Minas, Escuela de Minas, Energ´ıay Materiales, Universidad de Oviedo, E-33003 Oviedo, Asturias, Spain 3 Observatorio Astron´omicoCarda, Villaviciosa, Asturias, Spain (MPC Z76) 4 Centro de Astrobiolog´ıa(CSIC-INTA), Campus ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Ca~nada,Madrid, Spain 5 Institut f¨ur Astrophysik, Georg-August-Universit¨at G¨ottingen, Friedrich-Hund-Platz 1, D-37077 G¨ottingen, Germany 6 AstroLAB IRIS, Provinciaal Domein \De Palingbeek", Verbrandemolenstraat 5, B-8902 Zillebeke, Ieper, Belgium 7 Observatorio Astron´omicoNaves, Cabrils, Barcelona, Spain (MPC 213) 8 Institut de Ci`enciesde l'Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, E-08193 Bellaterra, Barcelona, Spain 9 Institut d'Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain 10
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • IV. New Rotation Periods from Photometric Time Series?
    A&A 621, A126 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833316 & c ESO 2019 Astrophysics CARMENES input catalogue of M dwarfs IV. New rotation periods from photometric time series? E. Díez Alonso1,2,3 , J. A. Caballero4, D. Montes1, F. J. de Cos Juez2, S. Dreizler5, F. Dubois6, S. V. Jeffers5, S. Lalitha5, R. Naves7, A. Reiners5, I. Ribas8,9, S. Vanaverbeke10,6, P. J. Amado11, V. J. S. Béjar12,13, M. Cortés-Contreras4, E. Herrero8,9, D. Hidalgo12,13,1 , M. Kürster14, L. Logie6, A. Quirrenbach15, S. Rau6, W. Seifert15, P. Schöfer5, and L. Tal-Or5,16 1 Departamento de Astrofísica y Ciencias de la Atmósfera, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 280140 Madrid, Spain e-mail: [email protected] 2 Departamento de Explotación y Prospección de Minas, Escuela de Minas, Energía y Materiales, Universidad de Oviedo, 33003 Oviedo, Asturias, Spain 3 Observatorio Astronómico Carda, MPC Z76 Villaviciosa, Asturias, Spain 4 Centro de Astrobiología (CSIC-INTA), Campus ESAC, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 5 Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 6 AstroLAB IRIS, Provinciaal Domein “De Palingbeek”, Verbrandemolenstraat 5, 8902 Zillebeke, Ieper, Belgium 7 Observatorio Astronómico Naves, (MPC 213) Cabrils, Barcelona, Spain 8 Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, 08193 Bellaterra, Barcelona, Spain 9 Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
    [Show full text]
  • Introduction to ASTR 565 Stellar Structure and Evolution
    Introduction to ASTR 565 Stellar Structure and Evolution Jason Jackiewicz Department of Astronomy New Mexico State University August 22, 2019 Main goal Structure of stars Evolution of stars Applications to observations Overview of course Outline 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Order in the H-R Diagram!! Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Motivation: Understanding the H-R Diagram Introduction to ASTR 565 Jason Jackiewicz HRD (2) HRD (3) Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Basic structure - highly non-linear solution Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Massive-star nuclear burning Introduction
    [Show full text]
  • Arxiv:2004.11418V2 [Astro-Ph.SR] 15 Jun 2020
    Radio Observations of Magnetic Cataclysmic Variables Paul Barrett∗ George Washington University, Washington DC, 20052, USA Christopher Dieck United States Naval Observatory, Washington DC 20392, USA Anthony J. Beasley National Radio Astronomy Observatory, Charlottesville, VA 22903, USA Paul A. Mason New Mexico State University, Las Cruces, NM, 88003, USA Picture Rocks Observatory, 1025 S. Solano, Suite D, Las Cruces, NM 88001, USA Kulinder P. Singh Indian Institute of Science Education and Research Mohali, Manauli, PO 140306, India Abstract The NSF's Karl G. Jansky Very Large Array (VLA) is used to observe 122 magnetic cataclysmic variables (MCVs) during three observing semesters (13B, 15A, and 18A). We report radio detections of 33 stars with fluxes in the range 6{8031 µJy. Twenty-eight stars are new radio sources, increasing the number of radio detected MCVs to more that 40. A surprising result is that about three-quarters (24 of 33 stars) of the detections show highly circularly polarized radio emission of short duration, which is characteristic of electron cyclotron maser emission. We argue that this emission originates from the lower corona of the donor star, and not from a region between the two stars. Maser emission enables a more direct estimate of the mean coronal magnetic field of the donor star, which we estimate to be 1{4 kG assuming a magnetic filling factor of 50%. A two-sample Kolmogorov-Smirnov test supports the conclusion that the distribution function of radio detected MCVs with orbital periods between 1.5{ 5 hours is similar to that of all MCVs. This result implies that rapidly-rotating arXiv:2004.11418v2 [astro-ph.SR] 15 Jun 2020 (Pspin < 10 days), fully convective stars can sustain strong magnetic dynamos.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • 10 Meter Sub-Orbital Large Balloon Reflector (LBR)
    LBR 10 meter Sub-Orbital Large Balloon Reflector (LBR) Step I Phase B Report 31 May 2014 PI: Christopher K. Walker University of Arizona 1 LBR I COVER PAGE AND PROJECT SUMMARY The realization of a large, space-based 10 meter class telescope for far-infrared/THz studies has long been a goal of NASA. Such a telescope could study the origins of stars, planets, molecular clouds, and galaxies; providing a much needed means of following-up on tantalizing results from recent successful missions such as Spitzer, Herschel, and SOFIA. Indeed, Herschel began its life in the US space program as the Large Deployable Reflector (LDR) – to be assembled in low Earth orbit by shuttle astronauts. Escalating costs and smaller federal budget allocations resulted in a downsizing of the mission. However, by combining successful suborbital balloon and ground-based telescope technologies, the dream of a 10 meter class telescope free of ~99% of the Earth’s atmospheric absorption in the far-infrared can be realized. The same telescope can also be used to perform sensitive, high spectral and spatial resolution limb sounding studies of the Earth’s atmosphere in greenhouse gases such as CO, ClO, O3, and water, as well as serve as a high flying hub for any number of telecommunications and surveillance activities. Flight times of 100+ days will be possible, with instruments having mass and power requirements in excess of ~500 kg and ~1 kW. Here we present the results of our NIAC Step 1, Phase B design study where each key aspect of the LBR concept is discussed and recommendations made for further study in Phase II.
    [Show full text]
  • Transits of Mercury, 1605–2999 CE
    Appendix A Transits of Mercury, 1605–2999 CE Date (TT) Int. Offset Date (TT) Int. Offset Date (TT) Int. Offset 1605 Nov 01.84 7.0 −0.884 2065 Nov 11.84 3.5 +0.187 2542 May 17.36 9.5 −0.716 1615 May 03.42 9.5 +0.493 2078 Nov 14.57 13.0 +0.695 2545 Nov 18.57 3.5 +0.331 1618 Nov 04.57 3.5 −0.364 2085 Nov 07.57 7.0 −0.742 2558 Nov 21.31 13.0 +0.841 1628 May 05.73 9.5 −0.601 2095 May 08.88 9.5 +0.326 2565 Nov 14.31 7.0 −0.599 1631 Nov 07.31 3.5 +0.150 2098 Nov 10.31 3.5 −0.222 2575 May 15.34 9.5 +0.157 1644 Nov 09.04 13.0 +0.661 2108 May 12.18 9.5 −0.763 2578 Nov 17.04 3.5 −0.078 1651 Nov 03.04 7.0 −0.774 2111 Nov 14.04 3.5 +0.292 2588 May 17.64 9.5 −0.932 1661 May 03.70 9.5 +0.277 2124 Nov 15.77 13.0 +0.803 2591 Nov 19.77 3.5 +0.438 1664 Nov 04.77 3.5 −0.258 2131 Nov 09.77 7.0 −0.634 2604 Nov 22.51 13.0 +0.947 1674 May 07.01 9.5 −0.816 2141 May 10.16 9.5 +0.114 2608 May 13.34 3.5 +1.010 1677 Nov 07.51 3.5 +0.256 2144 Nov 11.50 3.5 −0.116 2611 Nov 16.50 3.5 −0.490 1690 Nov 10.24 13.0 +0.765 2154 May 13.46 9.5 −0.979 2621 May 16.62 9.5 −0.055 1697 Nov 03.24 7.0 −0.668 2157 Nov 14.24 3.5 +0.399 2624 Nov 18.24 3.5 +0.030 1707 May 05.98 9.5 +0.067 2170 Nov 16.97 13.0 +0.907 2637 Nov 20.97 13.0 +0.543 1710 Nov 06.97 3.5 −0.150 2174 May 08.15 3.5 +0.972 2644 Nov 13.96 7.0 −0.906 1723 Nov 09.71 13.0 +0.361 2177 Nov 09.97 3.5 −0.526 2654 May 14.61 9.5 +0.805 1736 Nov 11.44 13.0 +0.869 2187 May 11.44 9.5 −0.101 2657 Nov 16.70 3.5 −0.381 1740 May 02.96 3.5 +0.934 2190 Nov 12.70 3.5 −0.009 2667 May 17.89 9.5 −0.265 1743 Nov 05.44 3.5 −0.560 2203 Nov
    [Show full text]
  • Appendix II. Publications
    Appendix II. Publications Gemini Staff Publications Papers in Peer­Reviewed Journals: Bauer, Amanda[4]. A young, dusty, compact radio source within a Lyα halo. Monthly Notices of the Royal Astronomical Society, 389:792-798. September, 2008. Trancho, G.[4]. The early expansion of cluster cores. Monthly Notices of the Royal Astronomical Society, 389:223-230. September, 2008. Stephens, A. W.[11]. Massive stars exploding in a He-rich circumstellar medium - III. SN 2006jc: infrared echoes from new and old dust in the progenitor CSM. Monthly Notices of the Royal Astronomical Society, 389:141-155. September, 2008. Serio, Andrew W.[1]. The variation of Io's auroral footprint brightness with the location of Io in the plasma torus. Icarus, 197:368-374. September, 2008. Radomski, James T.[5]. Understanding the 8 µm versus Paα Relationship on Subarcsecond Scales in Luminous Infrared Galaxies. The Astrophysical Journal, 685:211-224. September, 2008. Volk, K.[47]. Spitzer Survey of the Large Magellanic Cloud, Surveying the Agents of a Galaxy's Evolution (sage). IV. Dust Properties in the Interstellar Medium. The Astronomical Journal, 136:919-945. September, 2008. Díaz, R. J.[3]. Discovery of a [WO] central star in the planetary nebula Th 2-A. Astronomy and Astrophysics, 488:245-247. September, 2008. Schiavon, Ricardo P.[2]. Measuring Ages and Elemental Abundances from Unresolved Stellar Populations: Fe, Mg, C, N, and Ca. The Astrophysical Journal Supplement Series, 177:446- 464. August, 2008. Song, Inseok[3]. Gas and Dust Associated with the Strange, Isolated Star BP Piscium. The Astrophysical Journal, 683:1085-1103. August, 2008. Roth, Katherine C.[22].
    [Show full text]
  • Theory of Stellar Atmospheres
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. EXTENDED BIBLIOGRAPHY References [1] D. Abbott. The terminal velocities of stellar winds from early{type stars. Astrophys. J., 225, 893, 1978. [2] D. Abbott. The theory of radiatively driven stellar winds. I. A physical interpretation. Astrophys. J., 242, 1183, 1980. [3] D. Abbott. The theory of radiatively driven stellar winds. II. The line acceleration. Astrophys. J., 259, 282, 1982. [4] D. Abbott. The theory of radiation driven stellar winds and the Wolf{ Rayet phenomenon. In de Loore and Willis [938], page 185. Astrophys. J., 259, 282, 1982. [5] D. Abbott. Current problems of line formation in early{type stars. In Beckman and Crivellari [358], page 279. [6] D. Abbott and P. Conti. Wolf{Rayet stars. Ann. Rev. Astr. Astrophys., 25, 113, 1987. [7] D. Abbott and D. Hummer. Photospheres of hot stars. I. Wind blan- keted model atmospheres. Astrophys. J., 294, 286, 1985. [8] D. Abbott and L. Lucy. Multiline transfer and the dynamics of stellar winds. Astrophys. J., 288, 679, 1985. [9] D. Abbott, C. Telesco, and S. Wolff. 2 to 20 micron observations of mass loss from early{type stars. Astrophys. J., 279, 225, 1984. [10] C. Abia, B. Rebolo, J. Beckman, and L. Crivellari. Abundances of light metals and N I in a sample of disc stars. Astr. Astrophys., 206, 100, 1988. [11] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. (Washington, DC: U.S. Government Printing Office), 1972.
    [Show full text]
  • NSO Scientific Papers 1985-1999
    NSO Publications, 1985-1999 NSO Publications, 1985-1999 Sorted Alphabetically by Author Abdelatif, T.E. 1985, Umbral Oscillations as a Probe of Sunspot Structure. PhD Thesis (University of Rochester) Abdelatif, T.E., Lites, B.W., and Thomas, J.H. 1984, in Small-Scale Dynamical Processes in Quiet Stellar Atmospheres: Workshop Proceedings, Sunspot, New Mexico, 25-29 Jul. 1983. S.L. Keil, ed., 141-147: Oscillations in a Sunspot and the Surrounding Photosphere Abdelatif, T.E., Lites, B.W., and Thomas, J.H. 1986, Astrophys. J. 311, 1015-1024: The Interaction of Solar P-Modes with a Sunspot. I. Observations Abrams, D., and Kumar, P. 1996, Astrophys. J. 472, 882-890: Asymmetries of Solar p-Mode Line Profiles Abrams, M.C., Davis, S.P., Rao, M.L., and Engleman, R. 1990, Astrophys. J. 363, 326-330: Highly Excited Rotational States of the Meinel System of OH Abrams, M.C., Davis, S.P., Rao, M.L., Engleman, R., and Brault, J.W. 1994, Astrophys. J. Suppl. Ser. 93, 351-395: High-Resolution Fourier Transform Spectroscopy of the Meinel System of OH Acton, D.S. 1989, in High Spatial Resolution Solar Observations: Proceedings of the Tenth Sacramento Peak Summer Symposium, Sunspot, New Mexico, 22-26 August, 1988. O. Von der Luhe, ed., 71-86: Results from the Lockheed Solar Adaptive Optics System Acton, D.S. 1990, Real-Time Solar Imaging with a 19-Segment Active Mirror System: a Study of the Standard Atmospheric Turbulence Model. PhD Thesis (Texas Tech University). Acton, D.S. 1994, in Real-Time and Post-Facto Solar Image Correction.
    [Show full text]