INNOVATIONS IN DRYLAND RESTORATION Jordi Cortina Departament d’Ecologia - Universitat d’Alacant Alacant (Spain) Alfa grass ( tenacissima) steppes as model ecosystems for dryland restoration

1.1 Introduction to alpha grass and alfa grass steppes in SE Spain. 1.2 Ecological interactions in alfa grass steppes, from microscopic to landscape scales. 1.3 A framework for alfa grass steppes restoration.

Ecological interactions provide clues for restoration

2.1 Landscape structure, functional state and ecosystem restorability. 2.2 The use of biological soil crusts. 2.2 Facilitation by alfa grass. 2.3 The role of Aleppo pine (Pinus halepensis) in alfa grass restoration. 2.3 Ecotechnology as a replacement for ecological interactions. TUSSOCK

OPEN Alpha grass steppes in Spain - Distribution

REGION OF VALENCIA

ALICANTE Alpha grass steppes in Spain - Distribution

In Europe: 600.000 ha (Spain and Portugal): ca. 6% of stepic areas Alpha grass steppes in the world

Algeria 4,000.000 ha Morocco 2,200.000 ha Tunisia 1,350.000 ha Iberian Peninsula 600.000 ha Lybia 500,000 ha TOTAL ~8,000.000 ha CURRENT ~2,800.000 ha

Djebaili, 1988 et Le Houérou, 2001 Prehistoric evidences of alpha grass use

• Remainings from Copper Age - Deforestation in certain parts of the Iberian Peninsula (ca. 4000 BP)

• More frequent Bronze Age - Strings, baskets and shoes. Alpha grass steppes suggest shrubland clearing (ca. 3000 BP)

Flora Atlantica, sive Historia plantarum quae in Atlante, Agro Tunetano et Algeriensi Crescunt. Tomus Primus.. Desfontaines, Renato L. Parisiis: L.G. Desgranges, [1798-1799?]

Buxó, 1999; Barber, 1997 20th Century rise and fall

• 1920 Comité Especial (regulations on local commerce and export) • 1940 Instituto de Fomento de la Producción de Fibras Textiles • 1947 Reglamento Nacional de Trabajo para el Sector Manual del Esparto de la Industria Textil • 1948 Servicio Nacional del Esparto (M. Industria y Comercio and M. Agricultura) • Harvesting gradually abandoned since 1950-60 • Grazing gradually reduced (500.000 sheeps 100.000 goats en 1999)

Barber, 1997 Community dynamics

Al. Stipion tenacissimae • Helictrotichon filifolii-Stipetum tenacissimae • Lapiedro martinezii-Stipetum tenacissimae • Lapiedro martinezii-Stipetum tenacissimae subas. sedetosum dianii • Heteropogo contortii-Stipetum tenacissimae

Le Houérou, 2001 Biodiversity

Cyanobacteria Biological crust – Lichens and cyanobacteria B. Diaz-N. Marín

Galerida theklae Biological crust - Mosses José J. Matamala (www.almeriware.net) Morpho-functional traits

100º - 100% RWC 0º - 70% RWC

) 600 -2

g m 500 m ( 400 on i t a r t 300 n e c n

o 200 b c + 100 a l h

C 0 May 1999 August 1999 November 1999

Haase et al., 1999 Balaguer et al., 2002 Morpho-functional traits

Biomass accumulation and productivity

1200 2500 ) ) -2 -2 m m 1000 C C 2000 g g ( ( S S S S 800 A A 1500 M M O O 600 I 1000 UND B UND BI O O 400 R R G

G E

W 500 V 200 O O L B E A B 0 0 Retama Anthyllis Stipa Q. Retama Anthyllis Stipa Q. coccifera coccifera

) 1200 -2 m

C 1000 g ( S S

A 800 M O R

C 600 NE D A 400 DE

NG 200 NDI A T

S 0 Puigdefábregas, 1998 Retama Anthyllis Stipa Q. coccifera Alfa grass (Stipa tenacissima) steppes as model ecosystems for dryland restoration

1.1 Introduction to alpha grass and alfa grass steppes in SE Spain. 1.2 Ecological interactions in alfa grass steppes, from microscopic to landscape scales. 1.3 A framework for alfa grass steppes restoration.

Ecological interactions provide clues for restoration

2.1 Landscape structure, functional state and ecosystem restorability. 2.2 The use of biological soil crusts. 2.2 Facilitation by alfa grass. 2.3 The role of Aleppo pine (Pinus halepensis) in alfa grass restoration. 2.3 Ecotechnology as a replacement for ecological interactions. Spatial heterogeneity of resources and organisms

Alpha grass tussocks capture resources (water, sediments, nutrients, seeds) Spatial heterogeneity of resources and organisms

As a result alpha grass tussocks act as sinks for resources generated upslope

5 Claro Esparto Regresión esparto (R2 = 0.50, P = 0.069) 4 Regresión claro (R2 = 0.57, P = 0.049) )

10

0

1

g o

l 3

r

e

t

wa

f 2

f

o n

correntía (Log Ru Es 1

0 0 10203040506070 PrecipitationPrecipitación(mm) (mm) Martín et al., unpubl. Spatial heterogeneity of resources and organisms 45 40 Soil properties underneath the 35 tussocks gradually differ, in a positive ) m

c 30

feedback creating islands of fertility (

H 25 PT

E 20 D

IL 15

SO 10 5 0

) OPEN TUSSOCK % 2.5

( 7 R E ) T 6 -3

T 2 m A c 5 g M ( C I

Y 1.5

N 4 T I A G NS

R 3

E 1 O D L K I 2 L O 0.5 S

1 BU cm

5 0 0

0- OPEN TUSSOCK OPEN TUSSOCK Puigdefábregas & Sánchez, 1996 Spatial heterogeneity of resources and organisms 50 45 40 35 + Biological crust 30 Stipa + Roots 25 tenacissima + Rock fragments surface Norte (m) 20 - Physical crust 15 10 5 0 50

S. tenacissima 45 Roots 0.366 40 Mosses 0.101 35 Earthworm casts -0.151 30

Bio crust 0.196 (m) 25 Surface stone -0.102 Rock outcrops 0.201 Norte 20 Physical crust -0.175 15 10 5 0 Maestre & Cortina, 2002 0 5 10 15 20 25 30 35 40 45 50 Este (m)

Spatial heterogeneity of resources and organisms

Organic matter in islands of fertility

30

25 CANOPY OPEN RII=(Bt-Bo)/(Bt+Bo) s) 20 case

º n ( y 15 c n e u

q 10 e r F 5

0 012345678910111-21 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 SOM surface soil (%) Net Change in SOM - RII (rel. units)

Cortina & Maestre, 2005 Spatial heterogeneity of resources and organisms

Nitrogen in islands of fertility

30 30

25 25 RII=(Bt-Bo)/(Bt+Bo) CANOPY OPEN s) ses) se 20 20 ca º º ca n n

15 ( 15 y ( y c c n n e e u 10 u 10 eq eq r r F F 5 5

0 0 0,00 0,20 0,40 0,60 0,80 1,00 -1,00 -0,80 -0,60 -0,40 -0,20 0,00 0,20 0,40 0,60 0,80 1,00 TKN surface soil (%) Net change in TKN - RII (rel. units)

Cortina & Maestre, 2005 Interspecific interactions and community structure

Plant community structure reflect these and other interactions Interspecific interactions and community structure Globularia alypum Stipa tenacissima Brachypodium retusum 50 50 45 45 40 40 35 35

30 30 ) (m e (m) te t 25 25 r No Nor 20 20 15 15 10 10 5 5 0 0 Anthyllis cytisoides Caméfitos 50 50 Maps of SADIE index of 45 45 clustering at a 2.5 x 2.5 m 40 40 scale 35 35 ) ) 30 30 m (m ( e e 25 t 25 rt r o

20 N

No 20 15 15 10 10 5 5 Maestre & Cortina, 2002 0 0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 Este (m) Este (m) Interspecific interactions and community structure 1.25 x 1.25 m 2.5 x 2.5 m 5 x 5 m Nugget

Stipa er rango Globularia

Prim Brachypodium Anthyllis Caméfitos egundo rango S islands of fertility aggregate some but not others Maestre, 2002 Interspecific interactions and community structure

Ephedra fragilis Juniperus oxycedrus Quercus coccifera Erica multiflora Rhamnus lycioides Maestre & Cortina (2005) Acta Oecol. 17: 161-9. Interspecific interactions and community structure

40 40

38 38

36 36

34 34

32 32

30 30

2 2 28 R = 0.635, P = 0.001 R = 0.439, P = 0.009 28 y = 21.0 + 15.4 * (1-exp[-0.3x]) y = 31.4 + 4.7 * (1-exp[-0.2x]) 26 26 135791113150 20406080100 Anchura de los sumideros (m / 10 m) Área de arbustos rebrotadores (m2) 40 40 ) ) 38 38 % % ( (

n 36 36 ón ó i raci rac 34 34 t lt l i i f n

32 32 inf

e d de i 30 30 e

2 2 ce

dic 28 R = 0.644, P = 0.001 R = 0.304, P = 0.015 28

-7 ndi Í Ín y = 35.7/(1 + [x/3.94] ) y = 26.1 + 0.3 x 26 26 456789101115 20 25 30 35 40 Número de sumideros / 10 m Riqueza específica 40 40

38 38

36 36

34 34

32 32

Maestre & Cortina 30 30 R2 = 0.675, P < 0.001 R2 = 0.792, P < 0.001 (2004). Restoration 28 28 y = 18.1 + 0.7 x - 0.01 x2 y = 40.6 - 7.5 x Ecology 12(4): 493-501. 26 26 10 20 30 40 50 60 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Cobertura total (%) Distancia entre sumideros (m) Interspecific interactions and community structure

How important are biological crusts for alpha grass performance?

Experimental plots:

•ALPHA +/- • BIOCRUST FRAGMENTED +/- • BIOCRUST HERBICIDED +/-

5 replicates: 40 plots

PROJECT FANCB - Water and nitrogen fluxes in biological crusts in semiarid environments (REN2001-0424-C02-02 / GLO) Interspecific interactions and community structure

The effect of biological crusts on water infiltration is reduced when the physical structure is altered, but not when crusts are killed

30

25 min) / 20 (ml

15 ración lt

10 sa de infi a T 5

0 CO RO HE RO+HE

Martín et al., unpubl. Interspecific interactions and community structure

The effect of biological crusts on runoff is buffered by alpha grass tussocks

60 60 OPEN TUSSOCK 50 50 ) ) 40 m m 40 m m ( ( F F F 30 F 30

RUNO 20 20 RUNO

10 10

0 0 CONTROL FRAGMENT HERBIC FRAGM+HERBIC CONTROL FRAGMENT HERBIC FRAGM+HERBIC

Martín et al., unpubl. Interspecific interactions and community structure

35 )

% 30 T (

N 25 NTE 20 CO

15

TURE C IS 10 H F IL MO 5 O FH S

0

3 3 3 3 3 3 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 /2 /2 /2 /2 /2 /2 /2 /2 0 /9 8 7 /6 5 4 /4 /2 5 /2 /1 0 /2 /1 3 3 6 8 1 1 1 1

Martín et al., unpubl. Interspecific interactions and community structure

3

2.5 ) -1 h -2 2 cm 2 H 2 1.5 C l o m

n 1 A (

AR 0.5

0 Control Herbicide Fragm ent Herb+Frag

Martín et al., unpubl. Interspecific interactions and community structure

Crust manipulation did not affect alpha grass performance

) 0. 6

a 4.00 P M - 3.50 ( 0. 5 L A I 3.00 ) s NT t 0. 4 E

T 2.50 uni

. l e

2.00 r 0. 3 R PO ( E m T F

1.50 : A 0. 2 Fv W

N 1.00

W 0. 1 0.50 EDA

R 0 P 0.00 CFHFH CF H FH

35 ) m c

( 30

N

O 25 TI A

G 20 N

O 15 L E

R 10 A

LI 5

Martín et al., unpubl. FO 0 CFHFH Alfa grass (Stipa tenacissima) steppes as model ecosystems for dryland restoration

1.1 Introduction to alpha grass and alfa grass steppes in SE Spain. 1.2 Ecological interactions in alfa grass steppes, from microscopic to landscape scales. 1.3 A framework for alfa grass steppes restoration.

Ecological interactions provide clues for restoration

2.1 Landscape structure, functional state and ecosystem restorability. 2.2 The use of biological soil crusts. 2.2 Facilitation by alfa grass. 2.3 The role of Aleppo pine (Pinus halepensis) in alfa grass restoration. 2.3 Ecotechnology as a replacement for ecological interactions. A framework for alpha grass steppe restoration

ECOLOGICAL RESTORATION is the process of assisting the recovery of an ecosystem that has been degraded, damaged or destroyed

Society for Ecological Restoration International, 2002 A framework for alpha grass steppe restoration

Bradshaw & Chadwick, 1988 A framework for alpha grass steppe restoration

DS OL SH RE TH C TI IO AB D AN C W TI O IO SL B Y- EL IK NL U RY VE ECOSYSTEM O EC R US O NE

FUNCTION/COMPOSITION TA ON SP + ACCUMULATED - PRESSURE A framework for alpha grass steppe restoration

FACTOR ACTION TECHNIQUE

o PERSISTENT STRESS o RELEASE STRESS o SPECIES CONTROL...

o PROPAGULES NOT AVAILABLE o ARTIFICIAL INTRODUCTION o SEEDING & PLANTING

o PROMOTE DISPERSION o DISPERSERS ABUNDANCE & O

C

S

ACTIVITY E

N

U

.

S

SPECIES TEST & SEEDLING S o ENVIRONMENTAL CONDITIONS o SPECIES SELECTION & SEEDLING o L

O

‘QUALITY’ E ADVERSE PRODUCTION

.

4

0

o SELECT SUITABLE MICROSITES 0

2

,

o

j

e

l

l

o AMELIORATE SOIL PROPERTIES o AMENDMENTS a

V

& o IMPROVE MICROCLIMATE o SHELTERS

a

n

i

t

r

o

C Alfa grass (Stipa tenacissima) steppes as model ecosystems for dryland restoration

1.1 Introduction to alpha grass and alfa grass steppes in SE Spain. 1.2 Ecological interactions in alfa grass steppes, from microscopic to landscape scales. 1.3 A framework for alfa grass steppes restoration.

Ecological interactions provide clues for restoration

2.1 Landscape structure, functional state and ecosystem restorability. 2.2 The use of biological soil crusts. 2.2 Facilitation by alfa grass. 2.3 The role of Aleppo pine (Pinus halepensis) in alfa grass restoration. 2.3 Ecotechnology as a replacement for ecological interactions. Landscape structure, functional state and restorability

LANDSCAPE FUNCTION ANALYSIS (CSIRO, D.Tongway y colaboradores)

http://www.cse.csiro.au/research/Program3/efa/ Landscape structure, functional state and restorability

Croûte biologique Détachement de la croûte

Test resistance agregats

Formes d’érosion: terracette Formes d’érosion: scalding SOIL SURFACE ASSESSMENT Landscape structure, functional state and restorability

1. Soil cover

2. Perennial grass basal and tree and shrub foliage cover 3a. Litter cover

3b. Litter cover, origin and degree of decomposition stability 4. Cryptogam cover

5. Crust broken-ness infiltration 6. Erosion type and severity

7. Deposited materials Nutrient cycling 8. Surface roughness

9. Surface resistance to disturbance

10. Slake test

11. Soil texture Landscape structure, functional state and restorability

APPLICATION LFA STEPPES D’ALFA

Stability 50.7% Stability 50.7% Infiltration 27.5% Infiltration 26.7% Nutrient cycling 15.5% Nutrient cycling 13.2%

Xixona Fontcalent Stability 60.4% Stability 63.7% Infiltration 32.2% Infiltration 33.5% Nutrient cycling 24.3% Nutrient cycling 25.4%

Sax Lanuza Landscape structure, functional state and restorability

Pistacia lentiscus

© Glendale library Landscape structure, functional state and restorability Landscape structure, functional state and restorability

Lanuza 20242004 Landscape structure, functional state and restorability

100 )

% 80 ( L A V I V 60 R SU

ER 40 M M SU

d 20 n 2

0 15 20 25 30 Infiltration Index (rel. units.) Alfa grass (Stipa tenacissima) steppes as model ecosystems for dryland restoration

1.1 Introduction to alpha grass and alfa grass steppes in SE Spain. 1.2 Ecological interactions in alfa grass steppes, from microscopic to landscape scales. 1.3 A framework for alfa grass steppes restoration.

Ecological interactions provide clues for restoration

2.1 Landscape structure, functional state and ecosystem restorability. 2.2 The use of biological soil crusts. 2.2 Facilitation by alfa grass. 2.3 The role of Aleppo pine (Pinus halepensis) in alfa grass restoration. 2.3 Ecotechnology as a replacement for ecological interactions.

THE USE OF CYANOBACTERIAL CRUSTS IN RESTORATION

Experimental design:

•Laboratory incubation •Crust transplanted or applied as slurry • 2 watering regimes (1-3 watering per week) • +/- compost added

The use of biological crusts

80 80 Without compost With compost 70 70

60 60

a a

l l ) ) 50 50 l l -2 -2 m m · · 40 40 g g ophy ophy r r o o (m (m 30 30 Chl Chl 20 20

10 10

0 0 18 18 Fragments 16 16 Slurry 14 14

b b 12 12

l l ) ) l l -2 -2 10 10 m m · · g g ophy ophy r r 8 8 o o (m (m 6 6 Chl Chl 4 4 2 2 0 0 Low High Low High

Irrigation frequency The use of biological crusts

5 Without compost With compost 5

Fragments e e 4 Slurry 4 ) ) -1 -1 ·s ·s 3 3 -2 -2 change rat change rat m m ex ex 2 2 2 2 mol· mol· µ µ ( (

1 1 Net CO Net CO

0 0 Low High Low High Irrigation frequency The use of biological crusts

0.55 Without compost With compost 0.55 0.50 Fragments 0.50 Slurry 0.45 0.45 ) ) -1 -1

0.40 ·h ·h 0.40 -2 -2 lene production lene production

0.10 0.10 (nmol·cm (nmol·cm s of ethy s of ethy e e 0.05 0.05 Rat Rat 0.00 0.00 Low High Low High Irrigation frequency Alfa grass (Stipa tenacissima) steppes as model ecosystems for dryland restoration

1.1 Introduction to alpha grass and alfa grass steppes in SE Spain. 1.2 Ecological interactions in alfa grass steppes, from microscopic to landscape scales. 1.3 A framework for alfa grass steppes restoration.

Ecological interactions provide clues for restoration

2.1 Landscape structure, functional state and ecosystem restorability. 2.2 The use of biological soil crusts. 2.2 Facilitation by alfa grass. 2.3 The role of Aleppo pine (Pinus halepensis) in alfa grass restoration. 2.3 Ecotechnology as a replacement for ecological interactions. Facilitation by alpha grass Facilitation by alpha grass

Alpha grass has a consistent positive effect on the establishment of woody seedlings

0

-1

-2

-3

-4

-5

-6 Tussock Open June Predawn water potential (MPa) -7 M. a. Q. c. P. l.

Maestre et al., 2001 Facilitation by alpha grass

100 CAMPELLO

80 %) ( Medicago arborea esparto 60 cia Medicago arborea claro Quercus coccifera esparto iven

v 40 Quercus cocciferaclaro r Pistacia lentiscus esparto

Supe 20 Pistacia lentiscus claro

0 0 4 8 12162024283236 Mesestraslaplantación

Maestre et al., 2001 Facilitation by alpha grass

Tussock control (ECO) Tussock bended (ESO)

Tussock no runoff (ECH) Open control (BCO)

Tussock herbicided (ECM) Open no runoff (BCH)

Maestre et al., 2003 Facilitation by alpha grass

Tussock control (ECO) Tussock bended (ESO) P. lentiscus 100

10

Tussock no runoff (ECH) Open control (BCO) 1

0.1 upervivencia (%) S Inv Pri Ver Oto Inv 0.01 0 50 100 150 200 250 300 350 400 Tussock herbicided (ECM) Open no runoff (BCH) Días tras la plantación

Esparto control Esparto con exclusión de sombra Esparto con exclusión de competencia Esparto con exclusión de escorrentía

Maestre et al., 2003 Shadow is the main driver of facilitation between alpha grass and woody seedlings Facilitation by alpha grass

8 140

Stem height 7 120 3.0 Foliar biomass 80

6 )

100 % 2.5 ( m)

(c T 5

N 60 2.0 80 E HT G

I 4 NT OMASS (mg) E NES (%) 60 1.5 40 I CO 3 F M EM H O 40 LIAR BI 1.0 S O ST 2

F 20 1 20 0.5

0 0 0.0 0 k n k n k n k n soc pe soc pe soc pe soc pe Tus 1-O Tus 2-O Tus 1-O Tus 2-O P1- P P2- P P1- P P2- P

Maestre et al., 2003

Improved soil fertility may also be relevant, but we failed to find a significant effect Facilitation by alpha grass

FACILITATION IN ARID AND SEMIARID COMMUNITIES DRIVERS OF POSITIVE INTERACTIONS

180 30 160 25 140 120

S 20 E I 100 UD

T 15 S

80 F published papers O

60 Nº 10 40 5

Number of 20

0 0 e l r t r SHADE NUTRIENTS NITROGEN LITTER rid ss te in eld es ta la s he ia ra ra lp -fi h as o re t m g pe A ld rs o l P fo O e al m O a C a al S ic e lt m re ic rid op T a Bo op A Tr S Tr Flores & Jurado, 2003 VV.AA.

Facilitation may be more common in arid and semiarid communities Studies on facilitation refer to soil fertility, but manipulative experiments are scarce Facilitation by alpha grass

POSITIVE

NEGATIVE Alfa grass (Stipa tenacissima) steppes as model ecosystems for dryland restoration

1.1 Introduction to alpha grass and alfa grass steppes in SE Spain. 1.2 Ecological interactions in alfa grass steppes, from microscopic to landscape scales. 1.3 A framework for alfa grass steppes restoration.

Ecological interactions provide clues for restoration

2.1 Landscape structure, functional state and ecosystem restorability. 2.2 The use of biological soil crusts. 2.2 Facilitation by alfa grass. 2.3 The role of Aleppo pine (Pinus halepensis) in alfa grass restoration. 2.3 Ecotechnology as a replacement for ecological interactions. Bia r

1946

1993

The role of Aleppo pine plantations

Mortality of introduced Pinus halepensis seedlings under semiarid conditions is high

100

Alloza et al. (1999) (N=32) P. halepensis Castillo et al. (2001) (N=47) Alloza et al. (1999) SECO-SUBHÚMEDO 80

60 AD (%)

40 MORTALID

20

0 1 ra 2 vo a ra es 1 lla er ce l1 2 ia sa 2 s ra t1 va là ra a t2 ell ja 1 2 te te te a cilla en yo rt sa le af lilla n ue eL lir e sa llo ve en e a ltu lzir en st ba ato ato n a n rc re qu A o re o en hu la af fu L u re To er tx nu Alc A A tx a re R R ille Alb ille Cá or e C Te od B C Ja ar ra Q Te C u lu C or l l ev ev T R T J Ja LL Villa L T E E Cr Cr The role of Aleppo pine plantations

And pine cover in Pinus halepensis afforestations is frequently low

120

Terraza vs. Total 100 Pinus halepensis vs. Terraza Chaparro, 1994 (%)

80 GETAL E

V 60

40 RTURA

20 COBE

0 A IA IA IA A A IA LAN BR BR BR LAN LAN BR SO UM UM UM SO SO UM LE LEA LE GE CU VA VA

ca. 50% terraces vs. slope

17% cover P. halepensis 23 years The role of Aleppo pine plantations

100 Orgegia Rhamnus lycioides pino 80 Rhamnus lycioides claro Ceratonia siliqua pino 60 Ceratonia siliqua claro

encia (%) Pistacia lentiscus pino 40 Pistacia lentiscus claro

Superviv 20

0 0123456789101112 Meses tras la plantación

Pinus halepensis often show a negative effect on the establishment of other woody species

Maestre et al., 2002 The role of Aleppo pine plantations

PC PM OC

PH The role of Aleppo pine plantations

P. lentiscus

Inv Pri Ver Oto Inv 100 Pinus halepensis 90 80 b 70 + 60 Brachypodium retusum encia (%) 50 v i a 40 PH 30 PC - Superv 20 PM c 10 OC Pistacia lentiscus 0 0 50 100 150 200 250 300 350 400 Días tras la plantación Alfa grass (Stipa tenacissima) steppes as model ecosystems for dryland restoration

1.1 Introduction to alpha grass and alfa grass steppes in SE Spain. 1.2 Ecological interactions in alfa grass steppes, from microscopic to landscape scales. 1.3 A framework for alfa grass steppes restoration.

Ecological interactions provide clues for restoration

2.1 Landscape structure, functional state and ecosystem restorability. 2.2 The use of biological soil crusts. 2.2 Facilitation by alfa grass. 2.3 The role of Aleppo pine (Pinus halepensis) in alfa grass restoration. 2.3 Ecotechnology as a replacement for ecological interactions. Ecotechnology

Ecosystem Technique Process component

Sediment, runoff and seed Branches, mulch, etc. Sinks capture Propagule concentration, Perches Birds rest eventually water and nutrients Organic amendments Islands of fertility Local soil improvement and fertilisation

Stones around Resource retention including Sinks introduced plants soil m oisture

Patches with low Stone pavements Runoff infiltration Protection against Treeshelters Nurse plants incomming radiation and herbivory Increase in resource Field and nursery Exo and availability, protection mycrorrhizae and endosimbiontic againsta pathogens and rhizoflora inoculation microflora stress Site preparation Resource capture, mainly (microcatchments, Sinks water. Increase in available terracing, etc.) soil Cyanobacteria Soil protection, runoff Biological crusts inoculation generation

Nurse species Processes associated with Nurse plants Tongway et al., 2004 plantation facilitation Ecotechnology - Seedling quality

Seedling quality as a function of restoration objectives

• Increase genetic diversity, phenotypic plasticity • Resistance against adverse conditions (current or future) • Soil protection • Carbon storage • Food for herbivores– Palatability and tolerance • Flower or fruit production • Resistance and resilience against disturbances • Improvement of soil fertility • Ecological engineering • Production of market products (wood, resin,...) • Water use efficiency •… Ecotechnology - Seedling quality

20 18 6 months 16 12 months 14 24 months 12

10 cases º 8 N 6 4 2 0 0 0.2 0.4 0.6 0.8 1 Net effect on survival

SURVIVAL max− SURVIVALmin NET_ EFFECT = SURVIVALmax+ SURVIVAL min Ecotechnology - Seedling quality

A positive relationship between seedling size and field performance is frequently found

Villar (2003) Ecotechnology - Seedling quality

But not always...

Quercus ilex ballota Quercus coccifera 100 100

) 90

% 80 80 ( A

I 70

C 60 60 50 VEN 40

VI 40 30

PER 20 20

SU 10 0 0 <4 4-8 8-12 12-16 16-20 >20 <16 16-21 21-26 >26

CLASES DE ALTURA (cm) CLASES DE ALTURA (cm)

Seva et al., 1997 Ecotechnology - Seedling quality

Seedling size and field performance under semiarid conditions - Garden of deficiencies

Seedling manipulation by altering the nutritional regime. Experimental design:

• Nutritional optimum (160 ppm N; 16:8:12 N:P:K) OPT

• Nutritional suboptimum (80 ppm N) SOP

• Slow release fertiliser (Plantacote 0’8 g L-1) FLL

• Phosphorus deficiency PDP

• Nitrogen deficiency NDP

• Micronutrient deficiency MDP

• Nutritional hardening (40 ppm N last month) END Ecotechnology - Seedling quality

P. lentiscus Ndeficiency

P. lentiscus Pdeficiency Ecotechnology - Seedling quality

25 25 18

30Rhamnus alaternus Rhamnus lycioides 16 Tetraclinis articulata 20 20 14

Pistacia lentiscus 12 15 15 25 10

8 10 10 Altura cm Altura cm Altura cm 6

20 4 5 5 FLL: Slow release fertiliser OPT:2 Optimum 0 0 0 FLL15 OPT MDP SOP END PNP NDP FLL OPT MDP SOP END PNP NDP FLL OPT MDP SOP END PNP NDP ra cm MDP: Micronutrient deficiency Tratamientos Tratamientos Tratamientos SOP: Suboptimum Altu 10 FLL: Fertilizante Liberación lenta END: Hardening 30 25 Pistacia lentiscus OPT: Optimo PNP: QPhosphorusuercus coc deficiferciencya 25 20 5 MDP: Deficiencia micronutrientes NDP: Nitrogen deficiency 20 SOP: Suboptimo 15 cm

15 a r 0 u END: Endurecimiento 10 Altura cm 10 Alt FLL OPT MDP SPNP:OP DeficienciEND a PFósforoNP NDP 5 5 TratamNDP:ient Deficienciaos Nitrógeno

0 0 FLL OPT MDP SOP END PNP NDP FLL OPT MDP SOP END PNP NDP Tratamientos Tratamientos

Trubat et al., 2004 Ecotechnology - Seedling quality

Hydraulic conductivity Pistacia lentiscus -3months

Ks SUPERFICIE RADICAL Ks SUPERFICIE FOLIAR 0.18 0.25 0.16 ) ) a 0.14 a 0.20 MP MP -1 0.12 -1 s s

t 0.15

o 0.10 eaf l

ro 0.08 -2 -2 0.10 m m 0.06 g g k (k ( 0.04 0.05 Ks Ks 0.02 0.00 0.00 CONTROL NDF PDF CONTROL NDF PDF

Trubat et al., sumitted Ecotechnology - Seedling quality

Albatera (Alicante). Semiarid Plantation density: 1000 trees ha-1 Nº seedlings per treatment: 25 to 35 40x40x40 cm planting holes with back-hoe spider Ecotechnology - Seedling quality

R. lycioides 100 90

Post-plantation survival (3 months) ) 80 %

A ( 70

CI 60 N E

V 50 100 I 40 P. lentiscus 90 RV E 30 ) 80 P U %

S 20

A ( 70 10 CI 60 N 0 E 50 100 V I 40 R. alaternus 90 RV ) E 30 80 % P U

20 A ( 70 S

10 CI 60 N 0 E

V 50 I FLL OPT SOP END MDF PDF NDF 40 RV E 30 P U Q: coccifera 100 S 20 90 10

) 80 0 % T. articulata 100

A ( 70 90

60 ) NCI 80 % E

V 50 I

A ( 70 V

40 CI

R 60 N E

30 E P

V 50 I U

S 20 40 RV 10 E 30 P

0 U

S 20 FLL OPT SOP END MDF PDF NDF 10 0 FLL OPT SOP END MDF PDF NDF Ecotechnology - Seedling quality 100 90 R. alaternus 80

Post-summer survival (11 months) ) % 70 ( A

CI 60 N E 50 V

100 I

90 P. lentiscus RV 40 E P

80 U 30 S )

% 70 20 A ( 60 10 NCI

E 0

V 50

I 100

RV 40 90 R. lycioides E P

U 30 80 S )

20 % 70 (

10 A

CI 60 N 0 E 50 V FLL OPT SOP END MDF PDF NDF I

RV 40 E

100 P

U 30

Q. coccifera S 90 20 80 10 )

% 70 ( 0

A 100

CI 60

N 90 T. articulata E 50 V I 80 RV 40 ) E % 70 P (

U 30 A S

CI 60

20 N E 50 V 10 I

RV 40

0 E P

U 30 FLL OPT SOP END MDF PDF NDF S 20 10 0 FLL OPT SOP END MDF PDF NDF Ecotechnology - Seedling quality

An easy way to get smaller seedlings: top pruning

Quercus ilex ballota – S. Crevillente Ephedra fragilis - Albatera 100 100

95 95

90 Qr_T0 90 Eph_T0 Qr_T1 Eph_T1 85 85 Supervivencia (%) Supervivencia (%) Qr_t2 Eph_T2 80 80 ene-03 may-03 ago-03 nov-03 mar-04 ene-03 may-03 ago-03 nov-03 mar-04

Tiempo (meses) Tiempo (meses)

Chirino et al. (no publ.) Ecotechnology - Seedling quality

Drought preconditioning P. lentiscus 25 EA RLY SUMMER 20 LA TE SUMMER S

E 15 S CA o 10 N

5

0 -100 -80 -60 -40 -20 0 20 40 60 80 100 CHA NGE IN SURV IV A L (%)

REDMED project (unpubl.) Ecotechnology – Site preparation

Soil preparation Ecotechnology – Site preparation

Microcatchments to concentrate runoff water

3.5

Pinus halepensis CONTROL 3.0 MICROCUENCA

2.5

2.0 tronco (m)

del 1.5 ra

Altu 1.0

0.5

0.0 UMBRIA SOLANA

A. Saquete (unpubl.) Ecotechnology – Site preparation

Reuse of sewage sludge to ameliorate soil fertility 135 Pinus halepensis 130 Quercus ilex Salix discolor 125 Salix viminalis Picea glauca (%) 120 Cedrus atlantica a Celtis australis 115

110 tura relativ l A 105

100

95 0 50 100 150 200 250

Dosis de biosólido (Mg ha-1) Valdecantos et al., in press

PROJECT BIOMON - Scientific basis for biosolid application in Mediterranean woodlands (REN2000-0181P4-03) Ecotechnology – Site preparation

Reuse of sewage sludge to ameliorate soil fertility

100 Quercus ilex ssp. ballota

80 0 Mg ha-1 6 Mg ha-1 12 Mg ha-1

60

40 Tasa de mortalidad (%) 20

0 Ecotechnology – Treeshelters

CONTROL 100 TREESHELTER

40 MONTHS 80 )

QUERCUS COCCIFERA- %

(

L 60

XIXONA, E SPAIN A

V I

V 40

R U

S 20

0 A. Vilagrosa, unpubl.

20

(g) 18 16 14 OMASS 12 10 8 6 4 2 BELOWGROUND BI 0 OL ER NTR ELT CO ESH TRE Treeshelters provide shadow, and protection against herbivores THANKS FOR YOUR ATTENTION !! COMMERCIALS Don’t forget to visit ECOSISTEMAS at WWW.REVISTAECOSISTEMAS.NET Free electronic journal of the Spanish Association for Terrestrial Ecology Biodiversity - Vascular plants

• 1821 vascular species in Iberian steppes, 76% of them found in N Africa (Maghrib) steppes • Alpha grass steppes are not very diverse: ƒ 10 endemics in the Ibero-Maghrib region (0.3% of the flore; 0.6% of the stepic flora in N Africa) ƒ Perennial vascular plants 16 plots Alicante (E Spain)Æ H’=1.2 S=28 • Annual species ) 40 (Nº S

S 35

30 CHNE 25 RI S E 20 CI E

P 15 0.0342 10 y = 26.638x AR S 2 5 R = 0.631 CUL S

A 0 V 020406080100 RESPROUTER COVER (%) Maestre & Cortina, unpubl. Biodiversity - Cryptogams

ALGAE

Scytonema sp. Trentepohlia sp. Nostoc sp.

LICHENS

Squamarina concrescens S. lentigera et S. cartilaginea Toninia sedifolia et T. tristis Psora decipiens et P. crenata Fulgensia fulgida Catapyrenium sp. Synalissa symphorea Collema

MOSSES

Didymodon acutus Weissia sp. Gymnostomum lusieri Aloina rigida Crossidium sp. Fossombronia sp. Southbya sp. V. Calatayud (unpubl.) Biodiversity - Cryptogams

Phylogenetic affiliation (GenBank accession Nº)

Aphanizomenon issatschenkoi (AY493984) Chlorella mirabilis plastid (X65100) Oscillatoria spongeliae 513bg (AF534693) Anabaena cylindrica (AF091150) Chlorella sorokiniana plastid (X65689) Microcoleus steenstrupii (AJ871987) Oscillatoria spongeliae 504bg (AF534688) Lyngbya majuscula (AF368300) Lyngbya majuscula (AF368300) Plectonema cf. battersii (AJ621837) Oscillatoria sp. J-24-Osc (AF263344) Phormidium sp. ETS-05 (AJ548503) Lyngbya hieronymusii (AF337650) Symploca sp. PCC8002 (AB039021) Phormidium autumnale (AF218371) Nostoc sp. 8916 (AY742447) Oscillatoria sp. MPI 990BR03 (AF284810) Symploca sp. PCC8002 (AB039021) Oscillatoria spongeliae 513bg (AF534693) Biodiversity - Fauna

• Low bird richness, probably as a result of low plant diversity and poor community structure

• Common species: Cogujada montesina (Galerida theklae) and Camachuelo trompetero (Rhodopechys githaginea)

Galerida theklae José J. Matamala (www.almeriware.net) Morpho-functional traits

• 200 - 400 mm (semiarid to dry sub-humid) • -19ºC to 40ºC • Limited by flooding, salinity and clay

100º - 100% RWC 0º - 70% RWC

Pression-volume curves in alpha grass and other Mediterranean species

Stipa tenacissima spartum Pistacia lentiscus Quercus coc cifera Ψπ (MPa) -1.85 -4.18 -2.63 -2.66 Ψtlp (MPa) -2.67 -7.2 -3.3 -3.46 RW Ctlp (%) 85 83 86 87 ε (MPa) 16.2 17.8 29.2 25.4

Pugnaire et Haase, 1996 et Vilagrosa, 2002 Morpho-functional traits

Poikilohydric. Seasonal variation in leaf extension

Haase et al., 1999 Morpho-functional traits

Poikilohydric. Predawn water potential

Haase et al., 1999 Morpho-functional traits

Poikilohydric. Chlorophyll concentration

) 600 -2 m

g 500 m (

n 400 o i at r t 300 en c n

o 200 c b 100 a+ l h

C 0 May 1999 August 1999 November 1999

Balaguer et al., 2002 Morpho-functional traits

Branched rooting system under the tussocks

Puigdefábregas & Sánchez, 1996 Spatial heterogeneity of resources and organisms

Interaction between alpha grass growth and slope

Puigdefábregas & Sánchez, 1996 Spatial heterogeneity of resources and organisms

Tussocks affect surface soil properties

Cover (%)

Tussock Open

Cyanobacteria 6.8 ± 2.9 49.2 ± 6.0

Mosses 71.4 ± 5.5 12.0 ± 4.8

Lichens 0 15.56 ± 5.8

Bare soil 5.6 ± 1.1 16.8 ± 1.8 Maestre et al., 2002 Spatial heterogeneity of resources and organisms

10 800 ) ) a -1

9 P n 700 i 8 (k

L m 600 NCE

m 7 T (

S 500 E 6 I T S A 5 400 R N RE N O O 4

I 300 I T

A 3

RAT 200 R 2 T LT

NE 100 FI 1 E N P I 0 0 TUSSOCK OPEN TUSSOCK OPEN

25 )

-1 Changes in surface soil conditions n

i TUSSOCK 20 OPEN favoured by alpha grass tussocks affect L m m

( 15 hydrological properties E T A

R 10 N O TI

A 5 partial correlation R LT I r2=-0.537 p=0.039 F 0 N I 020406080100 CYANOBACTERIA COVER (%) Maestre et al., 2002 Spatial heterogeneity of resources and organisms Spatial heterogeneity of resources and organisms

Phosphorus in islands of fertility

10 10

8 CANOPY OPEN 8 RII=(Bt-Bo)/(Bt+Bo) ) s e es) s a c 6 cas 6 º º n n ( y y ( c nc 4 n

e 4 u que e eq r Fr 2 F 2

0 0 010203040506070 -1,00 -0,80 -0,60 -0,40 -0,20 0,00 0,20 0,40 0,60 0,80 1,00 Olsen P surface soil (mg kg-1) Net change in Olsen P - RII (rel. units)

Cortina & Maestre, 2005 Spatial heterogeneity of resources and organisms

Litter decay rate ) Forest floor accumulation -1 ) 1.6 250 -1 Doñana (dry) ha

1.4 dw La Sauceda (wet) g 200

1.2 M ( on

1.0 i

t 150 a l

0.8 u m

u 100

0.6 c c a 0.4 r 50 oo l f

0.2 t s

e 0 0.0 r o Litter decomposition rate (k, years Litter decomposition rate

F r r r is s s x ta tis ra is a a ia u ru le te be ium o e s c ic rea ol ns id .i ia s u l ube if en nai an tif e b flo d a ifo an . s c ri e it ine s p vi Q a in . s m lib Q oc r u le al . r p i . c na py lus roc a . ar P . Q al C . ca . . at ang C P . h Q . Q Q . . h . p H Q S F. P U

Gallardo & Merino, 1993 VV.AA.

Species and site effects on decay rates and forest floor accumulation are strong Spatial heterogeneity of resources and organisms Biological properties also differ

140

120 ) -1 ·h

-2 100 m -C·

2 80 O C g

m 60 ( x u

ffl 40 e 2 CO 20

0 e e p p ts s d o o m s st n sl sl u a u u p n s c r o u w tu l c gr a o e rm a p d r ic re ti a m wo g a S ip iu th lo B t d ar io S o E B yp ch ra Maestre & Cortina, 2003 B Interspecific interactions and community structure

) 0.30 -1 h

2 0.25 m 2 0.20 H 2 C

l 0.15 o

m 0.10 n 0.05

ARA ( 0.00

a . . ri p. es e pp pp p t s s s ss o ac ra a b um o in M s r no ni a re P ya am C py ta qu a S C Biological crusts can be a significant source of Nitrogen in drylands

Martín et al., unpubl. A framework for alpha grass steppe restoration

70 70 70 D

D 65 65 D 65 DA DA I DA I I L L 60 60 L 60 BI BI BI A A A T T T S

S 55 55 S 55 E E

E

DE DE DE

E 50

E 50

E 50 C C C DI DI DI N N N Í 45

Í 45

Í 45

40 40 40

50 50 50 N N 45 45 N 45 Ó Ó Ó I I I C C C A A 40 40 A 40 R R R T T T L L L I I I F F 35 35 F 35 N IN IN I

E E E D D 30 30 D 30 E E E C C C I I I D D 25 25 D ÍN ÍN 25 ÍN

20 20 20

30 30 30

S 25 S S 25 25 E E E T N NT NT E E 20 E 20 20 I I I R R R T T T U U

NU 15 15 15

N N E E E D D D E E 10 E 10 10 C C C DI N NDI NDI Í Í 5 Í 5 5

0 0 0 010203040 01 12 23 000111 RIQUEZA ESPECÍFICA (Nº) DIV ERSIDAD ( H' ) EQUITATIVIDAD

Maestre & Cortina, unpubl. Landscape structure, functional state and restorability

Ecotechnology - Seedling quality

PROPIEDADES MORFO- TÉCNICAS COMPORTAMIENTO ESTABLECIMIENTO FUNCIONALES

Biomasa • Fertilización Fraccionamiento B • Hormonas Morfología foliar •Radiación Morfología radicular • Irrigación Arquitectura hidráulica • Contenedores Resistencia condiciones ambientales SUPERVIVENCIA Captura recursos • Espaciamiento CRECIMIENTO • Micorrización Resistencia depredadores-plagas Reservas hídricas •CO 2 Energía • Poda aérea Nutrientes • Poda subterránea Resistencia stress • Preparación del terreno •… Eficiencia uso agua • Ejecución de la obra • Enmiendas • Selección del sitio •… Ecotechnology - Seedling quality

Costes medios de una plantación comercial (Ontario)

Stock Testing 1% Planting Stock 38% Production 31%

Tending Site 9% Preparation 21%

Sampson et al., 1997 Ecotechnology - Seedling quality

Seedling mortality experimental plantations CEAM 1992-1994

J.A. Alloza (unpubl.) Ecotechnology - Seedling quality

Seedling Properties

Single Point Measurements Integrated-point Response Measurements

Material Attributes Performance Attributes

Stress Resistance Functional Integrity Under Optimum Under Simulated Parameters Parameters Conditions Field Conditions

MORPHOLOGY PHYSIOLOGY

Initial Survival Potential ROOT GROWTH POTENTIAL

Field Performance Potential Folk & Grossnickle, 1997 Ecotechnology - Seedling quality

Este ajuste se puede anticipar mediante poda

Quercus ilex ballota – S. Crevillente Ephedra fragilis - Albatera 50 65

40 55 30 45 20 Altura (cm) Altura (cm) 35 10

0 25 dic-02 mar-03 jun-03 oct-03 ene-04 dic-02 mar-03 jun-03 oct-03 ene-04 Tiempo (meses) Tiempo (meses)

Chirino et al. (no publ.) Ecotechnology - Seedling quality

Morfología radicular Pistacia lentiscus –3 meses

7000

100 b 6000 a b 80 ) 5000 2 ) b a -1 g 4000 60 b 3000 40 uperficie (cm SRL (cm S 2000

20 1000

0 0 Control N- P- CONTROL N- P-

Trubat et al., en prensa Ecotechnology – Site preparation

Drought Post-watering 1,5 ) -1 s

-2 1,0 m 2 CO l 0,5 mmo ( A 0,0

0,6 s) it n e u v

i 0,4 (relat I 0,2 PSI φ

0,0 Marl Limeston e Sandstone Marl Limestone Sandstone Landscape structure, functional state and restorability

1. LANDSCAPE ORGANISATION Tongway & Hindley, 2004

Ecotechnology - Seedling quality

Las relaciones entre las variables morfológicas y el comportamiento en campo pueden ser de tipo unimodal

MacDonald et al. (1984) en Villar (2003)