Alfa Grass (Stipa Tenacissima) Steppes As Model Ecosystems for Dryland Restoration
Total Page:16
File Type:pdf, Size:1020Kb
INNOVATIONS IN DRYLAND RESTORATION Jordi Cortina Departament d’Ecologia - Universitat d’Alacant Alacant (Spain) Alfa grass (Stipa tenacissima) steppes as model ecosystems for dryland restoration 1.1 Introduction to alpha grass and alfa grass steppes in SE Spain. 1.2 Ecological interactions in alfa grass steppes, from microscopic to landscape scales. 1.3 A framework for alfa grass steppes restoration. Ecological interactions provide clues for restoration 2.1 Landscape structure, functional state and ecosystem restorability. 2.2 The use of biological soil crusts. 2.2 Facilitation by alfa grass. 2.3 The role of Aleppo pine (Pinus halepensis) in alfa grass restoration. 2.3 Ecotechnology as a replacement for ecological interactions. TUSSOCK OPEN Alpha grass steppes in Spain - Distribution REGION OF VALENCIA ALICANTE Alpha grass steppes in Spain - Distribution In Europe: 600.000 ha (Spain and Portugal): ca. 6% of stepic areas Alpha grass steppes in the world Algeria 4,000.000 ha Morocco 2,200.000 ha Tunisia 1,350.000 ha Iberian Peninsula 600.000 ha Lybia 500,000 ha TOTAL ~8,000.000 ha CURRENT ~2,800.000 ha Djebaili, 1988 et Le Houérou, 2001 Prehistoric evidences of alpha grass use • Remainings from Copper Age - Deforestation in certain parts of the Iberian Peninsula (ca. 4000 BP) • More frequent Bronze Age - Strings, baskets and shoes. Alpha grass steppes suggest shrubland clearing (ca. 3000 BP) Flora Atlantica, sive Historia plantarum quae in Atlante, Agro Tunetano et Algeriensi Crescunt. Tomus Primus.. Desfontaines, Renato L. Parisiis: L.G. Desgranges, [1798-1799?] Buxó, 1999; Barber, 1997 20th Century rise and fall • 1920 Comité Especial (regulations on local commerce and export) • 1940 Instituto de Fomento de la Producción de Fibras Textiles • 1947 Reglamento Nacional de Trabajo para el Sector Manual del Esparto de la Industria Textil • 1948 Servicio Nacional del Esparto (M. Industria y Comercio and M. Agricultura) • Harvesting gradually abandoned since 1950-60 • Grazing gradually reduced (500.000 sheeps 100.000 goats en 1999) Barber, 1997 Community dynamics Al. Stipion tenacissimae • Helictrotichon filifolii-Stipetum tenacissimae • Lapiedro martinezii-Stipetum tenacissimae • Lapiedro martinezii-Stipetum tenacissimae subas. sedetosum dianii • Heteropogo contortii-Stipetum tenacissimae Le Houérou, 2001 Biodiversity Cyanobacteria Biological crust – Lichens and cyanobacteria B. Diaz-N. Marín Galerida theklae Biological crust - Mosses José J. Matamala (www.almeriware.net) Morpho-functional traits 100º - 100% RWC 0º - 70% RWC ) 600 -2 g m 500 m ( 400 on i t a r t 300 n e c n o 200 b c + 100 a l h C 0 May 1999 August 1999 November 1999 Haase et al., 1999 Balaguer et al., 2002 Morpho-functional traits Biomass accumulation and productivity 1200 2500 ) ) -2 -2 m m 1000 C C 2000 g g ( ( S S S S 800 A A 1500 M M O O 600 I 1000 UND B UND BI O O 400 R R G G E W 500 V 200 O O L B E A B 0 0 Retama Anthyllis Stipa Q. Retama Anthyllis Stipa Q. coccifera coccifera ) 1200 -2 m C 1000 g ( S S A 800 M O R C 600 NE D A 400 DE NG 200 NDI A T S 0 Puigdefábregas, 1998 Retama Anthyllis Stipa Q. coccifera Alfa grass (Stipa tenacissima) steppes as model ecosystems for dryland restoration 1.1 Introduction to alpha grass and alfa grass steppes in SE Spain. 1.2 Ecological interactions in alfa grass steppes, from microscopic to landscape scales. 1.3 A framework for alfa grass steppes restoration. Ecological interactions provide clues for restoration 2.1 Landscape structure, functional state and ecosystem restorability. 2.2 The use of biological soil crusts. 2.2 Facilitation by alfa grass. 2.3 The role of Aleppo pine (Pinus halepensis) in alfa grass restoration. 2.3 Ecotechnology as a replacement for ecological interactions. Spatial heterogeneity of resources and organisms Alpha grass tussocks capture resources (water, sediments, nutrients, seeds) Spatial heterogeneity of resources and organisms As a result alpha grass tussocks act as sinks for resources generated upslope 5 Claro Esparto Regresión esparto (R2 = 0.50, P = 0.069) 4 Regresión claro (R2 = 0.57, P = 0.049) ) 10 0 1 g o l 3 r e t wa f 2 f o n correntía (Log Ru Es 1 0 0 10203040506070 PrecipitationPrecipitación(mm) (mm) Martín et al., unpubl. Spatial heterogeneity of resources and organisms 45 40 Soil properties underneath the 35 tussocks gradually differ, in a positive ) m c 30 feedback creating islands of fertility ( H 25 PT E 20 D IL 15 SO 10 5 0 ) OPEN TUSSOCK % 2.5 ( 7 R E ) T 6 -3 T 2 m A c 5 g M ( C I Y 1.5 N 4 T I A G NS R 3 E 1 O D L K I 2 L O 0.5 S 1 BU cm 5 0 0 0- OPEN TUSSOCK OPEN TUSSOCK Puigdefábregas & Sánchez, 1996 Spatial heterogeneity of resources and organisms 50 45 40 35 + Biological crust 30 Stipa + Roots 25 tenacissima + Rock fragments surface Norte (m) 20 - Physical crust 15 10 5 0 50 S. tenacissima 45 Roots 0.366 40 Mosses 0.101 35 Earthworm casts -0.151 30 Bio crust 0.196 (m) 25 Surface stone -0.102 Rock outcrops 0.201 Norte 20 Physical crust -0.175 15 10 5 0 Maestre & Cortina, 2002 0 5 10 15 20 25 30 35 40 45 50 Este (m) Spatial heterogeneity of resources and organisms Organic matter in islands of fertility 30 25 CANOPY OPEN RII=(Bt-Bo)/(Bt+Bo) s) 20 case º n ( y 15 c n e u q 10 e r F 5 0 012345678910111-21 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 SOM surface soil (%) Net Change in SOM - RII (rel. units) Cortina & Maestre, 2005 Spatial heterogeneity of resources and organisms Nitrogen in islands of fertility 30 30 25 25 RII=(Bt-Bo)/(Bt+Bo) CANOPY OPEN s) ses) se 20 20 ca º º ca n n 15 ( 15 y ( y c c n n e e u 10 u 10 eq eq r r F F 5 5 0 0 0,00 0,20 0,40 0,60 0,80 1,00 -1,00 -0,80 -0,60 -0,40 -0,20 0,00 0,20 0,40 0,60 0,80 1,00 TKN surface soil (%) Net change in TKN - RII (rel. units) Cortina & Maestre, 2005 Interspecific interactions and community structure Plant community structure reflect these and other interactions Interspecific interactions and community structure Globularia alypum Stipa tenacissima Brachypodium retusum 50 50 45 45 40 40 35 35 30 30 ) (m e (m) te t 25 25 r No Nor 20 20 15 15 10 10 5 5 0 0 Anthyllis cytisoides Caméfitos 50 50 Maps of SADIE index of 45 45 clustering at a 2.5 x 2.5 m 40 40 scale 35 35 ) ) 30 30 m (m ( e e 25 t 25 rt r o 20 N No 20 15 15 10 10 5 5 Maestre & Cortina, 2002 0 0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 Este (m) Este (m) Interspecific interactions and community structure 1.25 x 1.25 m 2.5 x 2.5 m 5 x 5 m Nugget Stipa er rango Globularia Prim Brachypodium Anthyllis Caméfitos egundo rango S islands of fertility aggregate some plants but not others Maestre, 2002 Interspecific interactions and community structure Ephedra fragilis Juniperus oxycedrus Quercus coccifera Erica multiflora Rhamnus lycioides Maestre & Cortina (2005) Acta Oecol. 17: 161-9. Interspecific interactions and community structure 40 40 38 38 36 36 34 34 32 32 30 30 2 2 28 R = 0.635, P = 0.001 R = 0.439, P = 0.009 28 y = 21.0 + 15.4 * (1-exp[-0.3x]) y = 31.4 + 4.7 * (1-exp[-0.2x]) 26 26 135791113150 20406080100 Anchura de los sumideros (m / 10 m) Área de arbustos rebrotadores (m2) 40 40 ) ) 38 38 % % ( ( n 36 36 ón ó i raci rac 34 34 t lt l i i f n 32 32 inf e d de i 30 30 e 2 2 ce dic 28 R = 0.644, P = 0.001 R = 0.304, P = 0.015 28 -7 ndi Í Ín y = 35.7/(1 + [x/3.94] ) y = 26.1 + 0.3 x 26 26 456789101115 20 25 30 35 40 Número de sumideros / 10 m Riqueza específica 40 40 38 38 36 36 34 34 32 32 Maestre & Cortina 30 30 R2 = 0.675, P < 0.001 R2 = 0.792, P < 0.001 (2004). Restoration 28 28 y = 18.1 + 0.7 x - 0.01 x2 y = 40.6 - 7.5 x Ecology 12(4): 493-501. 26 26 10 20 30 40 50 60 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 Cobertura total (%) Distancia entre sumideros (m) Interspecific interactions and community structure How important are biological crusts for alpha grass performance? Experimental plots: •ALPHA +/- • BIOCRUST FRAGMENTED +/- • BIOCRUST HERBICIDED +/- 5 replicates: 40 plots PROJECT FANCB - Water and nitrogen fluxes in biological crusts in semiarid environments (REN2001-0424-C02-02 / GLO) Interspecific interactions and community structure The effect of biological crusts on water infiltration is reduced when the physical structure is altered, but not when crusts are killed 30 25 min) / 20 (ml 15 ración lt 10 sa de infi a T 5 0 CO RO HE RO+HE Martín et al., unpubl. Interspecific interactions and community structure The effect of biological crusts on runoff is buffered by alpha grass tussocks 60 60 OPEN TUSSOCK 50 50 ) ) 40 m m 40 m m ( ( F F F 30 F 30 RUNO 20 20 RUNO 10 10 0 0 CONTROL FRA GMENT HERBIC FRA GM+HERBIC CONTROL FRA GMENT HERBIC FRA GM+HERBIC Martín et al., unpubl.